Journal of Mathematical Research & Exposition
Vol.15, No.1, 029-034, Feb. 1995

Osciliation Criteria of Solutions for a Class of Boundary
Value Problems *

Chen Wendeng
(Dept. of Math., Center Institute of Finance, Beijing 100081)

Yu Yuanhong
(Institute of Applied Mathematics, Academia Sinica, Beijing 100080 )

Abstract In this paper we consider a class of boundary value problems of functional
partial differential equations of the necutral type. The principal tool is an averaging
technique which enables one to establish such oscillation criteria in terms of related
functional differential inequalities.
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1. Introduction

Recently the oscillation theory for functional differential equations and partial differen-
tial equations have undergone an intensive development. However, only a few results have
been published so far which deal with the oscillatory properties of the solutions of func-
tional partial differential equations. In the paper of Kreith et al. |1} sufficient conditions
were given for oscillation of the solutions of nonlinear hyperbolic differential equations of
the form

d%u
T Au+ C(z,t,u) = f(z,t),
considered in a cylindrical domain.

The aim of the present paper is to generalize results of the paper [1]. In this work suf-
ficient conditions are obtained for oscillation of the solutions of the hyperbolic differential

equation of neutral type

;—;{u(z,t) + pu(z,t — 7)] — Au+ C(z,t,u) = f(z,1), (1)
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where p and 7 are positive constants.
2. Main Results

Consider the following problem

;—tzz[u(z,t) + pu(z,t — 7)) — Au+ C(z,t,u) = f(z,t), (z,t)eCG
Ju ) (2)
%:g(ﬂ:,t), (I,t)EO’

where p and 7 are positive constants, G is a cylinder in the space (z,t), i.e., G = D x (0, c0),
D is a bounded domain in R" with smooth boundary dD. ¢ is the surface of G, i.e.,
o0 = 3D x (0,00) and n is the vector of the exterior normal to ¢. We denote by G4, a € R
the infinite cylinder D x (a, c0).

Suppose that the following conditions (A) hold:

(A1) C(z,t,u) € C(G x R,R), f(z,t) € C(G, R), g(z,t) € C(o, R),

(Az) C(z,t,&) > q(t)p(€) for (z,t,£) € G x (0,00) where ¢(t) is a continuous and
positive function in the interval (0,00) and ¢(€) is a continuous, positive and convex
function in the same interval (0, c0).

(As) C(z,t,—&) = -C(z,t,£) for (z,t, &) € G x (0,00).
Corresponding to each solution u(z,t) of the problem (2), we consider the function

y(t)>: ﬁ/})u(z,t)dz, t € (—r,00),

where | D] :/ dz.
D

Lemma 1 Suppose that (A;) and (Ay) hold and that u(z,t) is a positive solution of
the problem (2) on G4, a > 0. Then the function y(t) satisfies the following neutral
differential inequality

L0 + pule = 7)) + a(0es) < GO + PO, t5a, ()

where

1 1
Ft:-———/ z,t)dz, G(t)=— z,t)do.
)= 57 [, f@in 6O = [ o)
Proof Lett > o Integrating (1) over D we obtain
d? 1
O Fpul =) = [ 18u=Clat, 0+ 1(z,0)ds, (4)

Green’s formula yields
a
/ Audz:/ —gdo:/ g(z,t)do. (5)
D 3D dn aD
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From (A;) and Jensen’s inequality we get

1 1
m/;)C(z,t,u)dz > I31/Dq(t)<p(u)dx
a)e (=

(ﬁLu(z,t)dl) = q(t)e(y)- (6)

2

Then from (4)—(6) it follows that for t > «

d? 1 1
Ely(t) +py(t—7)] < [-D—I/wg(z,t)do - p(t)p(y) + I_D_I/u f(z,t)dz.

This Proves the lemma.

Definition 1 The solution u(z,t) of the problem (2) is called oscillatory in G if u(z,t)
has a zero in G, for each a > 0.

Definition 2[21 The inequality (3) is called oscillatory at t = oo if it does not possess a
solution which is positive in the interval |a, 00) for every a > 0.
Using Lemma 1. we prove the following theorem.

Theorem 1 Suppose that the condition (A) hold and the neutral differential inequalities

;—;[y(t) +pylt - 1) +q(t)ply) < G(t)+ F(t), (7)
SR +pyt - 1)l +alely) < ~G(O) - F() .

are oscillatory at t = oo. Then every solution u(z,t) of the problem (2) is oscillatory in
G.

