Uniqueness of Best L Approximation For Continuous Functions*

Shi Yingguang (史应光)
(Computing Center, Academia Sinica)

This paper deals with the problem of uniqueness of best L approximation for continuous functions. In this paper we use a new method to establish a kind of characterization theorems and a sufficient condition for unicity spacean n-dimensional subspace of C(a,b), from which every function f in C(a,b) has a unique best L approximation.

I. This paper discusses the problem of uniqueness of best L approximation for continuous functions.

Setting the notation, X will denote an interval (a,b), and C(X) will be the space of all real-valued continuous functions f on X with the L norm

$$||f|| = \int_x |f| \int_x |f(x)| dx$$
 writ

$$z(f) = \{x \in X: f(x) = 0\}, z_{+}(f) = \{x \in X: f(x) > 0\}, z_{-}(f) = \{x \in X: f(x) < 0\}.$$

Let V be an n-dimensional subspace of C(X). V is said to be an unicity space if every function f in C(X) has an unique best L approximation.

Strauss (1, 2) and others have given characterizations for unicity spaces. Using a new method we are going to establish another kind of characterization theorems (Section II) and a sufficient condition (Section III) for unicity spaces.

II. In (1), Strauss defined by H_v the set of all functions in C(X) such that for every h in H_v there exists a v in V satisfying |h(x)| = |v(x)| for $x \in X$. We want to describe it using another method.

Definition 1. Let $v \in V$. (Z_+, Z_-) is said to be an H-partition to v if it satisfies that

- (a) $Z_{\perp} \bigcup Z_{\perp} = X \setminus Z(v)$;
- (b) Z_+ and Z_- are open subsets in relation to X, i.e., for every $x \in Z_+$ (corresp. Z_-) there exists a t > 0 such that $(x-t, x+t) \cap X \subset Z_+$ (corresp. Z_-); (c) $Z_+ \cap Z_- = \phi$.

The following lemma points out the relation between an H-partition to $v \in V$ *Received Oct.4, 1985.

and a function h in the set H_V corresponding to v.

Lemma 1. Let $v \in V$. (Z_+, Z_-) is an H-partition to v, if and only if, there exists an h in H_V such that

$$Z_{+} = Z_{+}(h), Z_{-} = Z_{-}(h) \text{ and } |h| = |v|.$$

Proof. Let (Z_{\perp}, Z_{\perp}) be an H-partition to ν . Set

$$h(x) = \begin{cases} |v(x)|, & x \in \mathbb{Z}_+\\ -|v(x)|, & x \in \mathbb{Z}_-\\ 0, & x \in \mathbb{Z}(v). \end{cases}$$

Of course, we have that $Z_+ = Z_+(h)$, $Z_- = Z_-(h)$ and |h| = |v|. Therefore to prove $h \in H_V$ it only suffices to show that $h \in C(X)$.

Since h(x) = |v(x)| on Z_+ and Z_+ is open in relation to X, h(x) is continuous on Z_+ .

The same conclusion is also true for h(x) on Z_{\perp} .

Let $t \in \mathbb{Z}(p)$. It means that h(t) = p(t) = 0. Whence,

$$|h(t + \Delta t) - h(t)| = |h(t + \Delta t)| = |v(t + \Delta t)| \rightarrow |v(t)| = 0$$

as $\Delta t \rightarrow 0$. So h(x) is also continuous at t.

Conversely, suppose that $h \in H_V$ satisfying |h| = |v| and $Z_+ = Z_+(h)$, $Z_- = Z_-(h)$. It is easy to see that (a), (b) and (c) in the definition are satisfied. Thus (Z_+, Z_-) is an H-partition to v.

Now using this lemma we can establish the main result of the section.

Theorem 2. V is an unicity space, if, and only if, there exises no nontrivial function v^* in V and H-partition (Z_+, Z_-) to v^* such that

$$\left| \int_{\mathbf{Z}_{+}}^{\mathbf{p}} - \int_{\mathbf{Z}_{-}}^{\mathbf{p}} \left| \leq \int_{\mathbf{Z}_{(\mathbf{p}^{\bullet})}}^{\mathbf{p}} \left| \mathbf{p} \right|, \quad \forall \mathbf{p} \in \mathbf{V}.$$
 (1)

Proof. Theorem 3 in [1] says that V is a unicity space, if and only if, there exists no nontrivial function h in H_V satisfying

$$\left| \int_{X} v \operatorname{sgn} h \right| \leq \int_{Z(h)} |v|, \quad \forall v \in V.$$
 (2)

Now, by definition, for every h in H_V there exists a v^* in V such that $|h| = |v^*|$. Of course, We have $Z(h) = Z(v^*)$. Lemma 1 claims that (Z_+, Z_-) is an H-partition to v^* , where

$$Z_{+} = Z_{+}(h)$$
 and $Z_{-} = Z_{-}(h)$.

