The $\omega_{\alpha+1}$ -Compact T_1 -Space with Submeta- $\mathcal B$ -Property is ω_{α} -Lindelöf *

Gao Yinzhu (Dept. of Math., Changchun Teacher's College, Changchun 130032)

Qu Hanzhang and Wang Shutang (Dept. of Math., Northwest University, Xi'an 710069)

Abstract The main result of the paper is that the $\omega_{\alpha+1}$ -compact T_1 -space with submeta- \mathcal{B} -property is ω_{α} -Lindelöf. This result improves the main results of [1].

Key words ω_{α} -compact, ω_{α} -Lindelöf, submeta- β -property.

Classification AMS(1991) 54D20, 54D30/CCL O189.11

In this paper, the space means the topological space without any separation axioms assumed unless especially stated. $\omega = \omega_0$ denotes the first infinite ordinal. For any ordinal $\alpha > 0$, ω_{α} denotes the α -th uncountable ordinal. The cardinal of a set A is denoted by |A|. Cardinals are initial ordinals. The space X is said to have β - property^[1] if for any monotone increasing open cover $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ of X, there is a monotone increasing open cover $\mathcal{V} = \{V_{\alpha} : \alpha \in A\}$ of X s.t. $\tilde{V}_{\alpha} \subset U_{\alpha}$ for any $\alpha \in A$. β -property is between paracompactness and countable paracompactness and is studied by many authors^[2]. For the sake of unity, we appoint that $|A| \leq \omega_{-1}$ denotes |A| is a finite cardinal and ω_{-1} -Lindelöf denotes compact. After making these appointments, all results in the paper hold for $\alpha \geq -1$ unless especially stated.

Definition 1 A space X is called ω_{α} -Lindelöf if any open cover \mathcal{U} of X has a subcover \mathcal{V} s.t. $|\mathcal{V}| \leq \omega_{\alpha}$.

Definition 2 A space X is called ω_{α} -compact if any subset B with the cardinal ω_{α} has an accumulation point.

Clearly, the ω_{-1} -Lindelöf (ω_0 -Lindelöf) space coincides with the compact (Lindelöf) space, and if X is T_1 , then X is ω_0 -compact iff X is countably compact. The following implications are obvious:

^{*}Received Aug. 6, 1992.

where com. = compact, Lin. = Lindelöf.

None of the above implications is reversible:

Example (1) $[0,\omega_{\alpha+2})$ is $\omega_{\alpha+1}$ -compact, but it is not ω_{α} -Lindelöf: Let $A \subset [0,\omega_{\alpha+2})$ and $|A| = \omega_{\alpha+1}$, then $\beta_0 = \sup A < \omega_{\alpha+2}$ since $\omega_{\alpha+2}$ is regular. Since $[0,\beta_0]$ is compact the infinite set $B = [0,\beta_0] \cap A$ has an accumulation point $\xi \in [0,\beta_0]$ which is also an accumulation point of A. Thus $[0,\omega_{\alpha+2})$ is $\omega_{\alpha+1}$ -compact. Take an open cover $\mathcal{U} = \{[0,\beta]: \beta \in [0,\omega_{\alpha+2})\}$ of X. If $\mathcal{U}' \subset \mathcal{U}$ and $|\mathcal{U}'| \leq \omega_{\alpha}$, then \mathcal{U}' can not cover $[0,\omega_{\alpha+2})$. Therefore $[0,\omega_{\alpha+2})$ is not ω_{α} -Lindelöf. (2) Let X be a discrete space and $|X| = \omega_{\alpha+1}$. Then X is an $\omega_{\alpha+1}$ -Lindelöf ($\omega_{\alpha+2}$ -compact) space, but it is not an ω_{α} -Lindelöf ($\omega_{\alpha+1}$ -compact) space.

A question is naturally asked: under what condition the $\omega_{\alpha+1}$ - compactness implies the ω_{α} -Lindelöfness? Our Theorem answers this question.

