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Abstract

For Y,,Y,,»i.id. withY ~N(u, 1) and §, = LY, , the large deviations are obtained for the

-,
probabilities that max (§,-S§ )/[(k—[)( [ )" 2\b conditionally given (i) S,=0,and (ii) Sm=
m1<k<m,
¢. Applied these results to the double change -points model with some nuisance parameters, we develo-
ped the large deviation for the significance level of the likelihood ratio test,
| . Introduction
Let X, =, X, be mdependent random variable, and X N @ 1), 1<1<m,
(1) o Hyz g V= =y ™=y
H,: 1<p,<p2<m such that g V= =y - =g
(p,+1)_ B V- (p,*+1) _ o m)
Seee=p U= pet O, p = =Spu =u, .
In above hypotheses on double change-points (p,, p,), if u,, & are given, the log
likelihood ratio test stafistic is . .
(2) max 45, -,(,,0+—) (3, =i (ug + 2
- <<k <m 2
- k
where S, = Zx, . Define .
, -
(3) T, =inf(k: max azs KGito + 5 = (5,1 Gy +29)>b)
":
. then the s1gn1flcance‘ level is
P(T <m|H, )
whlch is the probabllnty that a two d1mens10nal Gaussian random field crosses the
constant boundary b. Hogan and Siegmund [ 1 ] adopted the method by Pickands
(2] etc. to obtain explicit large deviation forcthis boundary crossing probability .
Siegmund [ 3] developed woodroofe’s [ 4 1 method to preset a similar result for
- one -parameter exponential family .

Typically u, and . are unknown nuisance parameters in most applications. To
avoid some mathematical difficulties, usually substitute (;/o , Jo) for (uo, Sd)in (2),

where uo=3’,,,/m is the maximum likelihood estimator for 4, under H; and 4, is a

* Received Dec, 28, 1987. .
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threshold value of 8, which one is interested in detecting (cf . Siegmund[ 5 1,3.6).

Then (3) becomes
T,=inf{k : ma}xkao[fs’k«kEm/m ~(8,-1S,/m) - (k—1)3,/2)>b}.
1<d <

P(T2<\m|H0) is the conditional probability that a random field crosses the boun-—
dary b. Hogan and Siegmund [1 ], Siegmund [ 3 ] developed its large deviation
approximation .

In this paper, we try to study the likelihood ratiy *est for hypotheses (1)
with both unknown g, and 6. In this case, the likelihood ratio statistic is

(4) max |§,-§,- k-t §ml/\/(k—l)(1— k1

V<l h<lm m m

To get the significance level leads to develop a conditional probability that a

two dimensional Gaussian field crosses the non-linear boundary b\/ k-1 —57—”-1)

It seems to me that this topic has not been treated in the literature before. We try
to solve this problem in this paper.
Let P, denote the probability measure which makes Y,,Y,,-i.i.d. with ¥, ~

N, 1), §,=0,8,= 1Y, and PS() =Py(-|S,=¢). For 1<me<m<<m, b>0,.
1
define

. k-1
(5) r=mf{k>m0=lgx?glz(_'gosk—sl)/\/(k—/)(l— po ) >b}
. - | / k-1
(6) T =inf{k>m;: max ,Sk—S,]/\/(k—l)(l— ) >b}
1<I<k-m, m

Although the statistical inference for (p,, p,) is only relevent to T, r is more trac-
table than T . Moreover, it is easy to get the similar version for T from some
results for 7. The main results of this paper is stated in Section 2. Theorem |
and Theorem 2 present the large deviations for Py™(r< m, ) and Pg(m"(1<ml) res -
pectively . The complicated proofs of these two’ theorems are delayed to Section
3 and Section 4.Corollary 1 and Corollary 2 are alike somewhat in form to the
related Theorem 11.30 of Siegmund [ 6 J and Theorem 3,11 of Siegmund [5],
that are proved by a method which dose .not seem to suitable to random fields,
The method we adapt was presented originally by Woodroofe [ 4 ] and developed
to random field by Siegmund [ 3 ]. Applied these results, we discuss the likeli-
hood ratio test for hypotheses (1) and get the large deviation for the significance
level .