Conversly, Lemma 1 also claims that for every v^* in V and every H-partition (Z_+, Z_-) to v^* , there exists an $h \in H_V$ such that $Z_+ = Z_+(h)$, $Z_- = Z_-(h)$ and $|a| = |v^*|$, the last one of which implies that $Z(h) = Z(v^*)$. Therefore, there exists no nontrivial function h in H_V satisfying (2), if and only if, there exists no nontrivial function v^* in V and H-partition (Z_+, Z_-) to v^* satisfying (1).

This proves our theorem.

Definition 2. (Z, Z_+, Z_-) is said to be a generalized H-partition to v in V if it satisfies that

- (a) $X = Z \cup Z_{\perp} \cup Z_{\perp}$;
- (b) Z is a closed subset and Z_1, Z_2 are open subsets in relation to X_1
- (c) $Z \cap Z_{\perp} = Z \cap Z_{\perp} = Z_{\perp} \cap Z_{\perp} = \emptyset$;

$$(d) Z \subset Z(p). \tag{3}$$

Theorem 3. V is a unicity space, if and only if, there exists no nontrivial function v^* in V and generalized H-partition (Z, Z_+, Z_-) to v^* such that

$$\left| \int_{\mathbf{Z}_{+}} \mathbf{v} - \int_{\mathbf{Z}} \mathbf{v} \right| \leq \int_{\mathbf{Z}} |\mathbf{v}|, \quad \forall \mathbf{v} \in \mathbf{V}. \tag{4}$$

Proof. It is easy to see that if (Z_+, Z_-) is an H-partition to v^* , then (Z, Z_+, Z_-) is a generalized H-partition to v^* , where $Z = Z(v^*)$. Thus the sufficiency of the theorem follows directly from Theorem 2.

For the necessity of the theorem suppose, to the contrary, that there exists a nontrivial v^* in V and a generalized H-partition (Z,Z_+,Z_-) to v^* satisfying (4). Let $Z^* = Z(v^*), Z_+^* = Z_+ \setminus Z^*$ and $Z_-^* = Z_- \setminus Z^*$. Obviously, (Z_+^*, Z_-^*) is an H partition to v^* . Moreover, from (3) and (4) it follows that for any $v \in V$

$$\int_{\mathbf{Z}(\mathbf{z}^{\bullet})} |\mathbf{v}| = \int_{\mathbf{Z}^{\bullet}} |\mathbf{v}| = \int_{\mathbf{Z}} |\mathbf{v}| + \int_{\mathbf{Z}_{\bullet} \cap \mathbf{Z}^{\bullet}} |\mathbf{v}| + \int_{\mathbf{Z}_{-} \cap \mathbf{Z}^{\bullet}} |\mathbf{v}| \geqslant \left| \int_{\mathbf{Z}_{\bullet}} \mathbf{v} - \int_{\mathbf{Z}_{-} \setminus \mathbf{Z}^{\bullet}} |\mathbf{v}| + \int_{\mathbf{Z}_{-} \cap \mathbf{Z}^{\bullet}} |\mathbf{v}| \right|$$

$$\geqslant \left| \int_{\mathbf{Z}_{\bullet}} \mathbf{v} - \int_{\mathbf{Z}_{-} \cap \mathbf{Z}^{\bullet}} \mathbf{v} - \int_{\mathbf{Z}_{-} \cap \mathbf{Z}^{\bullet}} \mathbf{v} + \int_{\mathbf{Z}_{-} \cap \mathbf{Z}^{\bullet}} \mathbf{v} \right| = \left| \int_{\mathbf{Z}_{\bullet}^{\bullet}} \mathbf{v} - \int_{\mathbf{Z}_{-}^{\bullet}} \mathbf{v} \right| \cdot$$

This shows that (1) is satisfied. By Theorem 2, V is not a unicity space, a contradiction.

This completes the proof of the theorem.

From Theorem 2 and Theorem 3 we can easily obtain the following corollaries.

Corollary 4. Let every nontrivial function v in V be nonzero almost everywhere. Then V is an unicity space, if and only if, there exists no nontrivial function v^* in V and H-partition (Z_+, Z_-) to v^* such that

$$\int_{\mathcal{I}} v = \int_{\mathcal{I}} v, \quad \forall \ v \in V$$

Corollary 5. Let every nontrivial function v in V have only a number of finite zeros. Then V is a unicity space, if and only if, there exists no nontrivial v^* in V and k points,

$$a = x_0 < x_1 < x_2 < \cdots < x_k < x_{k+1} = b$$
, (5)

such that

$$\mathbf{p}^*(x_i) = 0, \quad i = 1, 2, \dots, k$$
 (6)

and

$$\sum_{i=0}^{k} (-1)^{i} \int_{\mathbf{X}_{i}}^{\mathbf{X}_{i+1}} v = 0, \quad \forall v \in \mathbf{V}.$$
 (7)

Proof. Sufficiency. Suppose on the contrary that V is not an unicity space. By Theorem 2 there exists a nontrivial function $v^* \in V$ and an H-partition (Z_+, Z_-) to v^* such that (1) holds. By Definition 1 we have $\overline{Z}_+ \cap \overline{Z}_- \subset Z(v^*)$. under the assumptions of the corollary we can suppose that $\overline{Z}_+ \cap \overline{Z}_- = \{x_1, x_2, \dots, x_k\}$ and, furthermore, suppose that (5) is satisfied. Then in this case (1) becomes (7) and (6) is valid. This is a contradiction.

