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A Subsemigroup of S(I) *

Pei Huisheng
(Dept. of Math., Xinyang Teachers College, Henan, China)

Abstract S(I) is the semigroup of all continuous selfmaps of the unit closed interval
I = ]0,1]. This paper investigates a subsemigroup of S(I) and discusses its Green’s
relations, some ideals and congruences.
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1. Introduction

Let X be a topological space and S(X) the semigroup of all continuous selfmaps of X.
In the field of the theory of S(X), many results have been achieved. However, till now,
there remain many unsolved open problems. One of them is to determine the Green’s
relations for arbitrary elements of S(X).

In this paper, the space under consideration will be the closed unit interval I = [0, 1].
We endeavor to look for an appropriate subsemigroup of S(I) to which a lot of irregular
elements of S(I) belong and on which the Green’s relations can be perfectly determined.
We attempt, in this way, to obtain some informations about the Green’s relations for
irregular elements of S(I).

In Section 2, we decide a subsemigroup S;(I) of S(I). And in Section 3, the Green’s
relations on Sy(I) are characterized completely. Then, in Section 4 and 5, we investigate
some ideals and congruences for S;(), respectively.

2. The subsemigroup S,(I)
First of all, we introduce some terminologies and symbols.
Definition 2.1 A map f € S(I) s called elementary if there exists a division of [
O=ay<a;<:--<a,=1

such that every cut point a; ts a local extreme point of f and on every interval [a;_y,a;] f
s monotone. (Note in this paper the word “monotone” always means strictly monotone).

The interval [a;_;,a;] is called the i-th monotone interval of f and the number of
monotone intervals of f will be denoted by the symbol M(f).
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The collection of all elementary surjections of S(I) will be denoted by S;(I).

We denote the unit group of S(I) by G(I) which consists of all homeomorphisms from
I onto itself. One easily verifies that G(I) € S,(I) and M(f) = 1 for each f € G(I).

We are now in a position to state the main result of this section.

Theorem 2.2 S;(I) is a subsemigroup of S(I).
The key of proving this Theorem is to show that the product of two elementary maps
is also elementary. To do this, we need primarily the following lemma:

Lemina 2.3 Let f,g € S(I). Suppose g is monotone on [a,b], f 1s monotone on |c,d] and
9(la,b]) C [c,d]. Then fg is monotone on [a,b].

Proof Suppose g is monotone increasing on [a,b] and f is monotone increasing on [c,d].
Then for any z,y € [a,b] and z < y, we have g(z) < g(y). Notice g(z),9(y) € [c,d] and
f is increasing on [c,d], then we know fg(z) < fg(y), which means that fg is monotone
increasing on |a, b].

Similarly, we can show that in the other cases the conclusion is also true. O

The Proof of Theorem 2.2 Let f,g € Si(/) and the divisions of f and g be
O=ap<a;<:+<ap=1, O0=bs<by<---<b, =1,

respectively. Take any j (1 < 7 < m) and denote g([b;—1,b;]) by [c,d]. If there are not
any a; in the open interval (c,d), then [c,d] C [a;_;,4q;] for some ¢ (1 < i < n), and it
follows immediately from Lemma 2.3 that fg is monotone on [b;_1,b;]. Now suppose there
are some cut points, a;;y,-* -, @iy, say, in the open interval (¢,d). Let g; = g|[bj_1,b;],
then one casily sces that g; maps [b;_y, ;] homeomorphically onto [c,d]. Let
bj1 = g7 Hair1),-, bje = 95 Haits),

for convenience, we may suppose that g; is increasing. Then b;_; < bj; < -+ < bj, < bj,
and appealing to Lemma 2.3 again, fg is monotone on each of following intervals

(b5-1,b51], [bj1, bj2), - -, [bjs, b5].

Do the same things for every [b;_;,b;] and we can obtain a division 0 = ¢g < ¢1 <
+++ < ¢; = 1, such that fg is monotone on each [¢;_1, ¢;].

Now let us observe each ¢; (1 <1 <t). If fg is monotone on [¢;_y,¢;4] then reject ¢;
from the division, otherwise, reserve it. In this way, we can obtain a new division

O=do<dy<---<dy=1.