I discoved after writing this paper that the revised version of [ 3 ] provided
the very similar result to Theorem 1. The differency in forms only comes from
the slightl differert sets over which we maximize. [ am grateful to Prof. David

— 182 —



Siegmund providing above information,
2 . Main Results

Theorem | Assume that b=/4,m'/2, my=tym, m =t,m with u, >0, 0<<tr,<r,<1.
Then as m— oo,

172

__(l

NICEES Hy

NORESY ,1-

ST) RG<m) ~Zbob) + [ ——‘—)(x w >Ev(x+"‘)] dx

u, ' -

where @(x) = (21) ~YZexp(-x%/2), d(x)= jf @ (uw)du,

(8) v(x) = 2x “exp{ ZZn (- 1/2)}.

Corollary | Under the assumptions of Theorem |,

/2

e - 1)
(9) P'™(T<m)~mbg(b) . Jﬂ l( ty - ul lx ) (x? +u1)Ev(x+ )]de

w; -

The proofs of Theorem 1 and Corollary 1 will be presented in Section 3.
Theorem 2 Assume that b =um m'?, my=1t,m, m,—t m, ¢=¢,m with u, >0, 0<<

r,<<lt, <1, §o€(/4,(1—tl),/—l%- s #y 1, (1 —¢,)). Then as m-—»oo,
(1]

Mmoo LU -8) o 1t fo 1=t 2 $o 2
X?;[ &y # goj( I ﬂl+1_tl)EV( Zo ”1+1~11 )]

where v(+) is given by (7).
Corollary 2 Assume that bzylm”z, mo=tym, m=tm, §=¢;m With u4,>0,0

- t 4 —
1oty <1 &olelu (1 -1)/ —l_o—to s #Jt(1-1,)). Then as m—>oo,

2
(m,) mn m_ 3 So ——
(11) P, (T <m,) ~—-exp{-—{u ——th—t,)]”"“ 1) .

#y rtl(l"tl) 2 1-1 5 I 2 2
ui—1&.1¢ My + )EV( U+ )]
P TR R L L T Ay T,
The proofs of Theorem 2 and Corollary 2 will be presented in Section 4.
Now we want to discuss the likelihood ratio test for hypotheses (1) with -

unknown u, and J.

As only limiting behavior will be discussed, we assume that p,, p,—p; , m—
p, are effectively infinitely large. On the other hand, it is intrinsically difficult
to detect (p,,p,) when p, occurs near 1, p, occurs near m, or p,-p, sufficiently
small (cf. Siegmund [ 5], 3.4).

From (4 ) and above assumptions, the likelihood ratio test statistic for hypo-
theses (1) may be taken as follows
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~ _'\,_ k — l —~ / _ _ k-— [
(12) 131%/3;”‘] 1S, =S, - —— S,,,‘\/(k HQ —)
k—i>m,
for some | <\m,<m,<m. Hence the significance level is
T
Isk—sl— ml Sm' b '
P a >b|H
(13) { 131}1-«1kxgm| k-1 ’ I o

k-1 >m, \ﬁk—l)(l— )

where b >( is a constant, Since §k ——§, is independent to §,,, for all | <I/<<k<m,
(12) equals

y>b) = P"(T<m,)

(m) ya—
P max (S Silly k- DA

k-~ >m,

Thus Corollory | offers the large deviation for the significance level (12).
3. Proof of Theorem |

In this Section, we always use the notation of Theorem 1, Moreover, ¢ (x|c)
indicates the distribution of random variable x under the condition ¢ . The proof
of Theorem ] is given in a series of Lemmas.

Lemma | Assume my<<n<(m,. Then as m—>oo,

(i) wuniformly in n and x\<\‘_(logm)'/3

! !

