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A Note on Pseudo Ideals of Fields*

Zhou Dingxuan

(Dept, Math.,Zhejiang University, Hangzhou)

Definition A subring 4 of a ring R is called a pseudo ideal, if for any
reR and aed, r’acA and ar’¢ A, The subring (R)’={Z t+rler?|reR, r¢ N} is cal-
led the square closed ring  of R.

Lemmal 2] The square closed ring of a division ring D is the intersection
of all nontrivial pseudo ideals of D.

Theorem | If a simple ring R with a unit has a nontrivial pseudo ideal
A containing an invertible element, R has characteristic p=2, In particular, the
necessary condition for a division ring containing a nontrivial pseudo ideal is
p=2.

Proof Suppose aeA is invertible, a’¢A, hence e=(a")?sa’¢A4 and {x*xecR)
C A,

For any x¢R, 2x=(x+e)*~x’—ecA. We have I={2x|xeR} CA#+R.Now.I is
an ideal of R, and I#R, but R is a simple ring, we have {2x|xeR} ={0}, that
is, p= 2.

By [ 2], a noncommutative division ring has no proper pseudo ideals, we
have the following theorem:

Theorem 2 A division ring R has a proper pseudo ideal if and :only if
(1) R is a field; (2) R has characteristic p=2; (3) {x’|xeR}#R.

Proof (=) Suppose A4 is a proper pseudo ideal of R, 0_A4ACR, we
know(Z2J that R is a field.

By Theorem ], we have Char R=2,

( 3) is trivial since {x?|xeR}C A#R.

(&) It is sufficient for us to prove that A={x2] xe¢R} is a pseudo ideal
if Char R=2 and R is a field:

For any x?, y% A, x2——y2: (x+y)%A.

For any reR and x% A, x%sr=(xr % A; raax?= (rx)% A.

The proof is complete,

Note that a finite field F with Char F=2 satisfies F:{r2|reF}, we. have
(to 421)
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Abstract

L)

In this paper, we study the problem of simultaneous approximation to biva-

riate function by one variate function, i.e., minimizing the expression

1
_ ? P ~
rr:fl}((fylf(x,y) g |’dw)?  (p=1)

over G, G is an noempty subset in C(X) .
We obtain the characterization theorems, the uniqueness theorems, the strong
uniqueness theorems and de la Vallee Poussin theorems. We also establish the

first algorithm of Remes type and two limit theorems.
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Theorem 2 in [ 23 as a corollary:
Corollary A finite field has no proper pseudo ideals.
Thus we almost fail to characterise a division ring by pseudo ideals ins-

4tead of ideals.
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