The new division coming from the former one satisfies that each d; is a local extreme
point of fg and on each interval [d;_;,d;] fg is monotone. It follows that fg is elementary.
In addition, both f and g are surjective and so is fg, that is, fg € S;(I). The proof is
now completed. O
Denote by R the subset of S(I) consisting of all surjections which are not constant on
subintervals of I. It is well known that R forms a subsemigroup of S(I) |4]. Obviously,
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S1(I) < R. However, the contrary is not true. Here we point out R ¢ Sy(I). For example,
let f: I — I be defined as follows

(1

5 z=20
1
:rsin——i—i O<a:§_
—_ T .8
f@=94 5 (+1 2) 1 1
T+ - — — —-—<zr< =
T —2 2 n m -2

1

2(1—1:) Egzgl.

It is easy to check that f is continuous and not constant on any subinterval of I while f
maps I onto I, that is, f € R. But f & S;(/) since f has infinitely many local extreme
points and infinitely many monotone intervals.

Theorem 2.4 Let f € S1([), then f is regular in Sy(I) if and only if f € G(I).

Proof The sufficiency is obvious, we only need show the necessity. Let f be regular in
S1(I). Then there exists some g € S;(I) such that fgf = f. For any z € I, we may
take some y € [ such that f(y) = z since f is surjective. Therefore fg(z) = fgf(y) =
f(y) = z, that is, fg == id (where 1d is the identity map on I). This implies that f is a
homeomorphism, i.e., f € G(I). O

It is well known that f € S(I) is regular if and only if f maps some subinterval of I
homeomorphically onto his image f(I) [1]. In view of Theorem 2.4, we know that Sy([)
is not a regular semigroup. Yet we have to notice here that the irregular elements of
S1(I) may be regular in S(I). However, undoubtedly, in S;(I) there are large quantities
of irregular elements of S([I).

3. The Green’s relations on S;(I)

Theorem 3.1 Let f,g € Si1(I), then fLg if and only if there ezists a unique h € G(I)
salifying hf = g.

Proof We need only to show the necessity. Suppose fLg, then there exist h,k € S;(I)
such that hf = g and kg = f. Thus, khf = f. For any z € I, let z = f(y) for some
y € I. Then kh(z) = khf(y) = f(y) = z. This means kh = id, moreover, h,k € G(I) and
k=h1

If hyhy € G(I) satisfy hf = g and hyf = g, then hy(z) = hy1f(y) = g9(y) = hf(y) =
h(z), that is, hy = h. O

Corollary 3.2 Let f,g € Si1(I) and fLg. Then M(f) = M(g), moreover, [ and g have
the same division.

Proof Let h € G(I) such that hf = g and let the division of g be
O=by<by < ---<b,=1.

Without loss of generality, suppose h is increasing. Denote J; = {b;_1,b;] (1 <1 < n).
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Suppose ¢ = hf is increasing on Ji, then obviously so is f by Lemma 2.3. Furthermore,

f is decreasing on J; just as g is and so on. Consequently, all J; are monotone intervals

of f while all b; are local extreme points of f and the conclusion follows immediately. O
Before considering Green’s R relation on Sy(I), we establish a lemma.

Lemma 3.3 Suppose f,g,h € S1(I) and fh =g, then M(g) > M(f).

Proof Let Jy,Js,...,J, be the monotone intervals of g. Then fh is injective on each J;.
Furthermore, h is injective on J; and f is injective on h(J;) for each ¢ (1 < ¢ < n). Hence
each h(J;) belongs to some monotone interval of f. Notice that h is surjective,

n

U h(J) = h(O J)=h(I) =T

i=1
Therefore, f has at most n monotone intervals, that is, M(f) < M(g). a

Theorem 3.4 Let f,g € S1([), then fRg if and only if there ezists h € G(I) such that
fh=g.

Proof We only need to show the necessity. Suppose fRg, then there exist h,k € S;(I)
such that fh = g and gk = f. It follows immediately from Lemma 3.3 that M(g) > M(f)
and M(f) > M(g). Thus, M(f) = M(g).