- iyt _ n - L
V2 dx) ~(21n(1 ——":T')] Ze 7" expl ~L—:-:l~(1 — o)) ZTmxjdx

(14) Py™(S,¢bln (1-70))

(ii) uniformly in n and Jr“)(]ogm)”3
1 1.2

‘n L L
(15) PO('"){S,,}b[n(l-—";{)JZ+x‘,:o(mze 2b).
Froof From g(S,,|P0('"))=N(O,m(1—7’:l—)),

1
(16) P{™(S eb{n(1 ——))%+dx)

2
x bx

an(l—n/m) Cn(1- 1, m)]

L _lbz
=[27Iﬂ(l‘%)] 2e 2 exp{ -

75 Jdx

(14) and (15) follow (16) immediately .
Lemma 2 As m—co, for x<(logm)'’”> uniformly
i ) , ) m /
PO{SJ(/\b[-](l ”#):‘]/—, for all m0<j<'ml— (]0gm)2IS’”I: b[ml(l —_,;l)jl 2+x}._,1.

e~ . J 172 2 _ my /2 .
Proof Po\Sj/b[j(l—Tn-)] ,for some m,< j<m, - (logm) |Sm'-—b[m,(1—ﬁ)] +x}

j m
=me max PS8 >bj(1--1"S , =bm (1 - 5D 4 k)

my< j<m, ~ (logm)’

=m: max

2 Pj;m
my<j<m, — (log m)
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- Then 4
P; ZJ‘“’ ‘[271j(1~i)]%%‘exp{-_.__.1_.[ —ib[m(l—ﬂ-'))‘/z
R TR B m, 27 (A= jjmy &Y T m A T,
+ J 2 il 1 L
—oxidy = ——e 2 dr
h ml }} y J;i-m 2”
whnere
. - BiLji(1—j/m))" = jlm, (1 —m/m))" 2 m)y - jx/m,
‘ Ci(1=j /mp3"”*

_J g _dwrJ o Mang -2/3
>b(1 ml) /(1 =) +m;(1 o) )~ (logm)

=c,Jogm - (logm)?"*>c logm .
where c,, ¢, are positive constant. Hence

m . max P, <m [ L o

-~ m<j=m ~ (logm) Fom clogm [27
2
m 1 c,(logm) m 1 ~cylogm) /2
J2r  clogm pi 2 Jaxr  clogm i 0,

which entails Lemma 2.

Lemma 3 Assume that L(S,,++,S,lc, #) be the likelihood ratio of S,, -, S, "

1/2) -—1/2)

under P, relative to P, and n=o0(m'"’), |%"/4|=0(”' . Then as

L(‘Sl » *°% S,lcyﬂ)”l a.s .P” .
Proof L(S,, e S,lc,u)
c—-S,~(m-n)u

m-—>00,

)

(S~ 1)@(S,— 8, )@ (S, =S, 1~ u)e( 7

DS, — )9 (S;= 8, ~w)wg (S, S, = W71

-t
n s 1 2 (S-nu)? S,=nu ¢ /
:(1_7)ﬂ zexp{— 2(1‘n,/m)[£n? n’ . "2 m'’? <m'rz—#ml2)
1 3 c 3
+n(-,;—u)]}~>0 a.s.Py .
‘ Lemma 4 As m-—>oo, for all (/,k) such that I>m'"% n=k-[>my+m''?, —
t’e(ty, t,]) and x<(logm)'“, uniformly
(A7) PS8, =S, G- (1 -2 v, eSS,
=b(n(1-=)31" +x}~P, minS§,>x)P, (min §, + minS,>x)
m AN N j>0
-

where /ln=—;-yl/[—’%(1—7’;-)]”2, {S;,j>1} is an independent copy of
and

Proof . For i,j>1, n+i<<m, n—j>1,
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(18) J=JU,k)={U,j):0<i<j<m, j—i>my j<k or j=kand i<1}.



172 sn—j+i

Cn(1 2324 L=+ (1 - NS - pa -2 Loy

+E(n+i)(1“—£’—:i—

)]I{Z
Hence the event on the left hand side of (17) equals

n—j+i
m

1/2

{Se_ ;=8 <bl(n—-j+i)(1- 'S vU—ik—J)el}

= (S,~ S, <bln+ (1 -22E 2 1< (- m) AL

n—j+i 1/2

p s v —i<n-mg,i<0,j>1)

NS, ;= S, ,<bl[(n-j+i)(1- )]

It follows Lemma 2 that

(19) P8, - S,<bL G- (1 -L=D032 (G, ) e |S,- S, =bln(1 - 503 24 x)

