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I . Introduction

The maximum principle for the Laplace operator states that if a smooth
function u satisfies the differential inequality
Au> 0
at each point of a domain D, then « attains its maximum on JD, the bound-
ary of D. The maximum principle for the heat operator states that if a
smooth function u satisfies the differential inequality

du

Au~
4T

>0

at each point of a cylinder R={(x, r)|xeD, 0<r<T}, where D is a
domain of x space, then the maximum of u on the closure R{JJIR must occur
on the portion of the boundary of R which is either at the bottom of R or
along the sides dDx (0, 730! (8],

The strong maximum principles corresponding to the above principles state
as follows (&3 (10,

The strong maximum principle for the Laplace operator: If a smooth func-
tion u satisfies

du> 0

at each point of a domain D, and attains its maximum U at an interior point
of D, then u=U in Dj;

The strong maximum principle for the heat operator. Suppose the inequa-
lity

du .
Au 7 >0 in R

holds, where R=Dx (0, T] is a cylinder in (x, r)-space, D a domain of
x-space. If the maximum U of u is attained at any point (x, ) of R, then
u(x, t)=U for x€D, 0 <1 <i,.
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Also, the strong maximum priciples for general uniformly elliptic operators
and uniformly parabolic ones holdt 3% (51 L83 For some kind of elliptic systems
and parabolic systems, strong maximum principle in a sense is valid. However,
for other kind of those, only maximum principle holds¢2> (6—9J

Although strong maximum principles hold for both uniformly elliptic and
uniformly parabolic operators, but there is some essential difference between
them.In (4], the author has studied some maximum principles for a family of
singular hyperbolic operators, Naturally, one may ask if strong maximum prin-
ciple in a sense holds for these operators? If, of course, there is such a strong
maximum principle, yet we can't expect that it possesses some special proper-
ty, that as in the case of parabolic operators, or even as in the case of elli~
ptic ones, because of their different instrinsic quality.

We begin with some examples.
2. Some examples

In this paper, the object to be studied is a family of singular hyperbolic
operators in a domain E,

9

P 4 C dXZ

Vi W (x) 9
= T i

, ;D ,
—(h(X)) d +ph (x)f)t +C(x’ [)a

where p and ¢ are real parameters, functions A( x) and c(x, r) satisfy, respec-
tively
heC*0, MINCILO, MJ; AC0)=10; A (x)>0 for x>0, (2.1)
c €CAENC), ¢<0, (2.2)
the domain E={(x, ) |x>0, r~H(x)>0, t+ H(x)<2H(M)}, in which

ng x -
HX) :J'O/I( syds, M>0 and C=JE({(x, 1) [x=0}. Denote

[L=dEN{(x, 1) |r—H(x): 0, x>01,
T,=0E " (x, 0) |t+ H(x) =2H(M), 0 < x< M.
We have the following maximum principle {47,

Theorem A Suppose that (a) p, g satisfy

pP-4-1<0, (2.3)
4R+ (p=q-D2AH + (p+q-3)(A)H =0 in ENC, (2.4)

and that ( b) a function v €C}*(ENC)NC'(E) satisfies
L,, x>0 in E, (2.5)
u,as a function of x, decreases on I, (2.6)
max u>0 if c£0. 2.7)

Then we have F
max u=max u. 2.8)
C E
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Moreover, (2.8) holds without the requirement (2.7) if c=0 (in particular,
if p—gq-1=10).

Conversely, (2.8) is violated if (2.3) doesn’t hold even though all the
remaining conditions are satisfied.

In the following examples, we always suppose that f€CX(0, 2H(M)),

Max f(s)=0, and that (2.3), (2.4) hold.
€0, 2H(M))

Example | Let u= f(r—H(x)), where f (<0 for 0<s<2H(M). Then
we have ,
L,,u4=(p=q- 1)K (x) f(t-H(X)) +c(x, »f(t- Hx))>0 in E. If
0 for 0 <s<H(M)

fCs)= {
~exp(- gy ) for HOM) <s<2H(M),

then u satisfies all of the above conditions and attains its maximum zero on
the characteristic curve I, r— H( x)= H(M).

" We observe that the point (%’, H(M)+H (—ZM)) €E (because A’ >0)

is on the characteristic I' and that u(ﬂ, H(M) +H(A2—/l)) =0 :m%x u. Also,
we observe that u=0 on the curve {(x, 1) €E |t+ H(x)= H(M)+2H (%’l),

xz%} through the point H(M) + H (%l) ) -

M
2
Example 2 Suppose that the strict inequality in (2.3) holds. We con-
sider the function u= f(r- kH(x)), where k is a constant, 0<k<1, such that
p—kq— k< 0. It always is possible to select k in this way because p—-g- 1
<o0.1If /<o, f'<0, then a computation shows that
L, o o= k= 1)) [ (1= kH(x)) + (p= kq= k) f' (1= kH(x))
+o(x, O f(r— YH(x))>0 in E.
0 for 0<s<(l- k)H(M)

4 H(M)
(1 -kHM)

then f fulfills all of the above conditiods, and « attains its maximum zero
on the curve r—kH(x)=(1 -kH(M).