Let Jy,Js,...,J, be all the monotone intervals of g. Then h is injective on each J;
because of g = fh. Next, we are going to show that h has the same monotonicity on each
J; which will imply h € G(I). We may assume that h is monotone increasing on Jy. If h is
monotone decreasing on Jp, then h(J;) and h(J2) are both nondegenerate closed intervals
and they have the common right end point. Consequently, h(J;) C h(J2) or h(J1) D h(J2)
and therefore, h(J1)Uh(Jz2) = h(J1) or h(J2). Notice f is monotone on each h(J;) and that

U h(J:) = I, so f has at most n — 1 monotone intervals. Thus M(f) < n—1 < n = M(g)
i=1

which is obviously a contradiction. Therefore, h is monotone increasing on Js too.
Similarly, h is monotone increasing on every J;, this means h is monotone increasing

on all I and h is injective. Note I is compact and Hausdorff, and from this we know that

h is a horneomorphism. a

Remark J. Mioduszewski [4] arrived at a similar result for the subsemigroup R of S(I)
mentioned above, and his result includes Theorem 3.4 of this paper, but his proof is too
complicated for us to accept. For the sake of completeness, it is necessary for us to put
forward the result for Sy1(I) and give a concise proof.

Definition 3.5 Let f,g € S;(I) and their monotone intervals be J1,- -, Jym and Ky,-+- , K,
respectively. If for each i (1 < 1 < m), f(J;) = g(K;) and the monolonicities of f
on J; and of g on K; are identical, then we say that f and g are similar. If for each
i (1 <i<m), f(J;)=9(Km-it1) and the monotonicities of f on J; and of g on Ky
are contrary, then we say that f and g are dual-similar.

The next result gives another characterization of the Green’s R relation on Sy([).
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Theorem 3.6 Let f,g € Sy(I), then fRg if and only if f and g are similar or dual-
similar.

Proof Suppose fRg then there exists h € G(I) such that fh = g, and according to the
proof of Theorem 3.4, M(f) = M(g). Let0=ap < a1 <+ <ap,=1,0=bg < by <---<
b, = 1 be the divisions of f and g, respectively. Denote J; = [a;_1, a;], K; = [bi—1,b],1 <
t < n. Then h(K,),h(K32), -, h(K,) must be all the monotone intervals of f.

If h is increasing, then h(K;) = J;, f(J;) = fh(K;) = g(K;) and the monotonicities of
f on J; and of g on K; are identical for each 1, that is, f and g are similar.

If h is decreasing, then h(Kn_i+1) = J;, f(Ji) = fh(Kn-i+1) = 9(Kn—i+1) while the
monotonicities of f on J; and of g on K,,_;+1 are contrary for each . That means f and
¢ are dual-similar.

On the other hand, if f and g are similar, let f; = f|Ji,gi = g|K; (here J; and K;
mean the same as above). Now define h: I — I by

fl_lgl(z) ze K,
M) = { S0 2K
[ lan(z) z € K,

It is easy to see that h is continuous and surjective. Moreover, notice that g;, f; and f;!
have the same monotonicity and by Lemma 2.3, f7!g; is monotone increasing on K; for
each 1. That means h is an increasing homeomorphism. Obviously, fh = g, so fRg.

If f and g are dual-similar, then h can be defined as

fla(z) ze€ K
hz) = { Tamoe(@) =€ Ko

filan(z) z €K,

and in the similar manner we can show that h is a decreasing homeomorphism and fh =g,
here again we have fRg. O

We have seen that if fLg then the homeomorphism h satisfying hf == g is unique.
Naturally, we want to know what it is like in case of fRg. In order to clear up this point,
we need a torminology at first.

Definition 3.7 f € S)(I) s called symmetric if M(f) is even, say 2n, and f(J;) =
f(J2n-i+1) for each monotone interval J; of f.

Otherwise, f is called non-symmetric.

According to Theorem 3.6, it is easy to verify that f is symmetric if and only if g is
symmetric whenever fRg.

Theorem 3.8 Suppose f,g € S1(I) and fRg. If f is non- symmetric, then there ezists
a unique h € G(I) satisfying fh = g. If f is symmetric, then there exist ezactly two
h € G(I) satisfying fh = g, one of them 1is increasing and the other is decreasing.

