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Abstract The main result of the paper is that the w, 4 ,-compact T)-space with submeta-
B-property is w,-Lindeléf. This result improves the main results of [1].
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In this paper, the space means the topological space without any separation axioms
assumed unless especially stated. w = wg denotes the first infinite ordinal. For any ordinal
a > 0, w, denotes the a-th uncountable ordinal. The cardinal of a set A is denoted by
|A|. Cardinals are initial ordinals. The space X is said to have B- propertyl! if for any
monotone increasing open cover U = {U, : @ € A} of X, there is a monotone increasing
open cover V = {V, : a € A} of X s.t. V, C U, for any a € A. B-property is between
paracompactness and countable paracompactness and is studied by many authors(?l. For
the sake of unity, we appoint that |A| < w_, denotes [A]| is a finite cardinal and w_;-
Lindelof denotes compact. After making these appointments, all results in the paper hold
for a > —1 unless especially stated.

Definition 1 A space X is called w,-Lindeldf if any open cover U of X has a subcover V
s.t. | V] < wg.

Definition 2 A space X is called w,-compact if any subset B with the cardinal w, has
an accumulation point.

Clearly, the w_;-Lindelof (wq-Lindelof) space coincides with the compact (Lindeldf)
space, and if X is Ty, then X is wp-compact iff X is countably compact. The following
implications are obvious: ‘

com. — wg-Lin. — w;-Lin. —---—  w4a-Lin. — wyyi-Lin. — .-
wp=COmM. — W]-COM. — W9-COML. —> +++ = W411-COM., — wgy1-Lin. — ---
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where com. = compact, Lin. = Lindelof.
None of the above implications is reversible:

Example (1) [0,wq2) is wesi-compact, but it is not we-Lindeldf: Let A C [0,wq+2)
and |A| = wg+1, then By = sup A < wq42 since wyg is regular. Since [0, Bo] is compact
the infinite set B = {0,80] N A has an accumulation point £ € [0, ] which is also an
accumulation point of A. Thus [0,wa42) is wes1-compact. Take an open cover U =
{[0,8] : B € [0,was2)} of X. IfU' € U and |U'| € wgq, then U' can not cover [0, wq+2).
Therefore [0, wqa2) is not we-Lindelof. (2) Let X be a discrete space and | X| = wa41. Then
X is an wgy41-Lindelof (wq+2-compact) space, but it is not an wy-Lindelof (wy41-compact)
space.

A question is naturally asked: under what condition the wy41- compactness implies
the wqy-Lindelofness” Our Theorem answers this question.

Definition 3 The space X is said to have submeta-B-property if every infinite open cover
U of X has an open refinement sequence {V, : n € w} s.t. for every ¢ € X, there is an
n(z) Ews.t. [{V € Vpz) iz €V} < U '

From the following Lemma 1, we can easily see that the B-property implies the
submeta-B8-property. But the implication is not reversible: 'Let F be Bing’s Example
G[z], then the subspace Y of F decribed in [3] is metacompact and so ¥ has submeta-3-
property, but Y does not have B-property (cf. [2] and [3]).

The sequence {V, : n € w} of open covers of the space X is said to be an open point
star refinement sequence of the open cover U = {U, : a < k} if for every z € X, there
exist an n(z) € w and an a(z) < & s.t. st(z, Vp(z)) € Ug(a)-

Lemma 1 For a space X, the following are equivalent:

(1) X has submeta-B-property.

(2) Any monotone increasing open cover U = {Uy : @ < k} of X has an open point
star refinement sequence.

(3) Any monotone increasing open cover U = {U, : a < k} of X has a closed cover
F={Fpa:n€w, a<k}st FuoaCUsand Fny, C Fra, ifay < ag.

Proof (1)— (2): If cfk = &, then by (1) U has an open refinement sequence {V, : n € w}
s.t. for every £ € X, there is an n(z) € w and {{V € Vy,) 1 = € V}| < k. Let
V={v e Vnz) iz € V'}. Since Vyp(y) is a refinement of U, for every V € V! there is an
a(V) <k st. V C Uyyy. Since cfk = & and | V'] < k, there is an a(z) < « s.t. for every
VeV, a(V) < alz). Therefore st(z, V,(z)) C Us(z)- So {V, : n € w} is an open point
star refinement sequence of Y. If cfk < k, then for Y = {U, : @ < x}, kK has a monotone
increasing cofinal subset {a, : n < cfx}. Put V, = U,,. Then V = {V;; : n < clk} isa
monotone increasing open cover and | V| = cfx is regular. According to the above proof V
has an open point star refinement sequence, so docs {.

(2) — (3): By (2), U has an open point star refinement sequence, {V, : n € w}. Put
Foo = {z €Uy :st(z, V) C Uy}, then {F,, :n € w, o < &} 15 a closed cover of X s.t.
Foa CUq and of oy < a2, then Fry, C Fha,.

(3) = (1). Let U = {Uy : & < k} be an infinite open cover of X. Put Vi, = U Ug, then

fA<a




V = {V, : @ < «} is a monotone increasing open cover of X, by (3), there is a closed cover
{Fna :n€w, a < k}s.t. Fqa CV,y,and when a1 < ag, Fua, C Fua, Put Vo, = Uy—Fpa,
nc€w,a<k, and V, = (Voo : @ < k}, n € w. It is obvious that {},, : n € w} is an open
refinement sequence of U. For every z € X = U U Fya, there is the smallest n(z) s.t.

nEw a<k
I e U Fy(z)a; and there is the smallest o(z) s.t. z € Fuzja(z)- Il @ > afz) + 1, then

a<kK

T € Fy(z)a and 50 & & Uy = Fu(z)a = Vi(a)a, therefore [{V € Vy(;) 1z € V}| < V. This
shows (1).