If
()= {

—exp( T ) for (1 - kAYH(M)<s<2H(M),

M
We observe that u= 0 =max u at the point P= (—2—, A-kHM)+
E

kH(%l)) €E. Howev_er, u#F0 on the characteristic curve - H(x)= (1 — k)
(H(M)—H(%'!)) which contains the point P. In particular, ##0 in E,=E[)
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Lox, o) - H(x) - 1 A H(M)vH(%I))}, However, u =:¢ on the curve

{(x, 2 EE |r+H(x)=(1 -kHM)+ (1 +kH (%), x;j}‘—;} through the point

(

sl

e -k)H(My»kH(%’)) .

Exampie 3 suppose p+g+ 1 >0 with holding of the strict inequality
in (2.3). Letting u= f+H (x)), where 7 ¢s)= — (s- 2 H(M)* for 0 <_s<.
2 H(M), we have
Lygetu=(p+g+ 10 Q) f G+ H ) +ex,n)f t+H@)>0
because f< 0., f'>»0. p+qg+1>0., h >0 and c< 0. We notice that y atta-
ins its maximum zers only on the charactetistic curve 7+ H (x)= 2 HM).
These examples give us a siimulus to form the following strong maximum

principle for our singular hyperbolic operators,
3. Strong maximum principle

In order to state our results couveniently, we make some notations,
Suppose that P is a point which belongs to EI,. Construct the characteris-
tic curve from P which is in the same family of characteristic curves with T,
and ends with P* on I, We denote by [ this characteristic curve PP* (if
P €l',, this segment of characteristic curve is just a portion of I,).

Theorem | (Strong maximum principle for singular hyperbolic operators:,
Suppose that p, g satisfy

p-49-1<0, (2.3)
AR c+ (p—qg— 1)(2hH + (p+q=3)(KH)3>0 in ENC, (2.4)
and that u €CHENC)NC'(E) satisfies (2.5)—(2.7). If the maximum U of u
is attained Aat a point P of EUF2 and if U>(, then
u={ on [g.. 3.1
In the case of c=(, (3.1) holds without the requirement U_>( .

Proof Suppose u(P) = UEmixu20 . If PcE, then we have (u +

h(x)u)(P) = ¢; if Pel',, then (uf+ A(x)u)(P) ¢, In a word, we have
(u,+h(x)u)(P)=9 . (3.%)
The following identity holds for the operator L

Prg. <
D (h(x))*D,p] = ((x))*L, , - D(Av) + A — (h(x))“o,
for v €C*(E~C), in AE\C, (3.3

a-1

d d ) .
where Dr:_dx—ih(x)dT’ a=(p+q-1)'2, A=((p-g+ 1)/ 2Yh (x)(Ax)) ", 1

is the derivative of A with respect to x, Integrate the dentity (3.3), in which
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v is replaced by «, with respect to x along the characteristic [, We find

(h(x))'D . u ‘{3' (= Aw |§‘+fr (A - Heyudx

PP

.

= ( ~ Auw) |§' +fr (Hc— AY(u(Py - uw)ydx - u(P)J‘r Hedx
PP PP

+u(P)A)g'
:A(l?")(u(?)—u(P*’))«fr <h"c—A/)<u<P>—u)dx—u(P)fr Wedx, (3.4)
PP* pPP*
1 pPra4-5
Because A(P*)>0 (by (2.3)" and (2.1)), u(P)=U=maxu>0, h“c~A’:Ih z

E
{4h*c+ (p~g— 1)(2hA" + (p+ g~ 3)(W 32} >0 on Tpe (by (2.4)") and c<0,
hence each term of the right side of (3.4) is nonnegative, and we obtain-
(h(x))"D+u]§ =2 0. If the conclusion of the theorem were false, i.e., u3U on

r then the second term of the right side of (3.4) would be positive, the-

PP*>
refore (h(x))”D+u|§> 0, that is to say (by the condition (2.6))
h(P*) | a *
(D) (P) < (Fepy—) (P (P <0 . (3.5)

This would contradict (3.2) and thereby (3.1) is proved,
It is obvious from (3.4) that we can :2move the restriction U_> () when c=

0. The proof is complete now,
Remark | We see from the examples 1—3 that Theorem | is not nominal,

i,e., there do exist such functions satisfyineg all conditions of Theorem 1. and

that we can't expect the of point
S=i(x.0) e ENC u(P)=U!

is bigger that [',,. when all the condition of Theorem 1 are filfulled.