Proof Let h,k € G(I) such that fh = g = fk, then fhk™! = f and hk™! € G(I).
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When [ is non-symmertric, then there are two possible cases.

Case 1 M(f) is odd, say 2n + 1.

We assert that hk™! must be increasing. Otherwise, suppose hk~! is decreasing,
then it will map J; = [ag, a1], the first monotone interval of f, homeomorphically onto
J2n+1 = |a@2n, @2n41], While Rk~ (ag) = hk™1(0) = 1 = azp41, hk71(ay) = azn.

Since the monotonicity of an elementary map changes alternatively, so f, = f|J; and
fan+1 == f|J2n+1 have the same monotonicity. However,

f(ao) = fhk™Y(ao) = f(aza+1), f(a1) = fhk™ (a1) = f(azn).

Here arises a contradiction: the monotonicity of f, is contrary to that of fa,,,1. Thus, our
assertion holds. Consequently, hk™!(J;) = J; for each ¢. In addition, fhk~1(z) = f(z)
for each z € I and that f is injective on each J;, hence hk™1(z) = z for each z € I that
means hk~! = id and k = h.

Case 2 M(f) = 2n, but there is some t (1 <t < 2n) such that f(J;) # f(Jan-t+1)-
In the similar way we can show that hk~! must also be increasing and hk~! = id, k = h.
‘Now we have seen that h € G(I) satisfying fh = g is unique when f is non-symmetric.
If f is symmetric, it is easy to see that hk~! will be either increasing or decreasing.
When hk™! is increasing we can see hk™! = id and k = h as above. Now suppose hk™! is
decreasing, then hk™1(J;) = Jan_i41 for each 1. Note f(J;) = f(Jan-i+1) and f is injective
on each J;, we can defineu:1 — [ as

filhiz) zed
u(z) - f{nl—1f2(1) T e J2

T fan(z) z € Ja0

Then it is easy to verify that u is a decreasing homeomorphism uniquely determined by f,
and that u? = {d, namely u is an involution. Furthermore, we can also verify hk™! = u.
Thus, h = uk and k = uh. Then, we have seen that when f is symmetric there are exactly
two homeomorphisms satisfying fh = g. If h is increasing then k = uh is decreasing,

otherwise, £k = uh is increasing. The proof is complete. O
Consequently, we can determine the Green’s ¥ and D relations. The proofs of the next
two results are routine. We omit the details. O

Theorem 3.9 Let f,g € Si(I). Then fXg if and only if there exist h,k € G(I) such that

fh=kf=g. O
Theorem 3.10 Let f,g € S;(I). Then fDg if and only if there exist h,k € G(I) such
that f = hgk. a

Before discussing Green’s J relation on Sy([), let us see the following lemma.
Lema 3.11 Let f,g,h € Si(I), f = hg and M(f) = M(g). Then h € G(!).

Proof Let Jy,Jz,---,J, be all the monotone intervals of f. Then g is injective (i.e.,
monotone) on each Jy. Note M(f) = M(g), so Jy,Js,- -, J,, are precisely all the monotone



intervals of g. Denote T; = g(J;), 1 <1 < n. Obviously, each T; is nondegenerate closed
interval on which h is injcetive (i.e. monotone). Since the monotonicities of g change
alternatively, so T; C Ty, or T; C Ty, for each 1. Then h is monotone on T; U Tiy;.
Furthermore, h is monotone on
n n

Ti=Ue() =9(Us)=9(D) =1
= =1 )

t=1

It follows that h € G(I).

Theorem 3.12 Let f,g € Si(I). Then fJg if and only if there exist h,k € G(I) such
that [ = hgk. Consequently, J and D coincide on S|(I).

Proof It is enough to show only the necessity. First, by using the same method in
Lemma 3.3 we can show the following assertion: If f = hgk for some f,g,h,k € Si(I),
then M(f) > M(g).