Definition 3 The space X is said to have submeta-B-property if every infinite open cover \mathcal{U} of X has an open refinement sequence $\{\mathcal{V}_n : n \in \omega\}$ s.t. for every $x \in X$, there is an $n(x) \in \omega$ s.t. $|\{V \in \mathcal{V}_{n(x)} : x \in V\}| < |\mathcal{U}|$.

From the following Lemma 1, we can easily see that the β -property implies the submeta- β -property. But the implication is not reversible: Let F be Bing's Example $G^{[2]}$, then the subspace Y of F described in [3] is metacompact and so Y has submeta- β -property, but Y does not have β -property (cf. [2] and [3]).

The sequence $\{\mathcal{V}_n : n \in \omega\}$ of open covers of the space X is said to be an open point star refinement sequence of the open cover $\mathcal{U} = \{U_\alpha : \alpha < \kappa\}$ if for every $x \in X$, there exist an $n(x) \in \omega$ and an $\alpha(x) < \kappa$ s.t. $\operatorname{st}(x, \mathcal{V}_{n(x)}) \subset U_{\alpha(x)}$.

Lemma 1 For a space X, the following are equivalent:

- (1) X has submeta-B-property.
- (2) Any monotone increasing open cover $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ of X has an open point star refinement sequence.
- (3) Any monotone increasing open cover $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ of X has a closed cover $\mathcal{F} = \{F_{n\alpha} : n \in \omega, \ \alpha < \kappa\}$ s.t. $F_{n\alpha} \subset U_{\alpha}$ and $F_{n\alpha_1} \subset F_{n\alpha_2}$ if $\alpha_1 < \alpha_2$.

Proof (1) \rightarrow (2): If $cf\kappa = \kappa$, then by (1) \mathcal{U} has an open refinement sequence $\{\mathcal{V}_n : n \in \omega\}$ s.t. for every $x \in X$, there is an $n(x) \in \omega$ and $|\{V \in \mathcal{V}_{n(x)} : x \in V\}| < \kappa$. Let $\mathcal{V}' = \{V \in \mathcal{V}_{n(x)} : x \in V\}$. Since $\mathcal{V}_{n(x)}$ is a refinement of \mathcal{U} , for every $V \in \mathcal{V}'$, there is an $\alpha(V) < \kappa$ s.t. $V \subset U_{\alpha(V)}$. Since $cf\kappa = \kappa$ and $|\mathcal{V}'| < \kappa$, there is an $\alpha(x) < \kappa$ s.t. for every $V \in \mathcal{V}'$, $\alpha(V) < \alpha(x)$. Therefore $st(x, \mathcal{V}_{n(x)}) \subset U_{\alpha(x)}$. So $\{\mathcal{V}_n : n \in \omega\}$ is an open point star refinement sequence of \mathcal{U} . If $cf\kappa < \kappa$, then for $\mathcal{U} = \{U_\alpha : \alpha < \kappa\}$, κ has a monotone increasing cofinal subset $\{\alpha_\eta : \eta < cf\kappa\}$. Put $V_\eta = U_{\alpha_\eta}$. Then $\mathcal{V} = \{V_\eta : \eta < cf\kappa\}$ is a monotone increasing open cover and $|\mathcal{V}| = cf\kappa$ is regular. According to the above proof \mathcal{V} has an open point star refinement sequence, so does \mathcal{U} .

