Extreme points and rotundity of Orlicz-Musielak sequence spaces*

Wu Congxin, Chen Shutao
(Harbin Institute of Technology) (Harbin Techer's Univ.)

Abstract A. Kaminska and H. Hudzik [1-10] present a series of work concerning geometry of sequence Orlicz-Musielak spaces. This paper continues their work, to give a character of extreme points of the unit balls of sequence Orlicz-Musielak spaces epuipped with Luxemburg norm. From which a criterion of rotundity is obtained immediately.

An extreme point of the unit ball of a Banach space means that it does not lie on any segment with two ends defferent from it in the unit ball.

Let X be a Banach space, N the set of all natural numbers. Let $\varphi = (\varphi_n)$: X $\times \mathbb{N} \rightarrow [0, +\infty]$ be a sequence of Young functions, i.e., φ_n is convex, even and $\varphi_n(0) = 0$ for every $n \in \mathbb{N}$. Furthermore, for each $n \in \mathbb{N}$, the following conditions are assumed (see[1]):

- (a) \exists nonzero $x \in X$ such that $\varphi_n(x) < \infty$,
- (b) for each $x \in X$, $\varphi_n(tx)$: $(0, +\infty) \rightarrow [0, +\infty]$ is a left-continuous function of t.

For a sequence $x = (x_n)$ of X, define $I_{\varphi}(x) = \sum_{n=1}^{\infty} \varphi_n(x_n)$ and

$$I_{\sigma} = \{ x = (x_n) \subset X : \exists \lambda > 0 , I_{\sigma}(\lambda x) < \infty \}$$

$$\| x \|_{\sigma} = \inf \{ \lambda > 0 : I_{\sigma}(x/\lambda) < 1 \}, x \in I_{\sigma}$$

$$(1)$$

then $(l_{\phi}, \| \cdot \|_{\phi})$, so-called sequence Orlicz-Musielak space, is a Banach space (see [1]).

Lemma I For each $n \in \mathbb{N}$ and $x \in \mathbb{X}$, if $\varphi_n(x) < \infty$, then $\dot{\varphi}_n(\lambda x)$ is a continuous, nondecrease convex function of $\lambda \in [0,1]$.

Proof Take in mind the fact that φ_n is convex, nonnegative and $\varphi_n(0) = 0$.

Lemma 2 For $n \in \mathbb{N}$, $x, y \in \mathbb{X}$, if $\varphi_n(x) < \infty$, $\varphi_n(y) < \infty$, then φ_n is continuous on the segment $xy \stackrel{\text{def}}{=} \{ax + (1-a)y; a \in (0,1)\}$.

Proof Analogously as the case that X is the real line.

Lemma 3 ||x|| < 1 if and only if $I_{\bullet}(x) < 1$.

Proof Observe (1) and Lemma 1.

^{*} Received Aug. 13, 1985.

Theorem 1 $x = (x_n)$ in the unit ball $U(l_p)$ of l_p is an extreme point of $U(l_p)$ if and only if the following conditions are satisfied

- 1° $I_{\phi}(x) = 1$ or x_n is an extreme point of $\{w \in X: \phi_n(w) < \infty\}$ for all $n \in \mathbb{N}$.
- 2° φ_n is not constant on any segment in X of which x_n is the midpoint for all $n \in \mathbb{N}$.
- 3° there is at most one number $n \in \mathbb{N}$ such that x_n is not a strictly convex point of φ_n , i.e., there exist two points y, z in X such that $x_n = \frac{1}{2}(y+z)$ and $\varphi_n(\frac{1}{2}(y+z)) = \frac{1}{2}\varphi_n(y) + \frac{1}{2}\varphi_n(z)$.