Remark 2 Also we see from these examples that if (2.3)", (2.4) hold,
there exists a nonconstant function u €CXH(E\C)C'(E) which satisfies the
conditions (2.5)—(2.7) and attains its maximum on C as well in E{JI,, To go
a step further, for any given pointPeEUFZ, a nonconstant function uec C2(E NO)
C'(E) can be found which satisfies the conditions (2.5)—(2.7) and attains
its maximum at the point P, For example, the function u= f(r— H(x)) is just

what we need, where
0 for <<s<r,- H(x)
fCs)= { 0 ? P

1 - .
- exp( _S—(IP—H(.X‘P)) for fp— H(xp < s<2H(M),

and (xp, f) is the coordinate of the point P,

Remark 3 Clearly the theorem A is a consequence of the theorem |
when (2.3)’, (2.4)" hold, and this is why we call the theorem | a strong
maximum principle,
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Theorem 2 In the case of p~g—- 1 =0, c¢=0, for any given point P¢
EUL,, there exists a function u €C2(ENC) IC!(E) satisfying (2.5)—(2.6) such
that w(P) = U=max u and u<Z U on Tops N{ P} .

Proof It is’ not difficult to verify that the function wu(x, rn = -[{(r- H(x))
- (t,- H(xp))]J? is just what we need.

Remark 4 The theorem 2 points out that the operator L, . satisfies, if
pP-q9q-1=0, c=0, only the maximum principle in the theorem A, but not
the strong maximum principle in the sense of the theorem 1.

From the derivation of the inequality (3.4) and (3.4) itself, we can draw
several‘ corollaries .

Corollary | Suppose that the conditions (2.3)—(2.7) hold and that
there exists a point P €EUTI, such that u(P) :UEmaEx u. Then we have L, .u
=( on [pp. Besides these, if U> (0, then ¢=( on I ppe.

In fact, if Lp,q,cuaéo on FPP., it would follow from (2.5) and (3.4) that
(h(x))°Du|% >0, i.e., (3.5) holds. This would be contrary to (3.2). Mo-
reover; if ¢c#£(Q on FPP- and U> (0, we would obtain, from (2.2) and (3.4),
(h(x))*Dul|¥ 0.

Before stating the others, we make the following notations., For (< s<
2H(M), 0<r,<r,<2H(M), set

rsfjlf,z:{(x, n €ENC |[r- H(x) =s, r,<<t+ H(x)<r,},
rsfil):{(x, 1) €EENC |t-H(x)=s, r,<t+H(x)<2H(M)},
F*={(x, ) EEUL, |1+ H(x) =1}, j=1,2.
Let E / be domain bounded by rew F,fZ), l"rEZ) and C. The domain

b
LA Sy ry, 1,

. (1) (2
E is bounded by I’ l",‘ , T,and C.

5 3 r"
Corollary 2 Suppose that (2.3)—(2.7) hold and that there are three real
numbers s, r, r,, 0<s<<2H(M), 0<r,<r,<2H(M), such that L, , .u70 on
€1 Then the maximum of ¥ can’t be attained on the domain E

Sir, ot 83 ry Iy, If
(1) ’ s . . .
L, ,u#0 onT then » can’t attain its maximum on E,, | J(I,NJE ). In

k4
53 rl

particular, if L u#0 on I', then u can attain its maximum only on C. When

Py 9, €
c==(), we have the result without the requirement that the maximum of u be
nonnegative,

Corollary 3 Suppose that (.2,.3)—(2,43 hold and that there are three real

numbers s, r, r,, 0 <s<2H(M), 0<r,<r,<2H(M), such that c¢#(0 on rev

DN
Then any funci'nn « €CY(ENC)NCYE) satisfying (2.5),(2.6) and having a
positive maximum U>>( can’t attain its maximum on E I If ¢#0 on st lrl),
such a function u can’t attain its maximum on Eg r,U(rzdes. »). In particular,
if ¢#0 on I, such a function « can attain its maximum only on C.

Corollary 4 Suppose that (2.3)', (2.4)—(2.7) hold. Suppose that there
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is a point Q= (xq fy) €I such that u(R)=U= max u for R €r, g <ty and

u(R)<<U for REl, g ~lg. Denote r=1,+ H(xy) . Then u can’t attain its max-
imum on Eo,,Ul,. In particular, if 4~ U on [, then « can’t attain its max-
imum on EL'T,, If ¢=(, the result holds without the requirement that max u

be nonnegative,

Remark 5 If, instead of the condition (2.6), we have

u, as function of x, decreases strictly on I'I, (2.6)"
or
Dow g on I, (2.6
then it must occur that « U on T, ihcrefore it follow~ that

Corollary 5§ Suppose (2.3} . (2.4). (2.5), 2.6)" (or (2.6) ). 2.7)
hold. Then u can attain its maximum only on C, If ¢ =, the result holds

without the requirement that max « be nonnegative
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