On Weakly Commutative po-Semigroups *

Jing Fengjie Chen Hui
(Dept. of Math., Wuhan Univ.) (Suihua Teachers Collage)

Abstract We introduce the concept of weakly commutative po-semigroups. We study the semilattice decompositions of this type of semigroups into their archimedean subsemigroups and we give a characterization of such semigroups analogous to the corresponding result on semigroups without order. As a consequence, the characterization of po-semigroups and the corresponding characterization on semigroups without order can be obtained.

Keywords po-semigroups, poe-semigroups, weakly commutative po-semigourps, archimedcan subsemigroups

Classification AMS(1991) 06F05,20M10/CCL O152.7

A po-semigroup (: ordered semigroup) is an ordered set S at the same time a semigroup such that for any $a, b, x \in S$

$$a \le b \Rightarrow xa \le xb$$
 and $ax \le bx$.

A subset $I(\neq \emptyset)$ of S is called an ideal of S if

- 1) $SI \subseteq I$ and $IS \subseteq I$;
- 2) $a \in I, b \in S, b \leq a \Rightarrow b \in I$.

An ideal I of S is called prime if for any $a, b \in S, ab \in I \Rightarrow a \in I$ or $b \in I$.

A subsemigroup F of a po-semigroup S is called a filter of S if

- 1) $a, b \in S, ab \in F \Rightarrow a \in F \text{ and } b \in F$;
- 2) $a \in F, b \in S, b \ge a \Rightarrow b \in F$.

We denote by N(x) the filter of S generated by $x(x \in S)$. Let \mathcal{N} be an equivalence relation defined by

$$\mathcal{N} := \{(x, y) \in S \times S | N(x) = N(y) \}.$$

Definition 1 A po-semigroup S is called weakly commutative if for every $x, y \in S$ there exists a natural number n such that $(xy)^n \in (ySx]$.

^{*}Received Nov.17, 1992. This work is partially supported by the NSF of China and partially by the NSF of Education Committee of Heilongjiang Province.

$$(xy)^n \le yax$$
 for some $a \in S$.

Definition 2 Let S be a po-semigroup and T be a subsemigroup of S, T will be called archimedean if for every $a, b \in T$ there exists a natural number m such that $a^m \in (TbT]$. Equivalent definition

$$a^m \le xby$$
 for some $x, y \in T$.

We refer to [1] and [2] for all undefined terms and symbols in algebraic theory and ordered theory of semigroups respectively.

Lemma 1 Let S be a weakly commutative po-semigroup. Then for any $x, y, b \in S$ and positive integern there exists some positive integer m, k, l such that $(xby)^m \in (Sb^nS], (xby)^k \in (Sb^n]$ and $(xby)^l \in (b^nS]$.

Proof It is trivial for n = 1. Now suppose for positive integer n, there exists m such that $(xby)^m \in (Sb^nS]$, i.e., $(xby)^m \leq ub^nv$ for some $u, v \in S$. Since S is weakly commutative, so there exists some positive integer k such that $(ub^nv)^k \in (vSub^n) \subseteq (Sb^n]$, i.e., $(ub^nv)^k \leq wb^n$ for some $w \in S$ and also there exists 1 such that $(xby)^l \leq bz$ for some $z \in S$. Therefore we have $(xby)^{mk+1} \leq (ub^nv)^k(xby)^l \leq wb^nbz = wb^{n+1}z$, i.e., $(xby)^{mk+1} \in (Sb^{n+1}S]$.

Similarly we can prove the rest parts of lemma 1.

Lemma 2 Let S be a weakly commutative po-semigroup. Then for any $a, b, \in S, a \le b$ there exists m, n, i, j, k, l such that $a^m \in (abSab]$ and $(ab)^n \in (aSa], a^i \in (baSba]$ and $(ba)^j \in (aSa]$ and $a^k \in (babSbab]$ and $(bab)^l \in (aSa]$.

Proof /Clearly $a^5 = aaaaa \le abaab$, which implies $a^5 \in (abSab]$. Since S is weakly commutative, hence there exists some n such that $(ab)^{n-1} \in (bSa]$, which implies $(ab)^{n-1} \le xa$ for some $x \in S$. Thus we have $(ab)^n = (ab)(ab)^{n-1} \le abxa$, so $(ab)^n \in (aSa]$.

Similarly we can prove the rest parts of lemma 2.

Theorem 1 Let S be a po-semigroup. Then S is weakly commutative if and only if $N(x) = \{y \in S | x^n \in (ySy] \text{ for some } n\}$ for every $x \in S$.

Proof Necessity. For $x \in S$, let

$$T = \{ y \in S | x^n \in (Sy) \text{ for some } n \}.$$

We show first that T is a filter of S. Suppose $y, z \in T$, then $x^m \in (Sy]$ and $x^n \in (Sz]$ for some m, n, hence there exist $a, b \in S$ such that $x^m \leq ay$ and $x^n \leq bz$. Since S is weakly commutative, we have $(bz)^r \in (zSb]$ for some r, i.e., $(bz)^r \leq zc$ for some $c \in S$. Consequently

$$x^{m+nr} \leq (ay)(bz)^r \leq (ay)(zc) = (ayz)c.$$

Again by weakly commutativity, we have $((ayz)c)^k \leq d(ayz)$ for some $d \in S$ and for some k. Hence

$$x^{(m+nr)k} \leq d(ayz) = (da)(yz),$$

i.e., $x^{(m+nr)k} \in (Syz]$ and thus $yz \in T$. Now suppose that $yz \in T$. Hence $x^m \in (Syz] \subseteq (Sz]$ for some m so that $z \in T$. Since S is weakly commutative, we have $(a(yz))^n = ((ay)z)^n \in (zSay] \subseteq (Sy]$ for some n and so $x^{mn} \in (Sy]$, hence $y \in T$. Again suppose that $y \in T, z \in S, z \geq y$. Then $x^m \in (Sy]$ for some m, i.e., $x^m \leq ay$ for some $a \in S$ and for some m. By $y \leq z$, we have $x^m \leq az$, i.e., $x^m \in (Sz]$ and hence $z \in T$. Therefore T is a filter of S. Since $x \in T$, by the minimality of N(x), we must have $N(x) \subseteq T$. On the other hand, for every $y \in T$, we have $x^n \leq ay$ for some $a \in S$ and for some n. Since $x^n \in N(x)$, by $x^n \leq ay$, we have $ay \in N(x)$ and thus $y \in N(x)$, i.e., $T \subseteq N(x)$ so that T = N(x).