A space X is said to have property () if any monotone increasing open cover U =
{Uy : @ € A} of X has a closed refinement 7 = {F,,, : @ € A,n € w} satislying Fro C Uy
for any n € w,a € A.

Lemma 2 Let X be a space, A = {U : U is an open cover of X satisfying that if V C U
and |V| < wq, then V does not cover X} and k = min{|U|: U € A}. Ifa = —1, then Kk is
regular. If &« > 0 and X has property (), then « is also regular.

Proof Suppose cfk = k and choose a U € A st. « = |[U]|. Let f : cfk — k be a
monotone increasing cofinal mapping, U = {Uy : @ < k} and W, = U Ug, a < k. Then

A<a
W = {Wsa) : a < cfk} is a monotone increasing open cover of X. Since cfx < «,

there is a k; < wq s.t. W = {Wf(aﬂ) : B < K1} C W also covers X. Without loss
of generality, we may assume that if f; < f;, then ag, < og,. If @ = —1, then «;
is finite. So X =Wya, )= U - Ug. Since f(ax,-1) < kK, there is a finite set
f<f(ﬂx1—1)
{€1,€2, -, &m} C [0, flax-1)) st. {Ue,,Ue,,-+,Ue,.} C U covers X, this contradicts
the hypothesis. If @ > 0 and X has property (*), then for W', there is a closed cover
F={Fnp:B<Kki,n€Ew}of Xst. Frg C Wilay) = U Ug for any f < k1, n € w. For
< fa
every n € w, the family {U; : € < f(ag)}U{X - F,p5} cévgs X and has the cardinal < «.
So it has a subfamily with the cardinal < w, covering X. Thus the cover {U¢ : £ < f(ag)}
of Fnp has a subcover U,g with the cardinal < w,. Put Ug = U{U,p : n € w}, then Up
covers Fg = U Fop and |Ug| < wo. Therefore the subfamily U' = U{Us : B < 1} of U
ncw

covers X since ¥ covers X. But |U'| < w, and this contradicts the hypothesis. Therefore
cfk = x.

Theorem 1 If a Ty-space X is wy41-compact and has submeta-B-property, then X is
wq-Lindelof.

Proof Suppose X is not w,-Lindelof. Let A = {U : U is an open cover of X whose any

subfamily with the cardinal < w, can not cover X} and x = min{|U|: U € A}. Take a

Ue Ast. U=k fa>0,then kK > waqy. If @ = —1, then k£ > w; because if kK = wy

then U has a finite subcover since the wy-compact and Ty space is countably compact. By

Lemma 1, submeta-B-property implies property (*). According to Lemma 2, cfx = k. We

may assume that U = {U, : a < k} satisfies that for any a < &, U, — U Ug #0. Let
B<a



{ay : 7 < k} be a monotone increasing cofinal subset of x and V;, = U U,. By Lemma
a< ay,
1 the monotone increasing open cover V = {V,, : n < £} of X has an open point star
refinement sequence {V, : n € w}. Take an zo € X, then there exist an n(zg) € w and
an 1o < & s.t. st(2o, Vn(z,)) € Vy,- Take an z; € X —V;,, then there exist an n(z;) € w
and an n; < k s.t. st(z1, Vu(z,)) C Vy,. Suppose for v, when p < v, z,,n(z,) and n, have
been defined. If ¢ = sup{n, : p < v} < k, take an z, € X — Vg, then there exist an n(z,)
and an 7, s.t. st(:tu,'vn(zv)) C V,,. If £ = k, then v = « and we finish the definition.
Put B = {z, : p < k}. Obviously, if p; < pa, then n, < n,,. There must be ng € w
“and A C Bs.t. |A] = k and for every z,, € A, st(z,,,Vn,) C Vy, . We may assume
that A = {z,, : A < «} satisfies py, < px, if Ay < Az. For any z € X, if z & st(A4, Vn,),
then thereisaV € V,, st. €V and VN A =10. If z € st(A, V), then there is an
5, € Ast. zE€st(z,,,,Vn,) C V,,““. Clearly st(z,, ,Vn,)N A ={z,, } thus A hasno
accumulation point since X is T. But |A| = k. This contradicts wa+1-compactness.
Noticing the cases « = 0 and a = —1 in Theorem 1, we obtain

Corollary 1 The regular Ty-space X is Lindelof iff X is wy-compact and has submeta-
B-property.

Corollary 2 The Ti-space X is compact iff X is countably compact and has submeta-
B-property.

Remark (1) By Lemma 1 the developable space has submeta-B- property, so the de-
velopable T)-space with w,j-compactness is wy-Lindelof. Thus if the Tj-space X has
submeta- B- property (or X is developable), then wy-Lindelofness and w,y1-compactness
are equivalent. (2) Corollary 1 and Corollary 2 improve the main results of [1], ie., a
regular T)-space X is Lindelof (compact) iff X is wj-compact (countably compact) and
has B-property.
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