- (2) \to (3): By (2), \mathcal{U} has an open point star refinement sequence, $\{\mathcal{V}_n : n \in \omega\}$. Put $F_{n\alpha} = \{x \in U_\alpha : \operatorname{st}(x, \mathcal{V}_n) \subset U_\alpha\}$, then $\{F_{n\alpha} : n \in \omega, \alpha < \kappa\}$ is a closed cover of X s.t. $F_{n\alpha} \subset U_\alpha$ and if $\alpha_1 < \alpha_2$, then $F_{n\alpha_1} \subset F_{n\alpha_2}$.
 - (3) \rightarrow (1). Let $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ be an infinite open cover of X. Put $V_{\alpha} = \bigcup_{\beta < \alpha} U_{\beta}$, then

 $\mathcal{V}=\{V_{\alpha}: \alpha<\kappa\}$ is a monotone increasing open cover of X, by (3), there is a closed cover $\{F_{n\alpha}: n\in\omega, \ \alpha<\kappa\}$ s.t. $F_{n\alpha}\subset V_{\alpha}$, and when $\alpha_1<\alpha_2$, $F_{n\alpha_1}\subset F_{n\alpha_2}$. Put $V_{n\alpha}=U_{\alpha}-F_{n\alpha}$, $n\in\omega$, $\alpha<\kappa$, and $\mathcal{V}_n=\{V_{n\alpha}: \alpha<\kappa\}$, $n\in\omega$. It is obvious that $\{\mathcal{V}_n: n\in\omega\}$ is an open refinement sequence of \mathcal{U} . For every $x\in X=\bigcup_{n\in\omega}\bigcup_{\alpha<\kappa}F_{n\alpha}$, there is the smallest n(x) s.t.

 $x \in \bigcup_{\alpha < \kappa} F_{n(x)\alpha}$, and there is the smallest $\alpha(x)$ s.t. $x \in F_{n(x)\alpha(x)}$. If $\alpha \ge \alpha(x) + 1$, then $x \in F_{n(x)\alpha}$ and so $x \notin U_{\alpha} - F_{n(x)\alpha} = V_{n(x)\alpha}$, therefore $|\{V \in \mathcal{V}_{n(x)} : x \in V\}| < \mathcal{V}$. This shows (1).

A space X is said to have property (*) if any monotone increasing open cover $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ of X has a closed refinement $\mathcal{F} = \{F_{n\alpha} : \alpha \in A, n \in \omega\}$ satisfying $F_{n\alpha} \subset U_{\alpha}$ for any $n \in \omega, \alpha \in A$.

Lemma 2 Let X be a space, $A = \{U : U \text{ is an open cover of } X \text{ satisfying that if } V \subset U$ and $|V| \leq \omega_{\alpha}$, then V does not cover X} and $\kappa = \min\{|U| : U \in A\}$. If $\alpha = -1$, then κ is regular. If $\alpha \geq 0$ and X has property (*), then κ is also regular.

Proof Suppose $\operatorname{cf} \kappa = \kappa$ and choose a $\mathcal{U} \in \mathcal{A}$ s.t. $\kappa = |\mathcal{U}|$. Let $f : \operatorname{cf} \kappa \to \kappa$ be a monotone increasing cofinal mapping, $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ and $W_{\alpha} = \bigcup_{\beta < \alpha} U_{\beta}$, $\alpha < \kappa$. Then

 $\mathcal{W}=\{W_{f(\alpha)}: \alpha<\mathrm{cf}\kappa\}$ is a monotone increasing open cover of X. Since $\mathrm{cf}\kappa<\kappa$, there is a $\kappa_1\leq \omega_\alpha$ s.t. $\mathcal{W}'=\{W_{f(\alpha_\beta)}: \beta<\kappa_1\}\subset \mathcal{W}$ also covers X. Without loss of generality, we may assume that if $\beta_1<\beta_2$, then $\alpha_{\beta_1}<\alpha_{\beta_2}$. If $\alpha=-1$, then κ_1 is finite. So $X=W_{f(\alpha_{\kappa_1-1})}=\bigcup_{\xi< f(\alpha_{\kappa_1-1})}U_{\xi}$. Since $f(\alpha_{\kappa_1-1})<\kappa$, there is a finite set