Let fJg, then there exist h,k,u,v € Sy(/) such that f = hgk and ¢ = ufv. By
the assertion just mentioned above, we have M(f) > M(g) and M(f) < M(g), that is,
M(f) = M(g). Let Jq,Js, -+, Jn be all the monotone intervals of f, then M(f) = M(g)
makes it sure that k(Jy),k(J2),---,k(Jy) are all the monotone iniervals of g. Furthermore,
through the use of the way of Theorem 3.4, we can see k € G(I).

Denote g1 = gk, then M(g,) = M(g9) = M(f) and f = hgk = hg;. In view of Lemma
3.11 we know h € G(I). O

Theorem 3.13 For each f € S1(I), the Green’s L- class, R- class, ¥ -class, D-class and
J-class containing f are Ly = G(I)f, Ry = fG(I), Hf = G(I)f n fG(I), Dy = J; =
G(I)fG(I), respectively. )

Consequently, the Green’s L-class, R- class, ¥-class, D-class and J-class containing the
identity map all coincide with G(I). Therefore, G(I) is the only regular D-class of S;([).

4. The ideals of S;([)

The symbols D,, are denoted as D, = {f € S1(I): M(f) > n}, n=1,2,---. Itis
easy to see that Dy = Sy(I), Dy = S,(I) - G(I)and Dy D D2 > D3 > ---

Theorem 4.1 The mazimal left ideal, the mazimal right ideal and the mazimal two-sided
ideal all coincide in the semigroup Sy(I). Precisely, the mazimal (left, right and two-sided)
tdeal 1¢ Ds.

Proof It is well known that if fg € G(I), then both f and g belong to G(I) for any
f,9 € S(I). From this we can easily see that D; is a left ideal as well as right ideal and
hence a two-sided ideal of S;(I).

Now suppose E is a left ideal of S;(I) such that Dy C E, then there exists some
feEENG()andid= f"'fe S;(I)EC E.

Therefore, Sy(I) ¢ E and E = S;(I). This means D; is the maximal left ideal of
S1(I). Similarly, we can see that D; is the maximal right ideal and the maximal two-sided
ideal of Sy(I) as well. a
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Lemina 4.2 Let f,g € S|(I). Then cvery local extreme point of g must be the local
extreme point of fg.

Proof Let the division of g be 0 = by < b; < --- < b, = 1. We need only show that each
of by, by, -+ ,b,_1 is a local extreme point of fg.

Now take any b; (1 < i < n - 1), without loss of generality, let us assume that b; is a
local maximum point of g. Then g(b;) # O and there exists € > 0 such that g(z) < g(&)
for any z € (b; — €,b; + €) - {b;}. There are three cases that will be discussed here.

Case 1 g(b;) = a is a local maximum point of f. Since g is continuous, we can choose
6 > 0 such that § < € and g((b; — 8,b; + 6)) C [ag—1,ax). Here [ax_1,ai] is a monotone
increasing interval of f. Then, for arbitrary z € (b; — §,b; + ) — {b;}, g(z) < g(b;) and
fa(z) < fg(b:), b; is a local maximum point of fg.

Case 2 g(b;) = ax 1s a local maximum point of f. Similarly, we can take § > 0 such that
6 < e and g((b; — 6,b; + 68)) C [ak—1,ax]. Here [ax_;,a;] is a monotone decreasing interval
of f. Then, for arbitrary = € (b; — 6,b; + 6) — {b;}, g(z) < g(b;) and fg(z) > fg(b;), b is

a local minimum point of fg.

Case 3 g(b;) is not an extreme point of f. Then there exists a monotone interval of
flak-1,a] say, such that g(b;) € (ar_1,a:). Again, by the continuity of g we can take
6 > 0 such that § < ¢ and g((b; — 6,b; + 6)) C (ak—1,ax)- Then in the similar way of
case 1 or case 2, we can also see that b; 1s a local maximum or local minimum point
of fg according as f is increasing or decreasing on the interval [ak—1,ak]. The proof is
completed. a

Lemma 4.3 M(fg) > max{M(f),M(g)} for any f,g € Si(I).

Proof The previous lemma tells us that M(fg) > M(g). What remains to be done is to
show M(fg) > M(f).