Proof Necessity. Let $x = (x_n)$ be an extreme point of $U(l_{\varphi})$. If 1° does not hold, then $I_{\varphi}(x) < 1$ and there exist $n \in \mathbb{N}$ and two points u, v in X such that $x_n = \frac{1}{2}(u+v)$ and $\varphi_n(u) < \infty$, $\varphi_n(v) < \infty$. Since φ_n is continuous on \overline{uv} , $\exists y_n$, $z_n \in \overline{uv}$ ($y_n + z_n$), $x_n = \frac{1}{2}(y_n + z_n)$ so closed to x_n that

 $\varphi_n(y_n) < \varphi_n(x_n) + [1 - I_{\varphi}(x)], \quad \varphi_n(z_n) < \varphi_n(x_n) + [1 - I_{\varphi}(x)].$ (2) Define $y_m = z_m = x_m(m \pm n)$ and $y = (y_i), \quad z = (z_i), \text{ then } y \pm z, \quad x = \frac{1}{2}(y + z) \text{ and by }$ (2), $I_{\varphi}(y) = I_{\varphi}(x) - \varphi_n(x_n) + \varphi_n(y_n) < 1$ therefore, by Lemma 3, $\|y\|_{\varphi} < 1$. Similarly, it is verified that $\|z\|_{\varphi} < 1$ contradicting the hypothesis that x is an extreme point of $U(I_{\varphi})$.

If 2° is not true, then there exist $n \in \mathbb{N}$ and two points y_n , z_n in X with $x_n = \frac{1}{2}(y_n + z_n)$ such that $\varphi_n(x_n) = \varphi_n(y_n) = \varphi_n(z_n)$. Define $y_m = z_m = x_m(m \neq n)$ and $y = (y_i)$, $z = (z_i)$, then $y \neq z$, $x = \frac{1}{2}(y + z)$ and $I_{\varphi}(y) = I_{\varphi}(z) = I_{\varphi}(x) \leq 1$, also a contradiction.

If 3° fails to be satisfied, then there exist two numbers m, $n \in \mathbb{N}$ and v_m , v_m , u_n , v_n ($u_m \neq v_m$, $u_n \neq v_n$) such that $x_m = \frac{1}{2}(u_m + v_m)$, $x_n = \frac{1}{2}(u_n + v_n)$ and such that

$$\varphi_m(x_m) = \frac{1}{2} \varphi_m(u_m) + \frac{1}{2} \varphi_m(v_m), \quad \varphi_n(x_n) = \frac{1}{2} \varphi_n(u_n) + \frac{1}{2} \varphi_n(v_n)$$
 (3)

Clearly, φ_m is linear on $\overline{u_m v_m}$ and φ_n is linear on $\overline{u_n v_n}$. Without loss of generality, we may assume

 $\varphi_n(u_n) \geqslant \varphi_n(v_n), \quad \varphi_m(u_m) \leqslant \varphi_m(v_m), \quad \varphi_n(u_n) + \varphi_m(u_m) \geqslant \varphi_n(v_n) + \varphi_m(v_m)$ (otherwise, exchange the places of u_n and v_n or u_m and v_m). Let

$$f(\lambda) = \varphi_n(\lambda u_n + (1-\lambda)x_n) + \varphi_m(u_m), \quad g(\lambda) = \varphi_n(\lambda v_n + (1-\lambda)x_n) + \varphi_m(v_m)$$

then $f(\lambda)$ and $g(\lambda)$ are continuous on [0,1] and by (4), $f(1) \geqslant g(1)$ and $f(0) \leqslant g(0)$. Hence, there exists $\lambda_0 \in [0,1]$ such that $f(\lambda_0) = g(\lambda_0)$. Denote $u_0 = \lambda_0 u_n + (1 - \lambda_0) x_n$, $v_0 = \lambda_0 v_n + (1 - \lambda_0) x_n$, then

$$\frac{1}{2}(u_0 + v_0) = \lambda_0 \frac{1}{2}(u_n + v_n) + (1 - \lambda_0)x_n = \lambda_0 x_n + (1 - \lambda_0)x_n = x_n$$

therefore, by (3)

$$\varphi_{n}(x_{n}) = \frac{1}{2}\varphi_{n}(u_{0}) + \frac{1}{2}\varphi_{n}(v_{0})$$

$$-196 -$$
(5)