Proof Assume to the contrary that there exists a solution u(z,t) of the problem (2)
which has no zero in G,. If u(z,t) > 0 in G,, then from Lemma 1 it follows that y(t) is
a positive solution of the inequality (7) for t > &, which contradicts the condition of the
theorem. :

If u(z,t) < 0in G,, then v(z,t) = —u(z,t) is a positive solution of the problem

62
—a—t—z—[v(:r,t) + pv(z,t — 1)} - OAv+ C(z,t,v) = —f(z,t), (z,t)€CG
Jv
Fy —g(z,t), (z,t) € 0.

From Lemma 1 it follows that
1 /
z(t) = — | v(z,t)dz, t>«
© = 1 [, =0

is a positive solution of the inequality (8) which contradicts the conditions of the theorem
as well. This completes the proof of Theorem 1.
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The above arguments imply that the oscillation properties of the solutions of the
problem (2) can be transformed to investigation of the oscillation properties of the solutions
of neutral differential inequalities

d2
SO +pwlt - 1)) + 1t w) < q(t), (9)

where p and 7 are positive constants.
Suppose the following conditions (B) hold:
(B1) f(t,w) € C([a,o0) x (0,00), R), q(¢t) € C([a,0), R), where a € R.
(B2) f(t,w) > 0O for (t,w) € [a,00) x (0,00).

Then the following lemma can be proved.

Lemma 2 Suppose that the conditions (B) hold and

lim inf RT/%-wnums:_m (10)

t—o0 t — T

for every T > a. Then the inequality (9) is oscillatory for t = co

Proof Assume to the contrary that w(t) is a positive solution of the inequality (9) defined
in the interval [T, 00). Then using the condition (B;) we have

EZ[w(t) +pw(t - 1) < q(t). (11)

Integrating the above inequality twice in the segment [T,t], we get
w(t) +pw(t—7)<C1+Co(t - T / / s)dsdr.
where Cy and Cy are constants. Since

/ / s)dsdr = /:(t - s)q(s)ds

dividing both sides of the last inequality by t — T', we obtain

w(t)+pw(t—r)< o / t—s)g

t—T syt 2+t—T

Let t — oo, from (10) and (12) it follows that

()4 puft- )
lin inf = —o0C,
t— 00 t—T ’

which contradicts the assumption that w(t) is positive for t > T. This proves Lemma 2.

Theorem 2 Suppose that the condition (A) hold and

t

EgmrTu—gmqg+F@mm:—m, (13)
tl_l.r& sup At(l - j—)((:(s) + F(s))ds = +oo, (14)
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for every sufficiently large number T. Then every solution u(z,t) of the problem (2) is
oscillatory in G.

Proof From the conditions (13) and (14) it follows respectively that

Jim inf _IT /Tt(t — §)(G(s) + F(s))ds = —oo, (15)
tlLIEO inf _IT /;(t - s)(——G(s) — F(s))ds = ~00. (16)

According to Lemma 2 we obtain that the inequalities (7) and (8) are oscillatory for t = co.
Hence, from Theorem 1 every solution u(z,t) of the problem (2) is oscillatory in G. This
completes the proof of the theorem.

Remark Let p = 0, then our Theorem 1 and Theorem 2 reduce to the Theorem 3.2 and
Theorem 3.3 in [1], respectively.

Example Consider the problem

a2 d%u
ﬁ[u(z,t) + u(z,t - 7)] — ozt u(z,t)
= 2¢' cosz(sint + cost — ¢ "cost), (z,t)€ G =(0,F) x (0,00),
17)
ou(0,t) (
3. =0 € (0, 00),
du(3,t :
{ —%%:——)z—e'smt, t € (0,00).

One can easily and immediately check that the function

C(z,t,u) = u, (z,t,u) € G x R,

f(z,t) = 2¢' cosz(sint + cost — e " cost), (z,t) €@,

9(0,¢) =0, t € (0,00),
g(;—r,t):——etsint, t € (0,00),

satisfy the condition (A). Moreover, we have

2
G(t) = — Z¢'sint, t € (0,00),
w

4
F(t) = —€'(sint + cost — e "cost), te (0,0),
m

which implies that
t s ot
I(t) = / (1 - =) (G(s)+ F(s))ds = —t-(ZSint —~2e¢ " "sint — cost) + ¢,

T t 7r
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where ¢ does not depend on t. Hence, we have

tlim inf I(t) = —oo, (18)
and
Jim sup I{t) = +oo0, (19)

i.e., the conditions (13) and (14) of Theorem 2 hold. It follows from Theorem 2 that every
solution of the problem (17) is oscillatory in the cylinder G(0, §) x (0,00). For example,

u(z,t) = €' sint cos z

is one such solution.
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