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Extreme points and rotundity of
" Orlicz-Musielak sequence spaces®

Wu Congxin, Chen Shutao
(Harbin Ins;itute of Technology) (Harbin Techer’s Unijv.)

Abstract A.Kaminska and H. Hudzik [ 1 —10] present a series of work concerning geometry of
sequence Orlicz-Musielak spaces. This paper continues their work, to give a character of extreme
points of the unit balls of sequence Orlicz-Musielak spaces epuipped with Luxemburg norm. From

which a criterion of rotundity is obtained immediately.

An extreme poiht of the unit ball of a Banach space means that it does not
lie on any segment with ‘two ends defferent from it in the unit ball.

Let X be a Banach space, N the set of all natural numbers. Leto = (¢,) : X
x N—>[0, + o] be a sequence of Young functions, i.e., ¢, is convex, even and
9,(0) =0 for every ng N. Furthermore, for each n¢ N, the following conditions
are assumed (see[1]). '

(a) 3 nonzero x ¢ X such that g, (x) <oco,
(b) for each xe X, ¢,(rx);: (0, +c0) =[0, + o] is a left-continuous function

of .
For a sequence x=(x,) of X, define I’(x) = q),;(x,) and
. n=1
lo={x=(x,) CX: 31>0, I,(ix)<oo}
lxl,=inf{2>0; I,(x/1)<1}, xg1, (1)
then (/,, |+ |,), so-called sequence Orlicz-Musielak space, is a Banach space
(see( 11).

Lemma | For each n¢e¢N and 'xeX, if p,(x)<oco, then q?,,()lx) is a contin-
uous, nondecrease convex funotion of A¢<[0,1].

Proof Take in mind the fact that ¢, is convex, nonnegative and ¢,(0) =0.

Lemma 2 For neN, x,yeX, if ¢,(x)<co, ¢,(y)<co, then ¢, is continu-
ous on the segment xy=c'E—f—{ax+(1—a)y= ac(0,1)}. ’

Proof Analogously as the case that X is the real line.

Lemma 3 |x|,<lif and only if I,(x)<Ll.

Proof Observe (1) and Lemma 1.
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Theorem | x=(x,) in the unit ball U(/,) of /, is an extreme point of
U(4,) if and only if the following conditions are satisfied
1° I,(x) =1 or x, is an extreme point of {we X: ¢,(w) <oo} for all ngN.
2° ¢, is not constant on any segment in X of which x, is the midpoint for
all ng N.
3° there is at most one number n¢ N such that x, is not a strictly convex
point of ¢, , i.e., there exist two points y, z in X such that x,,=—;(y+z) and

1 1 1
w,.(-z—(y +2)) =59y t 5 P(2) .

Proof Necessity. Let x= (x,) be an extreme point of U(/,) . If 1° does not
hold, then I,(x)<{1 and there exist n€ N and two points #, p in X such that x,
=—‘.12—(u+v) and ¢,(u) <<oo, @,(p) co. Since ¢, is continuous on wp, 3 y,, z,cuv(
YaXz,) ,x,,=%(y,,+z,,) so closed to x, that

Pa(yn) < ulxy) +[1-T,(x)], 0,(z)<<@,(x,) +[1-1,(x)]. (2)
Define y,=2z,=x,(mXxn) and 'y=(y), z=(z;), then yXxz, x=-%—(y+z) and by
(2), I,(»)=1,(x) —9p,(x,) +9,(y)<1 therefore, by Lemma 3, Iyl,<t. Simil-
arly, it is verified that | z],<{1 contradicting the hypothesis that x is an extreme
point of U(/,) .

If 2° is not true, then there exist #€ N and two points y,, z, in X with x,
=—%—( ya+z,) such that ¢,(x,) =¢,(y,) =¢,(z,) . Define y,=z,=x,(m+*n) and y
=(y), z=(z)), then y#z, x=%(y+z) and I,(y) =1,(z)=1,(x)<1, also a con-
tradiction. ‘

If 3° fails to be satisfied, then there exist two numbers m, n ¢ N .and g,, t,,

Uy Un (Ut F U, th,0,) such that x,,.:—é—(u,,. +u,), x,,:Tl(u,ﬁy,,) and such that
Palxn) =3O itn) +30n(00), 0a(x) =5 () +54(00) (3)

Clearly, ¢, is linear on u,g, and ¢, is linear on u,p,. Without loss of generality,
we may assume

PalU) >0, (0,), Pultin) <Pn(vw), Pallty) +@u(uy) >9,(0,) +@,(0,) (4)
(otherwisey, exchangl‘e the places of u, and », or u, and p,) . Let

SC) =@, (Auy+ (1 - D) x,) + 0uluy), g(1) =0, (Ao, + (1= 2A)x,) + (0,

then f(4) and g(A) are continuous on [0,1] and by (4), f(1)>g(1) and f(0)