Necessity. If not and suppose that there exists a nontrivial function v^* in V and k points (5) satisfying (6) and (7). Denote

$$\begin{split} &\mathbf{I}_{0} = (x_{0}, x_{1}), \mathbf{I}_{1} = (x_{1}, x_{2}), \cdots, \mathbf{I}_{k-1} = (x_{k-1}, x_{k}), \mathbf{I}_{k} = (x_{k}, x_{k+1}), \\ &\mathbf{Z} = \{x_{1}, x_{2}, \cdots, x_{k}\}, \quad \mathbf{Z}_{+} = \bigcup_{j < \frac{1}{2}k} \mathbf{I}_{2j}, \quad \mathbf{Z}_{-} = \bigcup_{j < \frac{1}{2}(k-1)} \mathbf{I}_{2j+1}. \end{split}$$

Then (Z, Z_+, Z_-) must be a generalized H-partition to p^* . Moreover, (4) follows from (7). Applying Theorem 3, V is not an unicity space, a contradiction.

This proves the corollary.

III. This section provides a sufficient condition insuring L-uniqueness which is as follows.

Condition H. There exists, for every nontrivial v in V and every H-partition (Z_+, Z_-) to v, a nontrivial function w in V such that the following holds:

$$w(x) \begin{cases} = 0 \text{ on } Z(v) \text{ almost everywhere,} \\ \ge 0, \quad x \in Z_+, \\ \le 0, \quad x \in Z_-. \end{cases}$$
 (8)

Now we state the following

Theorem 6. If V satisfies Condition H, then V is an unicity space.

Proof. Let v, (Z_+, Z_-) and w be defined as in Condition H. Since w satisfies (8),

$$\left| \int_{\mathbf{Z}} \mathbf{w} - \int_{\mathbf{Z}} \mathbf{w} \right| = \int_{\mathbf{Z} \cup \mathbf{Z}} |\mathbf{w}| > 0 \text{ and } \int_{\mathbf{Z}(p)} |\mathbf{w}| = 0.$$

This means that m does not satisfy (1). By Theorem 2, V is a unicity space.

To conclude this section we present an equivalent condition to Condition H.

Theorem 7. Condition H is equivalent to the condition. For every nontrivial h in H_V , there exists a nontrivial function w in V such that

$$\mathbf{w}\mathbf{h} \geqslant 0$$
 (9)

and

$$w(x) = 0$$
 on $Z(h)$ almost everywhere. (10)

Proof. (\Rightarrow). By the definition of H_V , for a nontrivial $h \in H_V$ there exists

a nontrivial v in V such that |h| = |v|. Put

$$Z_{+} = Z_{+}(h), Z_{-} = Z_{-}(h).$$
 (11)

By Lemma 1, (Z_+, Z_-) is an H-partition to v. By Condition H, there exists a nontrivial w in V satisfying (8). Thus (9) and (10) follow from (8) and (11).

 (\Leftarrow) . Lemma 1 tells us that for a nontrivial $v \in V$ and an H-partition (Z_+, Z_-) to v there exists a nontrivial $h \in H_V$ such that

$$Z_{+} = Z_{+}(h)$$
, $Z_{-} = Z_{-}(h)$ and $|h| = |v|$.

By the assumptions of the theorem there exists a nontrivial w in V satisfying (9) and (10). From (9), (10) and the above relations, (8) easily follows. This means that Condition H is satisfied.

Remark. In comparison with Condition A in [2] the following assumption, which is necessary there, is avoided in Condition H: every function v in V has only a finite number of separated zeros.

References

- [1] H. Strauss, Uniqueness in L₁-approximation for Continuous Functions, in "Approximation Theory III"(E.W. Cheney ed.), Academic Press, New York, 1980, 865-870.
- [2] H. Strauss, Best L₁approximation, J. Approximation Theory, 41:4 (1984), 297-308.

(from 266)

(a) $X_0 = \phi$; (b) $p \in G$; (c) $||F(\cdot, p)|| > ||F^*||$. Moreover, if p is a minimum to F, then each of them implies that p is the unique minimum to F.

Theorem 3 Let $p \in K$. If $\overline{f_1} < \overline{f_2}$ and $\overline{f_1} \le f' \le f' \le \overline{f_2}$, then p is a unique minimum to F in K if and only if F possesses a generalized alternation system.

Theorem 4 Let F(x, y) satisfy Assumptions (A) and (C), and f^- , $f^+ \in C(X)$. Suppose that for each x, F(x, y) is convex with respect to y. If F has a unique minimum in the L_{∞} norm, then F has a unique minimum in the L_1 norm.

References

- [1] Shi Ying Guang, Minimization and Best Approximation, Chin. Ann. of Math., 2:2(1981), 225-231 (in Chinese).
- [2] ---, Uniqueness of Minimization Problems, Chin. Ann. of Math., 4B: 4(1983), 463-466.