Define $y_n = u_0$, $z_n = v_0$, $y_m = u_m$, $z_m = v_m$, $y_k = z_k = x_k (k \neq n, m)$ and $y = (y_i)$, $z = (z_i)$, then $x = \frac{1}{2}(y+z)$ and $y \neq z$ since $u_m \neq v_m$. Moreover, by (3), (5), $I_{\varphi}(x) = \frac{1}{2}I_{\varphi}(y) + \frac{1}{2}I_{\varphi}(z)$. Combine $f(\lambda_0) = g(\lambda_0)$, we understand $I_{\varphi}(y) = I_{\varphi}(z) = I_{\varphi}(x) \leq 1$, again a contradiction.

Sufficiency. Suppose there exist $y = (y_i)$, $z = (z_i) \in U(I_{\varphi})$ such that $x = \frac{1}{2}(y + z)$ and $y \neq z$, i.e., there exists $n \in \mathbb{N}$ such that $y_n \neq z_n$ therefore, by 2° , $\varphi_n(y_n) \neq \varphi_n(z_n)$.

If $I_{\varphi}(x) \neq 1$, then by 1° , x_n is an extreme point of $\{w \in X: \varphi_n(w) < \infty\}$, therefore, $\varphi_n(y_n) + \varphi_n(z_n) = \infty$ contradicting Lemma 3. If $I_{\varphi}(x) = 1$, then by Lemma 3 and $1 = I_{\varphi}(x) < \frac{1}{2}I_{\varphi}(y) + \frac{1}{2}I_{\varphi}(z)$, $I_{\varphi}(y) = I_{\varphi}(z) = 1$ and $\varphi_m(x_m) = \frac{1}{2}\varphi_m(y_m) + \frac{1}{2}$. $\varphi_m(z_m)$ $(m \in \mathbb{N})$. It follows by 3° $x_i = y_i = z_i$ for all i in \mathbb{N} other than n. Recall $\varphi_n(y_n) \neq \varphi_n(z_n)$, we have $I_{\varphi}(y) > I_{\varphi}(x) = 1$ or $I_{\varphi}(z) > I_{\varphi}(x) = 1$ contradicting the fact y, $z \in \mathbb{U}(I_{\varphi})$ in view of Lemma 3 completing the proof.

Definition We say $\varphi = (\varphi_n)$ satisfies condition Δ , if there exist $\lambda > 1$, K > 1, a > 0 and a convergent series $\sum_{n=1}^{\infty} c_n$ such that for all large n, we have $\varphi_n(\lambda u) < K\varphi_n(u) + c_n$ for all u in X satisfying $\varphi_n(u) < a$.

For $\lambda > 1$, K > 1 and a > 0, define

$$h_n(\lambda, K, a) = \sup \{ \varphi_n(\lambda x) : \varphi_n(\lambda x) \geqslant K \varphi_n(x) , \varphi_n(x) \leqslant a, x \in X \}$$
 (6)

Where we provide $\sup_{t \in E} t = \infty$ when set E is unbounded.

Theorem 2 The following are equivalent

- (I) φ does not satisfy condition Δ ,
- (II) for any $\lambda > 1$, K > 1, a > 0 and $m \in \mathbb{N}$, $\sum_{n=-\infty}^{\infty} h_n(\lambda, K, a) = \infty$,
- (III) there exists $x = (x_n)$ in l_{φ} such that $\|(0, \dots, 0, x_m, x_{m+1}, \dots)\|_{\varphi} = 1$ for all $m \in \mathbb{N}$.

Proof (I) \Rightarrow (II). If (II) is not true, then there exist $\lambda > 1$, K > 1, a > 0 and $m \in \mathbb{N}$ such that $\sum_{n=m}^{\infty} h_n(\lambda, K, a) < \infty$. Given n > m and $u \in X$ satisfying $\varphi_n(u) < a$, if $\varphi_n(\lambda u) > h_n(\lambda, K, a)$, then by (6), $\varphi_n(\lambda u) < K\varphi_n(u) + h_n(\lambda, K, a)$. This inequality of cause holds when $\varphi_n(\lambda u) < h_n(\lambda, K, a)$ contradicting (I).