Let the division of g be 0 = bg < b; < -+ < b, = 1 and denote B = {g(b;) : 0 < i < n}.
Obviously, B has at most n + 1 points. Let the division of f be 0 = ap < a; < --- <
am = 1 and suppose ajj,a;3,---,a;j, are all the cut points of the division of f belonging
to B. Now let us rename the remaining m — k + 1 cut points of the division of f as
€1 <cg < < Cmk41-

We assert that each ¢, (1 < s < m — k + 1) determines at least one local extreme
point d, of fg and d, # d; when s # t.

In fact, let T; = g([bi=1,8i]), 1 < ¢ < n as above, then each T; is a nondegenerate

n

closed interval and U T; = I. For each c,, there exists at least one T; such that ¢, is an
i=1

interior point of T;. Let g; = g|[b;_1,b;] and dy, = g7 !(c,), then d, is an interior point of
[bi—1,b;]. Notice ¢, is a local extreme point of f and by Lemma 2.3, d, must be a local
extreme point of fg.

For distinct s and ¢, if d, € (b;_),b;), d; € (bj_1,b;) and ¢ # j, then obviously d, # d;.
If ds and d; belong to the same (b;_y, b;), then ¢, and ¢; belong to the interior of T;. Since
gi is injective and ¢, # c;, then we also have d, # d;. Thus our assertion holds.
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Then the number of local extreme points of fg is at least (n+ 1)+ (m—k+1) > m+1.
This means M(fg) > M(f). m]

By virtue of Lemma 4.3 we get the main result of this section immediately.

Theorem 4.4 For every natural number n, D, is an ideal (i.c., two-sided ideal) of S;([)
and Dy, Dy, - form a decreasing chain of ideals. O

5. Some congruences on S(/)

Let 0o = {(f,f): f € Si(I)} and 0, = (Dp x D,)U0og, n = 1,2,---, then from
Theorem 4.4 we get

Theorem 5.1 For every natural number n,o, is one of Rees congruences on S;(I) and
01,09, form a decreasing chain of Rees congruences on S;(I). O
Besides Rees congruences we are going to consider some other congruences on Sy (I).
From [3, p255] the normal subgroups of G(I) are precisely the groups G(I), F, @ and
{id}, where F is the group of all increasing homeomorphisms and Q denotes all those
homeomorphisms in G(I} which coincide with the identity map in a neighborhood of 0
and in a neighborhood of 1. Evidently, @ < F. Denote

ro={(f.f): feG(I)} tauy = {(f,9) € G(I) x G(I): fg~' € Q},
r={(f,9) €GUI) x G(I): fg~' € F}, r=G(I)xG(I).

Then 79,7, 72,73 are the only four congruences on G(I). Denote py = 02Uy, pg = 02 UTy,
p3 = 02 U 3. Obviously, 03 C p; C ps C p3. Furthermore, we have

Theorem 5.2 py,p; and p3 are the only proper congruences on Sy(I) properly containing
02. Consequently, p3 is the greatest proper congruence on Si(I) containing o,.

Proof It is easy to verify that all p;, p; and p3 are congruences on S)(I). Now suppose
o is a congruence on Sy (/) satisfying 0 D 02, 0 # g2 and 0 # p;, 1 =1,2,3, we have to
show that ¢ must be the universal congruence S;(I) x Sy(I).

It readily follows that there must exist some f € G(I) and g € G(I) such that (f,g) € 0.
For any h € G(I), let k = hf™!, then k € G(I). Thus, (kf,kg) = (h,kg) € o. Since
kg € D, then (kg,g) € 02 C 0. Therefore, (h,g) € o holds for any h € G(I). Now for
arbitrary u,v € S;(I), there are three cases to consider.

Case 1 u,v € G(I). Then (u,g) € o and (v,g) € ¢ which implies (u,v) € a.
Case 2 u ¢ G(I) and v & G(I). Obviously in this case (u,v) €03 C 0. -

Case 3 u € G(I)and v € G(I). Then (u,g) € 0, (9,v) € 02 C 0. We also have (u,v) € 0.
Therefore, 0 = §,(I) x S;{I). The remaining assertion is obvious. O
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