 $\{\xi_1, \xi_2, \cdots, \xi_m\} \subset [0, f(\alpha_{\kappa-1})) \text{ s.t. } \{U_{\xi_1}, U_{\xi_2}, \cdots, U_{\xi_m}\} \subset \mathcal{U} \text{ covers } X, \text{ this contradicts the hypothesis. If } \alpha \geq 0 \text{ and } X \text{ has property } (*), \text{ then for } \mathcal{W}', \text{ there is a closed cover } \mathcal{F} = \{F_{n\beta} : \beta < \kappa_1, n \in \omega\} \text{ of } X \text{ s.t. } F_{n\beta} \subset W_{f(\alpha_{\beta})} = \bigcup_{\xi < f(\alpha_{\beta})} U_{\xi} \text{ for any } \beta < \kappa_1, n \in \omega. \text{ For } \xi < f(\alpha_{\beta})$

every $n \in \omega$, the family $\{U_{\xi} : \xi < f(\alpha_{\beta})\} \cup \{X - F_{n\beta}\}$ covers X and has the cardinal $< \kappa$. So it has a subfamily with the cardinal $\le \omega_{\alpha}$ covering X. Thus the cover $\{U_{\xi} : \xi < f(\alpha_{\beta})\}$ of $F_{n\beta}$ has a subcover $\mathcal{U}_{n\beta}$ with the cardinal $\le \omega_{\alpha}$. Put $\mathcal{U}_{\beta} = \bigcup \{\mathcal{U}_{n\beta} : n \in \omega\}$, then \mathcal{U}_{β} covers $F_{\beta} = \bigcup_{n \in \omega} F_{n\beta}$ and $|\mathcal{U}_{\beta}| \le \omega_{\alpha}$. Therefore the subfamily $\mathcal{U}' = \bigcup \{\mathcal{U}_{\beta} : \beta < \kappa_1\}$ of \mathcal{U}

covers X since \mathcal{F} covers X. But $|\mathcal{U}'| \leq \omega_{\alpha}$ and this contradicts the hypothesis. Therefore $cf\kappa = \kappa$.

Theorem 1 If a T_1 -space X is $\omega_{\alpha+1}$ -compact and has submeta- β -property, then X is ω_{α} -Lindelöf.

Proof Suppose X is not ω_{α} -Lindelöf. Let $A = \{\mathcal{U} : \mathcal{U} \text{ is an open cover of } X \text{ whose any subfamily with the cardinal } \leq \omega_{\alpha} \text{ can not cover } X\}$ and $\kappa = \min\{|\mathcal{U}| : \mathcal{U} \in \mathcal{A}\}$. Take a $\mathcal{U} \in \mathcal{A}$ s.t. $|\mathcal{U}| = \kappa$. If $\alpha \geq 0$, then $\kappa \geq \omega_{\alpha+1}$. If $\alpha = -1$, then $\kappa \geq \omega_1$ because if $\kappa = \omega_0$ then \mathcal{U} has a finite subcover since the ω_0 -compact and T_1 space is countably compact. By Lemma 1, submeta- \mathcal{B} -property implies property (*). According to Lemma 2, cf $\kappa = \kappa$. We may assume that $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ satisfies that for any $\alpha < \kappa$, $U_{\alpha} - \bigcup_{\alpha < \kappa} U_{\beta} \neq \emptyset$. Let

 $\{\alpha_{\eta}: \eta < \kappa\}$ be a monotone increasing cofinal subset of κ and $V_{\eta} = \bigcup_{\alpha < \alpha_{\eta}} U_{\alpha}$. By Lemma