= PS8, <bl(n+D(1-2203"2, 1 <i<(logm)’s and

n—j+i

2", j-i<(logm)?, i<0,

S, =8, <b((n-j+i)(1-

J>118,-8,=b0n(1- 53"+ x}+ 0(1)

1-2n/m

2[%(1—7',’1—)3”2

:PO(M){SI—:'_SI>X_I‘1‘. N 1<i<(1OSM)2; and

Sk—sk~j+sl—-l-s1>x-'-/‘1(j_i) 'll_zn/':n ’ 1<_]—i<(logm)2’
2501 __’_”_)]1/2

i<0,i>118,-8,=b(n(1--1" "+ x}+0 (1)
As m—oo, it is easy via Lemma 3 to see that

@S~ 8, +ui 1;2"/’",1 y ,1<i < (logm)*|S,,= 0,
2 (- (1-2003""

S,-8,=bln(1 -0 +x)= @S, i>1[V,~N W', 1))

@SS~ mJ }l—zn/': R 1<j<(logm)2|s,,=o,
2[';(1'7)]

1/2

S 8,=bCn(1 -5+ x}= ¢S, j>1~N W, 1))

. 1-2n/m . )
@ {88+ ui—; n/n v , —(logm)*<i<0|S,=0,
2(‘;(1 _H)]
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1/2

S, 8= bn(1- 73" +x)= ¢S, i =0V~ N () D)

where y':—%—-yl/JI/(l—I/), and asymptotically these three collections of random
variables are stocastically independent. Hence the right hand side of (19) equals
,(mmS >x)P (mmS +mmS P x+o(1)

izl
. ~P (min § >x)P (mmS +mmS i>Xx).
Hoi>g ' j>1 j=0

The proof is completed .
Lemma 5 (Siegmund (3] Lemma 7)
Let {S,, n>1} be an independent copy of {S,,n>1}, u>0,then

[Te 2P (min §,>x)P,(min S )+ min §,>x)dx = 24" v(22))?
0 4> izl Y izoe

where v(-) is given in (8§).
Proof of Theorem |

. m m, Cmy+ A1 -1
(20)  PMG<mp)=( 3] DI D SN L D W )
n=Cm,+ /M3 k-I=n n=C(m +/m3) k-1=n n=mg k~I=n
I>/m, k<m [ /m

P18, =8, >b(n (1 -5 8- 8,<bC (- (1 - L1y

v(,j)eJU,k)}=P +P,+P,.
From Lemma 1,4,5 ‘

P = D fo‘""{s S, ebln(1--"" +dx)

X PS8~ 8§,<bL(j - ) (1--L=203"2, yii, i) e d, k)

|8, =8, =b0n(1 -5 +x )

m,

YA VIS
. ~ X, (m1~n)E27rn(1——:—,)j 27" foe 2he

n=(my+m 7]

x P (min S >x)P (min § j+ min S >x )dx
Ha iz Hu i>1 >0

_m S 2 MR a2, L

=1bed) F[’Emu.(r, o (L= 3p)) v Quy)—

”2

~—b<p( )J'______z_ﬂz 2 1

- (e (1= 1)) [1(1 H"?
Let x= ltt in the nght hand side of above expressnon, it becomes

" (r —1) 2 1-
Shob) [ L4
PREARIY)

)dr

172 X )(x +/4|)v (x+_')dx
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To complete the proof of the theorem we need only to verify that
(21) P,=o(m”’e ),
(22) P3=o(m3/ze 2,

From Lemma 1|

p</m 2 P8, >b(n(1 ~2)3""?)

m'’? 2e_7b[27rn(1 —%)] 72 f:exp{ —E—,%(l —%)] 7”2/41x tdx

1,2
t/2 “1/2 b

1y
+m ' (m —my-o( e ) =0(me =),

which proves (21). Similaly

(m_+/m)

1,2
P<m % PM(S,>bln(1 -4 =ome 2" )

ﬂ=m0

Hence (22) is also valid. .
Proof of Corollary | To expess P,™(T<_m,) in the form of (20). From (21),

1/21 _

(2), and P,™|S,| >b(n(1 ~—-)) = 2P ™18, =b(n(1-201"7), it is easy to see

that if

(23) PSS, - S,|-bln(1 -5 |8, -8, ] b G -in(1 —LZh ]‘”for all (i,j)eJ(1,k)!
~2PO<'"’{Sk—S,>b[n(1—%)]'”S -8,< b[(/~1)(1— L0372 for all G,j)ed (k)

then

Py"(T <<my) ~2P™ (1<<m,;)

which entails Corollary 1. Thus we only need to prove (23).

