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Optimal Control Finite Element Algorithm for Penalty Variational

Formulation of the Navier-Stokes Equation*

Ma Yichen (5;& 1)

(Xi-an Jiao-tong University)

For the Stationary Navier-Stokes equations

~vAR+ (V@) +Vp=F inQERS,
divg=0 inQcRs, (1)

ali=ge VI —pei|, =g

we can write the penalty-variational formulation of the Eq. (1): Find g€ X,(#1,)
such that ¥V 2E€X,(3)

3, (2,%) +a,(#: 8,5 +&~ G (&, ) =<F, B + €- 98 S P (2)
where, besides the common notations in other literatures, the following notations
are also introduced. Let &>>( be a parameter tending to zero and, for each g, let

HI(Q) ={@d€lH' @7, ldl}..o=[Bl}.o+e"-ldivid]i,o}
and X,(g,) ={#:3€H!, dl;,=8,}. Moreorer, the continuous linear functionals are
defined: V@, ¥, WCH!(Q), a,(&,¥) = v[oVE V¥dx, G(&£,¥) = [pdivg-dividx, and

S s
0@ 25 9) = > [ w0 pax.
N !Zl Mg,
An optimal control problem corresponding to the Eq. (1) is: Find g€ X.,(#l,)
such that min J(¥) =J(®)

min_ (3)
VE Xal(tio)
with J<v>=—2i4z,,<w—é,w-é> +—218—G(3—E,'§—E), @)

where in Eq.(4) EEX,(ﬁO) is a function of ¥ according to the following vari-
ational problem: i.e,

VAEX,(8) 6,E,7) +e71GE,H) = (F, ) —a,(5:8,%). (5)
where (F,7) = <F,7) + {GosT) | -

* Received May. 28, 1981.
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Proposition 1 Suppose that t€ R, \V¥€E€ X, (8,), WEX.(8), E,E, is the solution
of Eq.(5), corresponding to ¥ and ¥, =%+ tW respectively, then

}ix?a,(i?;:ﬁ,gl) =a,(%;W,E) (6)

Proposition 2 The functional J(¥) defined by (4) and (5) has a differential ope-
rator J/ (8) € & (X.(3),R) and ¥ HE€ X, (3), (J/ (3), W) =a,(#:$,8~E) +a,(%;%,5~L)
+a0(w9‘—g) +'8_1'G(W13—E) )‘ (7)

where E is the function of ¥ according to Eq.(5).
Proposition 3 If v.,,é,,ex,mo) NTH2(Q)]® is a stationary point of J(¥), then
one has

> 3 a - 3 aso - . S,
®,-E,)VE, — Z—axi [(to —go)s”] - vA®D, + Zvoi Fraial: 1VV«divd, = f inQ,
i=1 i=1 !

{(50—E°)¥-ﬁ+(v—‘%+e“-divm-ﬁ}[n=§o, |1, = . ®)

Proposition 4 A solution 3, of the variational problem (2) and E defined ac-
cording to Eq.(5) is certainly the solution of thefoptimal control problem (3) ~(5).

Proposition 5 Suppose that, for >0, the problem (2) has at least a solution
fl., then, for a suitable constant K,>>0 and the optimal control problem (3)~(5),
there exists a subsequence {¥%,} of the any minimizing sequence of J(¥) on the
convex set ¥,(f,) = {8€X.(#), ||al..o<K,, x€Q} such that ¥ HE€X,(3)

lim{a,($,,#) +0,(3,:%,. W) +e7'G(3,, W)} = <E,#, (9

” - 00

Proposition 6 For a suitable K,>0 and on ¥,(&#,) ={#E X, (&) N [HI(Q)I,
ligll,.o<K,, x€Q}, the optimal control probem (3)~(5) has at least a solution ¥,
i.e. J(%y) = min J(¥). (10)

v@Ye(ue)
Remark Here H! is a fractional Sobolev space for SER* normed by |juj|?.,.0

=|lullo+eM|div ufjd q. ,

Proposition 7 Suppose that the hypothesis of the Proposition 5 holds, then for a
suitable K,>>0, where K, = ||f.[[s...0. thefsolution ¥, of the optimal control problem
(3)~(5) on the convex set ¥,(g,) is also the solution of the penalty-variational
problem (2).

An algorithm to solve the problem (3)~(5) is given according to the conjugate
gradient method recommended by R.Glowinski, i.e.:

Step o: we can take for g°€ X,(flc) the solution of the corresponding penalty-
variational problem of the Stokes Eq.:

VHEX,(8), a,(20,#) +£-1+G (80,W) = (F, B, 1
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then compute g,E€X,(d) as the solution of the linear variational Eq.: ¥7€X,(3),

(8%, ) + 710G (G0, 7) = I/ (B°)5%) (12)

and set £°=3°, (13)
For n>(, assuming ﬁ",g",t” known, compute g"+!, g"+!, Z"“ by

_Step 1: A" =arg minj(g"~ At =g - AT 14)

Step 2: Construction of the new descent direction. Define g"*'€ X,(3) as the
solution of the linear Eq.:

VAEX.(B), 6,80 +e71«GE™, 1) = 7 (@), ), (15)
Jg VE"+ . V(" - gM)dx

j | v&" |pdx
Q

v"+1

’

Eretzgret g i,

1eplace n to n+1, go to (14) until the accuracy is achieved.

Remark One of the characters for this method is to reduce a nonlinear varia-
tional problem (2) to finding linear variational problems (11), (12), (15) and a
minimizing problem of the single variable (14). The fact that J/ (%) can be expres-
sed in terms of integrals on Q (see(7)) is of fundamental importance in view of
finite element approximations, After completing the discretization of the problems
(11), (12), (15) by tinite element method, we obtain the stiffness matrices K, K,
for a,(®,%), G(&,%)/e which are invariant in the iterative process.
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