1 the monotone increasing open cover $\mathcal{V}=\{V_\eta:\eta<\kappa\}$ of X has an open point star refinement sequence $\{\mathcal{V}_n:n\in\omega\}$. Take an $x_0\in X$, then there exist an $n(x_0)\in\omega$ and an $\eta_0<\kappa$ s.t. $\operatorname{st}(x_0,\mathcal{V}_{n(x_0)})\subset V_{\eta_0}$. Take an $x_1\in X-V_{\eta_0}$, then there exist an $n(x_1)\in\omega$ and an $\eta_1<\kappa$ s.t. $\operatorname{st}(x_1,\mathcal{V}_{n(x_1)})\subset V_{\eta_1}$. Suppose for v, when $\rho< v$, $x_\rho,n(x_\rho)$ and η_ρ have been defined. If $\xi=\sup\{\eta_\rho:\rho< v\}<\kappa$, take an $x_v\in X-V_\xi$, then there exist an $n(x_v)$ and an η_v s.t. $\operatorname{st}(x_v,\mathcal{V}_{n(x_v)})\subset V_{\eta_v}$. If $\xi=\kappa$, then $v=\kappa$ and we finish the definition. Put $B=\{x_\rho:\rho<\kappa\}$. Obviously, if $\rho_1<\rho_2$, then $\eta_{\rho_1}<\eta_{\rho_2}$. There must be $n_0\in\omega$ and $A\subset B$ s.t. $|A|=\kappa$ and for every $x_{\rho_\lambda}\in A$, $\operatorname{st}(x_{\rho_\lambda},\mathcal{V}_{n_0})\subset\mathcal{V}_{\eta_{\rho_\lambda}}$. We may assume that $A=\{x_{\rho_\lambda}:\lambda<\kappa\}$ satisfies $\rho_{\lambda_1}<\rho_{\lambda_2}$ if $\lambda_1<\lambda_2$. For any $x\in X$, if $x\notin\operatorname{st}(A,\mathcal{V}_{n_0})$, then there is a $v\in\mathcal{V}_{n_0}$ s.t. $v\in\mathcal{V}_{n_0}$ and $v\in\mathcal{V}_{n_0}$. Clearly $\operatorname{st}(x_{\rho_{\lambda_0}},\mathcal{V}_{n_0})\cap A=\{x_{\rho_{\lambda_0}}\}$. thus $v\in\mathcal{V}_{n_0}$ has no accumulation point since $v\in\mathcal{V}$ is $v\in\mathcal{V}_{n_0}$. But $v\in\mathcal{V}_{n_0}$. This contradicts $v\in\mathcal{V}_{n_0}$.

Noticing the cases $\alpha = 0$ and $\alpha = -1$ in Theorem 1, we obtain

Corollary 1 The regular T_1 -space X is Lindelöf iff X is ω_1 -compact and has submeta- \mathcal{B} -property.

Corollary 2 The T_2 -space X is compact iff X is countably compact and has submeta-B-property.

Remark (1) By Lemma 1 the developable space has submeta- \mathcal{B} - property, so the developable T_1 -space with $\omega_{\alpha+1}$ -compactness is ω_{α} -Lindelöf. Thus if the T_1 -space X has submeta- \mathcal{B} - property (or X is developable), then ω_{α} -Lindelöfness and $\omega_{\alpha+1}$ -compactness are equivalent. (2) Corollary 1 and Corollary 2 improve the main results of [1], i.e., a regular T_1 -space X is Lindelöf (compact) iff X is ω_1 -compact (countably compact) and has \mathcal{B} -property.

References

- [1] P. Zenor, A class of countably paracompact spaces, Proc. Amer. Math. Soc., 24(1970), 258-262
- [2] K. Morita and J. Nagata, Eds., Topics in General Topology, ESP., B.V., 1989, 161-202.
- [3] I.W. Lewis, On covering properties of subspaces of R.H. Bing's Example G, Gen. Top. Appl., 7(1977), 109-122.

具有次亚 B 性质的 $\omega_{\alpha+1}$ 紧 T_1 空间是 ω_{α} -Lindelöf 空间

高印珠

愈元洪 王戌堂

(长春师范学院数学系,长春130032)(西北大学数学系,西安710069)

摘要

在本文中,我们证明了具有次亚B 性质的 $\omega_{\alpha+1}$ - 紧 T_1 空间是 ω_{α} -Lindelöf 空间. 此结果改进并推广了[1] 中的主要结果.