(24) RHS (23)—LHS (23)
= 2P ™S, = 8, =bCn(1 - )1 8- §,<bL(j ~i) (1 -4,
Jo—1i
for all G, j)eJ (U, k)3 S;~S, < ~bL(j,~i o) (1 - ——=—n"",

for some (i, j,)eJ U, k)<< 2P™(S, - S,>b[n(1 )]I/Z;
S§,-8§<-bLG -~ :n )'? for some (i,j)eJ U, k)}
Tp im i N1/2
:2.[0Po( 18,-8,< [(J—t)(l—T)] for some
(i,j)eJ U, k) ]Sk‘slzb[”(l~—;,—)]'/z+x}

XPO(m){S,,Gb[”(l—%)]”2+dx}

Use the method to prove Lemma 2, one can show
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(25) Po"’”{sj—s,.‘)—b[(j—i)u—j—;f—j‘“ for all (i,j)eJ (U, k)

|Sc=8,=bln(1 -0+ x)

= P(S,<bln (1~ o)) 2+ x + b0 (=) (1 -22L)3"" for all

1<i<(n—m0) /\1 ISm_n:bEn(l_’_’:l_)]l/2+x}
X Pyl S, <bEn(1 =203 4 x+ bC(n = j) (1= 22312 for all

1<J<n=my|S,=bln(1 -3+ x} =1

uniformly in all x<<dogm)'”* and (/,k) such that [ >m"?, k<<m,, n=k-1>m,+
m'’?, 1t follows (25) and Lemma 1 that .

RHS (24)=o(m?e 2 )
From Lemma 2,5, it is easy to see that T

RHS (23)=0(m°e 2 )
Hence (24) entails (23) valid.

5. Proof of Theorem 2
In this Section, we always assume that b:u,m”z, my=tim, m, =t ,m, {=¢.m,
# >0,0<t,<t,<1, and
53 -r 2 $o
(26) "= v -tpu /‘*:%E 150 SR
(27)° D=D (&) ={ U, k):1>m'"* k<m,, |k-1-m*|<m'''?

We also assume that

v /‘l\/tl(l—tl))'

;0((/4](1—[])

except in the proof of Corollary 2, where [§o| will substitute ¢, in above expres-

sion .
Lemma § As m—>co,

(i) for |n—m*|<m’"

x< ( logm)'’? uniformly

1
(m _h Vo ,_mo 5 $o v 1
(28) P,"™{S,¢b(n(1 ——)] +dx} ~m ?expl —(/1, TETR )"/t*(t,—t*)

Xq;[\/l /] (\/ 1) uy - ——-]‘—(—l—n—t’n);o)]e_Zy‘x
where ¢(x) = (27) l/zexp( —Tx 2y
(i) for |n—me*|<m” 2, x>m'"” uniformly
172 - m, §3

(29) P,™1S,=bln(1-53"" +x} = 0(m exp i~ 5 (4 - s
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7/ .
12 uniformly

- &
(30) PS8, >b(n(1-—)31""%) = o{m lexp{ ~5( T(r—y—frl e

Lemma ¢ follows g(SnlSmlzg) =N(n§0/t, , n(1 ——nT)),some standard estimates,
i

and 1 —n._ndo o oo
m—[b/n(l m) T 1—>2u

for n~ mt* .
Lemma 7 As m—oco, uniformly for x< (logm)

(ii) for me<n<m,, |n—t*m|>m

173 7/12

and |n— mt*|<im

Pyl S, <bLj(1--53""~¢, yn+ (logm)*<j<n+ (n—my) NI

1S, =bCn(1 -0 4 x = ¢} >1

ml -n

Proof Similarly to proof of Lemma 2, it only needs to show

31) min jm—O(logm)
n+ (logm)zgj<n+ (n-m YA

where

;L
¢ m=0(m ,)(1- e L= Z{bEj(l—#)]z ;~

Eb[n(l———-)]7+x $ih.