< g(0) . Hence, there exists 1, [0, 1] such that f(1,) =g(ly) . Denote uy= Aou,+(
(1~ A9)Xn, 2 =4ovn+ (1-4y)x,, then '

-;—(uo +25) =io—;—(u,,+y,,) F (L= A)xy= Agxy + (1 = Ag) X, = 2

therefore, by (3)
@, (x,) =—;¢J,,(uo) +—;-rp,,(vo) (5)
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Define y,.—uo, Zh=V0s Vm = Umy Zm= U Ve =Zy=XC(kF+n, m) and y=(y,), z—(z,)
then x-—(y+ z) and y+#z since u,+y,* Moreover, by (3), (5), I,(x) ~—2—1,
(y) +—= I (z) . Combine f(4,) =g(4), we understand I,(y) =1, (z) =I,(0<1,
again a contradiction.

Sufficiency. Suppose there exist y=(y,), z=(z) € U(],) sucn that x=—%—(y+
z) and y#z, i.e., there exists n¢ N such that y,#z, therefore, by 2°, ¢,(y) +
Pa(z,). :

If 1,(x)=+1, then by 1°, x, is an extreme point of {w ¢ X; ¢,(w) oo}, the-
refore, ¢,(y,) +¢,(2, =co contradicting Lemma 3. If I,(x) =1, then by Lemma

3 and 1= 1.(x)<%1.(y> +%I.<z>, I.(y)=1,(2) =1 and ¢,.(x,,,)=—;wm(y,.)+'%-

Pn(z,) (mecN). It follows by 3° x,=y,=z; for all i in N other than n. Recall
@.(yn) #oa(2,), we have I,(y) ~1,(x) =1 or 1,(z)>‘1,(x)A=1 contradicting the-
fact y, ze¢U(l,) in view of Lemma 3 completing the proof. ’

Definition We say ¢ = (¢,) satisfies condition A, if there exist A>1, K>1, a
>0 and a convergent series Zc such that for all large n, we have ¢,(lu) <
Kg,(u) +c, for all u in X satlstymg e, (u)<a.

For A>1, K>1 and a>0, define v

he(A, K, a) = sup{@, (1), 0, (Ax) >Kp,(x), @0,(x)<a,xeX} (6)

Where we provide sup t=oco when set E is unbounded.
teE

Theorem 2 The following are equivalent
(1) ¢ does not satisfy condition A,
(II) for any A>1, X>1, 2>0 and méN, Zh,,(,l,K,a)=oo

(M) there exists x=(x,) in [, such that ”(0 vee, 0, x,,,,x,“,,---)' =1 for all

meN. :
Proof (I)=(I). If (II) is not true, then there exist i>1, K>1, a>0 -

and mgN such that Zh (4, K, a)<oo leen n>m and uc X satisfying ¢,(u) <<
n=m

a, if p,(Au)>h,(A,K,a), then by (6), ¢,( Q)< Kep,(u) +h,1,K,a). This inequ
ality of cause holds when ¢,(iu) < h,(1, K,a) contradicting (1).

(I)=(I). Since ;:lh (2,2%, 2—1-) = oo, there exists N,>>1 such that :V_lelh (2,
2)>1 andNih (2,2 ,-—)<1 (where N,~1 may happen, in this case, we a
always provide " 1:2;0,-‘—0). Similarly, since ,=$'+1h (1 +—=— lg,l ,2,) = oo, there - '
exists N,>>N,;+1 such that _% h,,(1+—:12—, 2’,2%)>1 and ZZ h(l+—= 2, ,—T)<1
n=N;+1 ] n=N,+1
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In the same way, we may choose N;>N,+1 such that 2 h, (1+—- 24, —-—)>1

N,-1 ] ; n »N;+1
and ) h,.(l+—;—, 2‘,-1— Y<1,-. It follows by (6) there exists x,€ X such that
n=N,+1 . .
0u(x) <1/2"7, @ ((1+=55 )x,,)<2'+2cp,.(x,.) and
Nyoi-1 R
B @1, L (1o < (1)
n=N,+1 n=N,+1

for all n in N satisfying N,+1<n<N,+l and all i=0, 1 2, eee where No=0.
Defining x=(x,), by (7) and. cme,(me)<1/2‘+2, we have

N oo N
Io(x) = i;)E n=;+1‘p"(x”)] < ;l[ n ;+l 2'+2%((1+ )x ) +(pN '(xN")]

& 1 1
< ig:o[ 2" +2H2 ] -1
Therefore , || x|;<<1. On the other hand, for any iA>1 and m in N, there exists

ic>>m such that 1+ 1/ (ig+ 1)<}., it follows by (7),
N’fl

Zq),(lx,,)} £ (x> Z L ea((1+537)x0 > 2 1'="00

n= NI +1 n=N,+1

'v :'1 .
() =>(I). If ¢ satisfies condition A, then there exist 1>1, K>1, a>0,

Recall (1), we have | (0, e, 0, Xny Xn, 1, ++0)

N,eN and c,>0 (ngN) with Zc,.<<>o such that ¢,(Aw)<<Ke¢,(u) +c, for all u in

n=1

X satisfying ¢,(u)<a and all n>N,

Given x—(x,,) in 1, choose m>Nl such that Ec <2, K Z(p,.(x,,)<mm(

a), then " nem

n=2m¢"(lx")< ”Z’"E Kwn(xn) +c, ] <-2_+—é_=1

By (1), [[€0, ey 0, Xpm, Xpm, 1) |,<—/11—<1 contradicting (I) .