 In the same way, we may choose $N_3 > N_2 + 1$ such that $\sum_{n=N_2+1}^{N_3} h_n (1 + \frac{1}{2}, 2^4, \frac{1}{2^4}) > 1$ and $\sum_{n=N_1+1}^{N_2-1} h_n (1 + \frac{1}{3}, 2^4, \frac{1}{2^4}) < 1, \cdots$. It follows by (6) there exists $x_n \in X$ such that $\varphi_n(x_n) < 1/2^{i+2}$, $\varphi_n((1 + \frac{1}{i+1})x_n) < 2^{i+2}\varphi_n(x_n)$ and

$$\sum_{n=N_{i}+1}^{N_{i+1}} \varphi_{n}((1+\frac{1}{i+1})x_{n}) > 1, \qquad \sum_{n=N_{i}+1}^{N_{i+1}-1} \varphi_{n}((1+\frac{1}{i+1})x_{n}) < 1$$
 (7)

for all n in N satisfying $N_i + 1 \le n \le N_{i+1}$ and all $i = 0, 1, 2, \dots$ where $N_0 = 0$.

Defining $x = (x_n)$, by (7) and $\varphi_{N_{i+1}}(x_{N_{i+1}}) < 1/2^{i+2}$, we have

$$I_{\varphi}(x) = \sum_{i=0}^{\infty} \left(\sum_{n=N_{i}+1}^{N_{i+1}} \varphi_{n}(x_{n}) \right) < \sum_{i=0}^{\infty} \left(\sum_{n=N_{i}+1}^{N_{i+1}} \frac{1}{2^{i+2}} \varphi_{n}((1 + \frac{1}{i+1})x_{n}) + \varphi_{N_{i+1}}(x_{N_{i+1}}) \right)$$

$$< \sum_{i=0}^{\infty} \left(\frac{1}{2^{i+2}} + \frac{1}{2^{i+2}} \right) = 1$$

Therefore, $||x|| \le 1$. On the other hand, for any $\lambda > 1$ and m in N, there exists $i_0 \ge m$ such that $1 + 1/(i_0 + 1) \le \lambda$, it follows by (7),

$$\sum_{n=m}^{\infty} \varphi_{n}(\lambda x_{n}) \geqslant \sum_{n=N_{L}+1}^{\infty} \varphi_{n}(\lambda x_{n}) \geqslant \sum_{i=k_{0}}^{\infty} \sum_{n=N_{I}+1}^{N_{I+1}} \varphi_{n}((1+\frac{1}{i+1})x_{n}) \geqslant \sum_{i=l_{0}}^{\infty} 1 = \infty$$

Recall (1), we have $||(0, \dots, 0, x_m, x_{m+1}, \dots)||_{\sigma} = 1$.

(III) \Rightarrow (I). If φ satisfies condition Δ , then there exist $\lambda > 1$, K > 1, a > 0,

 $N_1 \in \mathbb{N}$ and $c_n \ge 0$ $(n \in \mathbb{N})$ with $\sum_{n=1}^{\infty} c_n < \infty$ such that $\varphi_n(\lambda u) < K \varphi_n(u) + c_n$ for all u in X satisfying $\varphi_n(u) < a$ and all $n \ge N_1$

Given $x = (x_n)$ in l_{φ} , choose $m \gg N_1$ such that $\sum_{n=m}^{\infty} c_n < \frac{1}{2}$, $K \sum_{n=m}^{\infty} \varphi_n(x_n) < \min(\frac{1}{2}, a)$, then

$$\sum_{n=m}^{\infty} \varphi_n(\lambda x_n) < \sum_{n=m}^{\infty} \left[K \varphi_n(x_n) + c_n \right] < \frac{1}{2} + \frac{1}{2} = 1$$

By (1), $\|(0, \dots, 0, x_m, x_{m+1}, \dots)\|_{\phi} < \frac{1}{\lambda} < 1$ contradicting (III).

