Optimal Control Finite Element Algorithm for Penalty Variational Formulation of the Navier-Stokes Equation*

Ma Yichen (马逸尘)

(Xi-an Jiao-tong University)

For the Stationary Navier-Stokes equations

we can write the penalty-variational formulation of the Eq. (1): Find $\mathbf{n} \in X_{\bullet}(\mathbf{n}_{0})$ such that $\forall \mathbf{n} \in X_{\bullet}(\mathbf{n})$

$$a_0(\vec{a}, \vec{v}) + a_1(\vec{a}; \vec{a}, \vec{v}) + \varepsilon^{-1} \cdot G(\vec{a}, \vec{v}) = \langle \vec{f}, \vec{v} \rangle + \langle \vec{g}_0, \vec{v} \rangle |_{\Gamma_a}. \tag{2}$$

where, besides the common notations in other literatures, the following notations are also introduced. Let $\varepsilon > 0$ be a parameter tending to zero and, for each ε , let

$$H^1_{\mathfrak{o}}(\Omega) = \{\vec{\mathfrak{a}} \colon \vec{\mathfrak{a}} \in \llbracket H^1(\Omega) \rrbracket^3, \ \|\vec{\mathfrak{a}}\|_{1,\mathfrak{o},\Omega}^2 = \|\vec{\mathfrak{a}}\|_{1,\Omega}^2 + \epsilon^{-1} \cdot \|\operatorname{div}\vec{\mathfrak{a}}\|_{0,\Omega}^2 \}$$

and $X_{\epsilon}(\vec{u}_0) = \{\vec{u}: \vec{u} \in H^1_{\epsilon}, \vec{u}|_{\Gamma_1} = \vec{u}_0\}$. Moreover, the continuous linear functionals are defined: $\forall \vec{u}, \vec{v}, \vec{w} \in H^1_{\epsilon}(\Omega), \ a_0(\vec{u}, \vec{v}) = v \int_{\Omega} \nabla \vec{u} \cdot \nabla \vec{v} dx, \ G(\vec{u}, \vec{v}) = \int_{\Omega} \operatorname{div} \vec{u} \cdot \operatorname{div} \vec{v} dx, \ \text{and}$

$$a_1(\vec{w}; \vec{u}; \vec{v}) = \sum_{i=1}^{3} \int_{\Omega} w_i \frac{\partial \vec{u}}{\partial x_i} \vec{v} dx.$$

An optimal control problem corresponding to the Eq. (1) is: Find $\vec{x} \in X_{\epsilon}(\vec{a}_0)$

such that
$$\min_{\vec{x} \in Y_{\ell}(\vec{x})} J(\vec{x}) = J(\vec{x})$$
 (3)

with
$$J(\vec{v}) = \frac{1}{2} a_0 (\vec{v} - \vec{\xi}, \vec{v} - \vec{\xi}) + \frac{1}{2\varepsilon} G(\vec{v} - \vec{\xi}, \vec{v} - \vec{\xi}),$$
 (4)

where in Eq.(4) $\xi \in X_{\epsilon}(\vec{n}_0)$ is a function of \vec{v} according to the following variational problem: i.e.

$$\forall \vec{\eta} \in X_{\varepsilon}(\vec{o}) \ a_0(\vec{\xi}, \vec{\eta}) + \varepsilon^{-1} \cdot G(\vec{\xi}, \vec{\eta}) = \langle \vec{F}, \vec{\eta} \rangle - a_1(\vec{v}; \vec{v}, \vec{\eta}). \tag{5}$$

where $\langle \vec{F}, \vec{\eta} \rangle = \langle \vec{f}, \vec{\eta} \rangle + \langle \vec{g}_0, \vec{\eta} \rangle |_{\Gamma_0}$.

^{*} Received May. 28, 1981.