By symmetry we can prove also that

$$N(x) = \{ y \in S | x^m \in (yS) \text{ for some } m \},$$

which implies

$$N(x) = \{ y \in S | x^n \in (Sy] \text{ for some } n \} = \{ y \in S | x^m \in (yS) \text{ for some } m \}$$
$$= \{ y \in S | x^k \in (ySy) \text{ for some } k \}.$$

Sufficiency.Let $x, y \in S$. Since \mathcal{N} is a semilattice congruence on S, hence we have $yx \in N(xy)$, which implies $(xy)^n \in (yxSyx) \subseteq (ySx]$ for some n. Thus S is weakly commutative.

Theorem 2 Let S be a weakly commutative po-semigroup. Then the following are true:

- i) S is (not uniquely in general (c.f. [4])) the semilattice of archimedean subsemigroups.
- ii) \mathcal{N} is the greateast semilattice congruence on S such that congruence class N_x is archimedean for any $x \in S$.
 - iii) $\mathcal{N} = \{(x, y) \in S \times S | x^m \in (SyS) \text{ and } y^n \in (S \times S) \text{ for some } m, n\}.$
- **Proof** i) It suffices to show that each N-class N_x is an archimedean subsemigroup. For any $a,b \in N_x$, then N(a) = N(x) = N(b), which implies $b \in N(a)$. Hence there exists some positive integer n such that $a^n \in (bSb]$, which implies $a^n \leq byb$ for some $y \in S$. Since N(x) is a filter, hence $byb \in N(a) = N(b)$ so that $by \in N(b)$. Again, $b \in N(by)$ and $b \in N(byb)$, which implies N(by) = N(byb) = N(b) = N(x). Therefore, we have $by, byb \in N_x$. It follows that from $a^{2n} \leq (by)b(byb)N_x$ is an archimedean subsemigroup of S.
- ii) Let σ be a semilattice congruence on S such that for every $x \in S$ congruence class σ_x is archimedean. Let $(a,b) \in \sigma$. Since $a \in \sigma_b$ and σ_b archimedean, there exists n such that $a^n \leq ubv$ for some $u,v \in \sigma_b$. Then $ubv \in N(a)$ and $b \in N(a)$ thus $N(b) \subseteq N(a)$. From $b \in \sigma_a$, by symmetry, we have $N(a) \subseteq N(b)$. Hence $(a,b) \in \mathcal{N}$.
 - iii) Let $M(x) = \{y \in S | x^n(SyS) \text{ for some } n\}$ and let

$$\mathcal{M} = \{(x,y)|x^m \in (SyS) \text{ and } y^n \in (SxS) \text{ for some } m,n\}.$$

Clearly $\mathcal{M} = \{(x,y)|M(x) = M(y)\}$. Since S is weakly commutative, thus $N(x) = \{y \in S | x^n \in (ySy] \text{ for some } n\}$. Let $y \in M(x)$. Then $x^n \in (SyS)$ for some n, which implies $x^n \leq ayb$ for some $a,b \in S$ and also there exists m,k such that $(ayb)^m \leq yu$

and $(ayb)^k \leq vy$ for some $u, v \in S$ so that $x^{n(m+k)} \leq (ayb)^{m+k} = (ayb)^m (ayb)^k \leq yuvy$, i.e., $y \in N(x)$. Hence $M(x) \subseteq N(x)$. Let $y \in N(x)$. Then we have $x^n \leq yay$ for some $a \in S$ and for some n, so that $x^{2n} \leq (yay)(yay) = (ya)y(yay)$, i.e., $y \in M(x)$. Thus $M(x) \supseteq N(x)$ so that N(x) = M(x). Therefore $\mathcal{N} = \mathcal{M}$.

Acknowledgment The authors are grateful to Professor Guo Yuqi for useful comments concerning this paper.

References

- [1] A.H.Clifford and G.B.Preston, The algebraic theory of semigroups, Amer. Soc. Math. Surveys 7, Providence, Vol.I, 1964.
- [2] N.Kehayopulu, Remark on ordered semigroups, Math. Japonica, 35, No.6(1990), 1061-1063.
- [3] N.Kehayopulu, On weakly commutative poe-semigroups, Semigroup Forum, 34(1987), 367-
- [4] N.Kehayopulu, P.Kiriakuli, S.Hanumantha Rao and P.Lakshmi, On weakly commutative poesemigroups, Semigroup Forum, 41(1990), 373-376.
- [5] P.V.Ramana Murty and S.Hanumantha Rao, On a problem in poe-semigroups, Semigroup Forum, 43(1991), 260-262.

关于弱交换 po- 半群

景奉杰

(武汉大学数学系,武汉430072) (绥化师专数学系,黑龙江152061)

摘 要

在本文中我们引入弱交换po- 半群的概念,并研究这类半群到其Archimedes 子半群的 半格分解,给出了这类半群类似于无序半群相应结果的一个刻画。作为推论,我们得到 弱交换poe- 群和无序半群的相应刻画.