Theorem 3 l_{\bullet} is rotund iff the following conditions are provided

- (i) $\sup\{\lambda; \varphi_n(\lambda u) < \infty\} < 1$ for all nonzero u in X with $\varphi_n(u) < 1$ and all n in N,
 - (ii) φ satisfies condition Δ ,
 - (iii) φ_n is not constant on any segment in $\{w \in X: \varphi_n(w) \le 1\}$ for all n in N,
- (iv) For any two points i, j in N and each (u, v) in $\{(x, y), \varphi_i(x) + \varphi_j(y) \le \le 1, x, y \in X\}$, u is a strictly convex point of φ_i or v is a strictly convex point of φ_i .

Prooff Necessity. If (i) is not true, then there exists i in N and x_i in X such that $\varphi_i(x_i) < 1$ and $\varphi_i(\lambda x) = \infty$ for all $\lambda > 1$. Define $x_n = 0$ $(n \neq i)$ and $x = (x_n)$,

then by (1), $||x||_{\varphi} = 1$. On the other hand, for any j in N other than i, by the definition of φ_j , there exists nonzero u in X such that $\varphi_j(-u) = \varphi_j(u) < \infty$, therefore, $x_j = 0 = \frac{1}{2}u + \frac{1}{2}(-u)$ is not an extreme point of $\{w \in X: \varphi_j(w) < \infty\}$. Combine $I_{\varphi}(x) = \varphi_i(x_i) < 1$ with 1° in Theorem 1, x is not an extreme point of $U(I_{\varphi})$, a contradiction.

If (ii) does not hold, by (II) in Theorem 2, there exists m>1 and $x=(x_n)$ in l_{φ} such that $\sum_{n=m}^{\infty} \varphi_n(x_n) < 1$ and $\|(0, \dots, 0, x_m, x_{m+1}, \dots)\|_{\varphi} = 1$. Analogously as in the case (i), it is easy to verify that x is not an extreme point of $U(l_{\varphi})$.

If (iii) does not hold, then there exist i in N and two points u, v in $\{w \in X: \varphi_i(w) \le 1\}$ such that φ_i is constant on uv. For any j in different from i and non-zero x' in X, let $\lambda_0 = \sup\{\lambda \ge 0: \varphi_j(\lambda x') + \varphi_i(\frac{u+v}{2}) \le 1\}$ and define $x_i = \frac{1}{2}(u+v)$, $x_j = \lambda_0 x'$, $x_k = 0$ $(k \ne i, j)$ and $x = (x_n)$ then by the definition of λ_0 and (1), it is easily verified that $||x||_{\varphi} = 1$ and by 2° in Theorem 1, that x is not an extreme point of $U(l_{\varphi})$.

If (iv) does not hold, then there exist two points i, j in N and x_i , x_j in X such that $\varphi_i(x_i) + \varphi_j(x_j) \le 1$. Choose k in N other than i, j and nonzero w in X let $\lambda_0 = \sup\{\lambda \ge 0: \varphi_i(x_i) + \varphi_j(x_j) + \varphi_k(\lambda w) \le 1\}$ and define $x_k = \lambda_0 w$, $x_m = 0$ ($m \ne i$, j, k), $x = (x_n)$, then it is similarly verified that x norms 1 not being an extreme point of $U(I_{\bullet})$.

Sufficiency. For given $x = (x_n) \in l_{\varphi}$ with $||x||_{\varphi} = 1$, we have to show that x is an extreme point of $U(l_{\varphi})$ which is equivalent to verify 1° , 2° , 3° in Theorem 1.