Theorem 3 /, is rotund iff the following conditions are provided

(i)  sup{i; ¢,(Au) <oo}<1 for all nonzero « in X with ¢,(u)<1 and all n
in N, -

(i) ¢ satisfies condition A,

(iii) @, is not constant on any segment in {wgX: ¢,(w)<<1} for all n in N,

(iv) For any two points i, j in N and each (u#,2) in {(x, p):¢, (x) +¢; ()<
<1l,x,ye X}, u is a strictly convex point of @, or » is a strictly convex point of
Pj -

Prooff Necessity. If (i) is not true, then there exists i in N and x; in X su-
ch that ¢, (x,) <1 and ¢, (ix) =co for all 1>1. Define x,=0 (n%i) and x=(x,),
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then by (1), |x|,=1. On the other hand, for any j in N other than i, by the
definition of ¢;, there exists nonzero«# in X such that ¢;( —uw) = ¢;(u)< oo, there-

fore, xj=0=%u +%( —-u) is not an extreme point of {we X; ¢;(w) <co}. Combi-

ne I,(x) =¢,(x)<1 with 1° in- Theorem 1, x is not an extreme point of U(/,),
a contradiction.
If (ii) does not hold, by (ll) in Theorem 2, there exists m>1 and x=(x,)

in /, such that pr,,(x,)<l and| (0, sss, 0, Xy X1 5 ) l,=1. Analogously as in

the case (i), it is easy to verify that x is not an extreme point of U(/,) .
If (iii) does not hold, then there exist /i in N andtwo points-u, p in {weX;
@, (w) <1} such that ¢, is constant on up. For any j in different from i and non-

utvyp
2

x;=Aox", x,=0(k+#i,j) and x=(x, thenby the definition of 1, and (1), it is
easily verified that|x|,=1 and by 2° in Theorem 1, that x is not an extreme
point of U(/).

If (iv) does not holds then thgre exist two points i/, j in N and x;, x; in X

zero ¥ in X, let Ay=sup{i>0,9, (1x") +¢, ( )<1} and define x,=%(u+p),

such that ¢, (x) +@,;(x)<1. Choose k¥ in N other than i, j and nonzero w in X
let Ag=sup{i>0. ¢, (x;) +q),(x,). +9, (Aw)<{1} and_ define x = iyw, x, =0 (m=+£i, j,.
k), x=(x,), then it is similarly verified that x norms 1 not being an extreme
point of U(/,).

Sufficiency. For given x=(x,) ¢/, with|x|,=1, we have to show that x is an
extreme point of U(/) which is equivalent to verify 1°, 2°,3° in Theorem 1.

1°. we show I,(x) =1. By (ii), there exist A>1,a>0me N and c,>>0 (n eN)

with Ec,,<oo such that ¢, (Aw) <Kg,(u) +c, Whenever n>m, u in X with ¢,(u)
n=1 . R

<a. If I,(x)<1, then there exists Nj¢ N, N,>m such that
Y EK¢,,(x,) +c,.j <%[1\— l,(x)j icp,,(x,,)(a
n=N, n=N,

for each » in N, since ¢,(x)<I,(x) <1, by condition (i), there exists 1,>1
: N-1 .
such that ¢,(4,x,) <oo therefore, Zq),.(/lx,,) is a continuous function of 1 ¢ (0,
n=1 N -1 N, -1

min 4,). Since min 4,>1, there exists 4,>>1 such that Y ¢,(dx)< Y @,(x) +
n<N, N, n=1 n=1

—21—[1—1,(x)j . Define 4* = min (1’,4,), then
N1 o

N,-1
L,G*0< Loathox) + Lo, x)< Loalx) +5 [1-1,(0]
n=1 n=1 . ‘

n= N,
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o N,-1
+ ":Z:N[Klpn(x,.) e, ] <'§l¢,,(x,,) + El—'l,(x)] <1

Hence, "x",</1—1:<1 contradicting | x|, = 1.

2°. For each n in N, since ¢,(x,)<1, by (iii), ¢, is not a constant on any
segment of which x, is the midpoint.

3°. If there exists some i in N such that x, is not a strictly convex point,
then for any j in N different from i, by (iv) and ¢, (x) +¢;(x) <1, x; is a
strictly convex point of ¢;.

Combining 1°, 2°, 3° proves the theorem.
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