Let zj:#', 1,,:%, Then |tn—t*l<\’m‘5/”. From (26), §0:;4,r"'(1—t,)/\/t*(l—t*).
Hence 0+ d,

1
(32)C,,~uym 4t —t,

JUy=t )@ = (L —1%) LU =) (=1 ) + (= DI —1%)]
where
d, = =t (1-epJr*A—t*) —* (A -t ))Jt,(L-1)].

Since r,>>1,, t, >t*, and consequently tlJ}—"_)t*\/ﬁ for n+ (logm)>)<j<n+ (n—my)

Al 1-—t,,—1ﬁ(logm)2
d, > -t J1-1* (Jr* (L -t) =1, (1~ —1=* J

~@ -1 -1* [t./t_*(l-t,)—t*ﬁj(1—t,>3>0
On the other hand

. 1/2
min m " Jt,—t,=logm
n+ (togm)’<j-ln+ (n-myA |

Hence (31) follows (32),
Lemma 8§ As m—>oo, for all (/,k)eD and x<m'"? uoiformly

L - 1
, V(i;j)(-]lsk—SIZbE(k—l)(1”%‘)] 2+ x }

*P (mmS ~x)P (m1nS,’+mmS >Xx)
=t J=1 J 20

where {S], j>1] is an independent copy of (S, j>1l}.

Lemma 8 can be shown in terms of Lemma 7,2,3. The detailed proof is simi-

lar to the proof of Lemma 4.
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A Proof of Theorem 2

Pg(m')(‘r<m1)= (2 + X )P(m)’sk"sl>b[”(1L_r_'rlf)j”2 ’

(I, k)eD U, k)eD

§ -8, <blG-DU-L2L)", v G, e 4,6 =R+ P,

' From Lemma 8, Lemma 5 and (28), (29)
| p= 2 LRS- S ebln(1-50) P e dx )P S, - S,
<BLG-DU-LZE3% g G, ) T U,k IS, - S, =b(n (1~ + x)
¢ oy

~m(t,—t*)exp{—%(/412——t—l—(—l—:-tl—)— (2u*)

[mt'+m”'zJ mt \/'_—7—‘
"~ 1 1/2 m ‘ n . _ 1l—n/m 1
R RV v S TR "’E\/l—n/m. (\/m,‘1 gy f0 D

The sum in the right hand side of above expression converges to

“fx Sto t -1
2( ‘+t,(l—t1) -t )

By (26) ,

m m ty (1

P, ——z—exp{——é—(u,2 TR i = $0d
1-7, , go 2 1" 2
X + +

( Z Hy =1, v ( - "y 1"1)

On the other hand, it follows (30) that

gz
PZ:o(mexp{ ——’zﬁ(ﬂf“Tgtl)) )

- which completes the proof of Theorem 2.
7 I
Proof of Corollary 2 Now |§0|e(/4,(1—t,) /—1?07—— , #;Jt,(1~1,)). There is
. 0
no loss of generality to assume ¢,>0, Then
P <my) - P,z <m,)
! . Sk—sl
=P; ‘{ o mlnk - k_l l/2<*b,‘t>m1}
vt hsm e KT (ke = 1)(1 - )3
<p,™ min (S —S)/\/(k—l)(l—Ll)/—b‘=P(’"‘"(1<m )
T Nicrkem ketom, % T m T T !
m-1 2
! (m,) ) __Il_ 172 . _m_ 3 ;0 N
\\/\mn;mP_: (8,2b(n(1 -5 H<c-expl 5 (4 TRGETN ))
- o e
_ ~-n/m
>”"Z‘”':\/l njm, (\/m A=t m T a=1)
—_ _ 1
=o(mexp! (/4l t—(l—t ) )i).
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Hence P,™(T <m,)~P,"™(r<(m;), which entails Corollary 2.
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