1°. we show $I_{\varphi}(x) = 1$. By (ii), there exist $\lambda > 1$, a > 0 $m \in \mathbb{N}$ and $c_n > 0$ $(n \in \mathbb{N})$ with $\sum_{n=1}^{\infty} c_n < \infty$ such that $\varphi_n(\lambda u) < K\varphi_n(u) + c_n$ whenever n > m, u in X with $\varphi_n(u) < a$. If $I_{\varphi}(x) < 1$, then there exists $N_1 \in \mathbb{N}$, $N_1 > m$ such that

$$\sum_{n=N_1}^{\infty} \left[K \varphi_n(x_n) + c_n \right] < \frac{1}{2} \left[1 - I_{\varphi}(x) \right] \qquad \sum_{n=N_1}^{\infty} \varphi_n(x_n) < a$$

for each n in N, since $\varphi_n(x_n) < I_{\varphi}(x) < 1$, by condition (i), there exists $\lambda_n > 1$ such that $\varphi_n(\lambda_n x_n) < \infty$ therefore, $\sum_{n=1}^{N_1-1} \varphi_n(\lambda x_n)$ is a continuous function of $\lambda \in \{0, \min_{n < N_1} \lambda_n\}$. Since $\min_{n < N_1} \lambda_n > 1$, there exists $\lambda_0 > 1$ such that $\sum_{n=1}^{N_1-1} \varphi_n(\lambda_0 x_n) < \sum_{n=1}^{N_1-1} \varphi_n(x_n) + \frac{1}{2} \left[1 - I_{\varphi}(x)\right]$. Define $\lambda^* = \min(\lambda', \lambda_0)$, then

$$I_{\varphi}(\lambda^* x) < \sum_{n=1}^{N_1-1} \varphi_n(\lambda_0 x_n) + \sum_{n=N_1}^{\infty} \varphi_n(\lambda' x_n) < \sum_{n=1}^{N_1-1} \varphi_n(x_n) + \frac{1}{2} \left[1 - I_{\varphi}(x) \right]$$

$$+ \sum_{n=N_{1}}^{\infty} \left[K \varphi_{n}(x_{n}) + C_{n} \right] < \sum_{n=1}^{N_{1}-1} \varphi_{n}(x_{n}) + \left[1 - I_{\varphi}(x) \right] < 1$$

Hence, $||x||_{\bullet} < \frac{1}{1 \cdot \bullet} < 1$ contradicting $||x||_{\bullet} = 1$.

- 2°. For each n in N, since $\varphi_n(x_n) \le 1$, by (iii), φ_n is not a constant on any segment of which x_n is the midpoint.
- 3°. If there exists some i in N such that x_i is not a strictly convex point, then for any j in N different from i, by (iv) and $\varphi_i(x_i) + \varphi_j(x_j) \le 1$, x_j is a strictly convex point of φ_i .

Combining 1° , 2° , 3° proves the theorem.

References

- 1 A. Kaminska, Rotundity of Orlicz-Musielak sequence spaces, Bull. Ac. Pol. Math., 29, No. 3 4 (1981), 137-144.
- 2 ---, On uniform convexity of Orlicz spaces, Indag. Math., 44(1)(1982), 27-36.
- 3 ---, Flat Orlicz-Musielak sequence spaces, Bull. Ac. Pol. Math., Mo. 7 8 (1982), 347 352.
- 4 ---, Strict convexity of sequence Orlicz-Musielak spaces with Orlicz norm, J. Funct. Anal., 50, No. 3 (1983), 285-305.
- 5 ---, The criteria for local uniform rotundity of Orlicz spaces, Studia Math., in press.
- 6 ---, Uniform rotundity in every direction of sequence Orlicz spaces, Bull. Ac. Fol. Math., in press.
- 7 ---, Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory, in press.
- 8 H. Hudzik, Musielak-Orlicz spaces isomorphic to strictly convex spaces, Bull. Ac. Pol. Math., 29 No. 9 -10(1981), 465 470.
- 9 ---, Flat Musielak-Orlicz spaces under Luxemburg's norm, ibid. 32 No. 3 4 (1984), 203-208.
- 10 ---, Uniformly non-1, (1) Orlicz spaces with Luxemburg norm, Studia Math., to appear.