Proposition 1 Suppose that $t \in \mathbb{R}^1, \forall \tilde{v} \in X_{\epsilon}(\tilde{u}_0), \tilde{w} \in X_{\epsilon}(\tilde{o}), \tilde{\xi}, \tilde{\xi}_1$ is the solution of Eq.(5), corresponding to \tilde{v} and $\tilde{v}_1 = \tilde{v} + t\tilde{w}$ respectively, then

$$\lim_{t\to 0} a_1(\vec{v}; \vec{w}, \hat{\xi}_1) = a_1(\vec{v}; \vec{w}, \hat{\xi}) \tag{6}$$

Proposition 2 The functional $J(\vec{v})$ defined by (4) and (5) has a differential operator $J'(\vec{v}) \in \mathcal{L}(X_{\epsilon}(\vec{o}), R)$ and $\forall \vec{w} \in X_{\epsilon}(\vec{o}), \langle J'(\vec{v}), \vec{w} \rangle = a_1(\vec{w}; \vec{v}, \vec{v} - \vec{\xi}) + a_1(\vec{v}; \vec{w}, \vec{v} - \vec{\xi})$

$$+a_0(\vec{\boldsymbol{\eta}},\vec{\boldsymbol{v}}-\hat{\boldsymbol{\xi}})+\varepsilon^{-1}\cdot\boldsymbol{G}(\vec{\boldsymbol{\eta}},\vec{\boldsymbol{v}}-\hat{\boldsymbol{\xi}}), \tag{7}$$

where ξ is the function of Φ according to Eq.(5).

第1期

Proposition 3 If $\vec{v}_0, \vec{\xi}_0 \in X_*(\vec{u}_0) \cap [H^2(\Omega)]^3$ is a stationary point of $J(\vec{v})$, then one has

$$\left\{ (\vec{v}_0 - \vec{\xi}_0) \nabla \vec{v}_0 - \sum_{j=1}^3 \frac{\partial}{\partial x_j} \left[(\vec{v}_0 - \vec{\xi}_0) \vec{v}_{0j} \right] - \nu \Delta \vec{v}_0 + \sum_{j=1}^3 v_{0j} \frac{\partial \vec{v}_0}{\partial x_j} - \varepsilon^{-1} \nabla \cdot \operatorname{div} \vec{v}_0 = \vec{f} \operatorname{in} \Omega, \\
\left\{ (\vec{v}_0 - \vec{\xi}_0) \vec{v} \cdot \vec{n} + (\nu \frac{\partial \vec{v}_0}{\partial n} + \varepsilon^{-1} \cdot \operatorname{div} \vec{v}_0 \cdot \vec{n}) \right\} \Big|_{\Gamma_1} = \vec{g}_0, \quad \vec{v}_0 \Big|_{\Gamma_1} = \vec{u}_0.$$
(8)

Proposition 4 A solution \mathfrak{F}_0 of the variational problem (2) and ξ defined according to Eq.(5) is certainly the solution of the optimal control problem (3) \sim (5).

Proposition 5 Suppose that, for $\varepsilon > 0$, the problem (2) has at least a solution \vec{a}_{ϵ} , then, for a suitable constant $K_1 > 0$ and the optimal control problem (3) \sim (5), there exists a subsequence $\{\vec{v}_n\}$ of the any minimizing sequence of $J(\vec{v})$ on the convex set $\widetilde{X}_{\epsilon}(\vec{a}_0) = \{\vec{a} \in X_{\epsilon}(\vec{a}_0), \|\vec{a}\|_{1,\Omega} \leq K_1, x \in \Omega\}$ such that $\forall \vec{w} \in X_{\epsilon}(\vec{o})$

$$\lim_{n\to\infty} \{a_0(\vec{v}_n, \vec{w}) + a_1(\vec{v}_n; \vec{v}_n, \vec{w}) + \varepsilon^{-1}G(\vec{v}_n, \vec{w})\} = \langle \vec{F}, \vec{w} \rangle_{\bullet}$$
(9)

Proposition 6 For a suitable $K_2 > 0$ and on $\widetilde{Y}_{\epsilon}(\vec{u}_0) = \{\vec{u} \in X_{\epsilon}(\vec{u}_0) \cap [H_{\epsilon}^*(\Omega)]^3, \|\vec{u}\|_{\epsilon,\Omega} \leq K_2, x \in \Omega\}$, the optimal control probem (3)~(5) has at least a solution \vec{v}_0 , i.e. $J(\vec{v}_0) = \min_{\vec{v} \in \widetilde{Y}_0(\vec{v}_0)} J(\vec{v})$. (10)

Remark Here H_s^s is a fractional Sobolev space for $S \in \mathbb{R}^+$ normed by $||u||_{s,s,Q}^2 = ||u||_{s,Q}^2 + e^{-1}||\operatorname{div} u||_{s,Q}^2$.

Proposition 7 Suppose that the hypothesis of the Proposition 5 holds, then for a suitable $K_2 > 0$, where $K_2 = \|\vec{u}_e\|_{S_{\epsilon} \in \Omega}$, the solution \vec{v}_0 of the optimal control problem (3) \sim (5) on the convex set $\tilde{Y}_{\epsilon}(\vec{u}_0)$ is also the solution of the penalty-variational problem (2).

An algorithm to solve the problem $(3) \sim (5)$ is given according to the conjugate gradient method recommended by R.Glowinski, i.e.:

Step o: we can take for $t^0 \in X_*(t^0)$ the solution of the corresponding penalty-variational problem of the Stokes Eq.:

$$\forall \vec{\mathbf{w}} \in X_{\bullet}(\vec{o}), a_{0}(\vec{\mathbf{n}}0, \vec{\mathbf{w}}) + \varepsilon^{-1} \bullet G(\vec{\mathbf{n}}0, \vec{\mathbf{w}}) = \langle \vec{\mathbf{r}}, \vec{\mathbf{w}} \rangle, \tag{11}$$

then compute $\vec{g}_0 \in X_{\epsilon}(\vec{o})$ as the solution of the linear variational Eq.: $\forall \vec{\eta} \in X_{\epsilon}(\vec{o})$,

$$a_{0}(\vec{g}^{0}, \vec{\eta}) + \varepsilon^{-1} \cdot G(\vec{g}_{0}, \vec{\eta}) = \langle J'(\vec{\mathbf{g}}^{0}); \vec{\eta} \rangle$$
(12)

and set
$$\xi^0 = \vec{g}^0$$
. (13)

For $n \ge 0$, assuming $\vec{n}^n, \vec{\xi}^n, \vec{\xi}^n$ known, compute $\vec{n}^{n+1}, \vec{\xi}^{n+1}, \vec{\xi}^{n+1}$ by

Step 1:
$$\lambda^n = \arg \min_{\lambda \in R} J(\vec{u}^n - \lambda \vec{\xi}^n), \vec{u}^{n+1} = \vec{u}^n - \lambda^n \vec{\xi}^n.$$
 (14)

Step 2: Construction of the new descent direction. Define $\ddot{g}^{n+1} \in X_{\bullet}(\vec{o})$ as the solution of the linear Eq.:

$$\forall \vec{\eta} \in X_{\epsilon}(\vec{\sigma}), \ a_{0}(\vec{g}^{n+1}, \vec{\eta}) + \epsilon^{-1} \cdot G(\vec{g}^{n+1}, \vec{\eta}) = \langle J'(\vec{\mathbf{g}}^{n+1}), \vec{\eta} \rangle,$$

$$\gamma^{n+1} = \frac{\int_{\Omega} \nabla \vec{g}^{n+1} \cdot \nabla (\vec{g}^{n+1} - \vec{g}^{n}) dx}{\int_{\Omega} |\nabla \vec{g}^{n}|^{2} dx},$$

$$\vec{\xi}^{n+1} = \vec{g}^{n+1} + \gamma^{n+1} \vec{\xi}^{n}.$$

$$(15)$$

replace n to n+1, go to (14) until the accuracy is achieved.

Remark One of the characters for this method is to reduce a nonlinear variational problem (2) to finding linear variational problems (11), (12), (15) and a minimizing problem of the single variable (14). The fact that $J'(\vec{v})$ can be expressed in terms of integrals on Q (see(7)) is of fundamental importance in view of finite element approximations. After completing the discretization of the problems (11), (12), (15) by finite element method, we obtain the stiffness matrices K, K, for $a_0(\vec{x}, \vec{v})$, $G(\vec{x}, \vec{v})/\varepsilon$ which are invariant in the iterative process.

References

- [1] Bristean, M.O., Glowiski, R., Periaux, J., Perrler, P., Youneau. O.P., Poirier, G., "Transonic flow simulations by finite elements and least square methods" (Proceedings of the third International Conference on F.E.M. in flow problems, 10—13, June, 1890)
- [2] Giroult, V., Raviat, P-A., "Finite element approximation of the Navier-Stokes equation," Springer-Verlag, 1979.