+ $\overline{B_2}$ from (3 3) where $\overline{B_1}$ S_r , $\overline{B_2}$ S_{k-r} By tr $(AB)^m = \text{tr } (A^m B^m)$, we have tr $(D_1 \overline{B_1})^m = \text{tr } (D_1 \overline{B_1})^m$. So,

$$\operatorname{tr}(D \ \overline{B_1})^m = \operatorname{tr}(D \ ^m \overline{B_1^m})$$

and

$$\operatorname{tr}(D \ \overline{B_2})^m = \operatorname{tr}(D \ ^m \overline{B_2}^m).$$

Here

$$D = D + D ,$$

corresponding with the block of B. By the hypothesis,

$$D \overline{B}_1 = \overline{B}_1 D$$
, $D \overline{B}_2 = \overline{B}_2 D$.

We have $D_1 \overline{B} = \overline{BD}_1$, that is AB = BA.

References

- [1] R. Bellman, Introduction to Matrix Analysis, Megraw Hill Book Company, New York, 1970
- [2] Man Kam Kwong, Sane results on matrix monotone functions, Linear Alg Appl, 118(1989), 129-153.
- [3] R. A. Horn & C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985, 464--471.
- [4] Xu Changqin, Bellman's Inequality, Linear Alg. Appl., 229(1995), 9-4

Bellman 不等式(II)

徐常青

(中国科技大学数学系, 合肥 230026)

摘要

本文考察不等式:

$$\operatorname{tr}(AB)^{m} \leq \operatorname{tr}(A^{m}B^{m}), m = 1, 2, 3, ...,$$

其中A,B 为 K 阶方阵 证明了当A 正定B 对称幂等条件下上述不等式成立 还考察了A,B 为非负矩阵时的情形

Bellman's Inequality (II)

X u Changqing

(Dept of Math., Univ. of Science and Technology of China, Hefei 230026)

Abstract This article concerns a conjecture:

$$\operatorname{tr}(AB)^{m} \leq \operatorname{tr}(A^{m}B^{m})$$

which was put forward by Bellman R. We prove it under the additional condition that A S_k and B I_k . We also investigate the case when A_k , B_k are nonnegative

Keywords definite positive matrices, idempotent matrices, trace

Classification AM S (1991) 15A 15, 15A 42/CCL O 151. 21

1. In troduction

In [4], it is shown that if $A, B = S_k$, we have

(for any
$$m N$$
): $\operatorname{tr}(AB)^m \leq \operatorname{tr}(A^mB^m)$ (1.1)

for the case of k=2 and k=3 for all m=1,2,3,... We will continue to use the notations described in [4]. That is, $S_k(\widetilde{S_k})$ denotes the set of all real symmetric definite positive matrices of order k: k is any member in $N:I_k$ denotes the set of all $k \times k$ symmetric idempotent matrices; tr(X) denotes the trace of matrix X, and A^T for the transpose of matrix A. K for 1,2,...,k for k N, where N is the set of all the integers A > B

Our main result is

Theorem 1 L et A S_k , B I_k , then (1, 1) holds for all m = 1, 2, 3, ...

We will use the following theorem 1' (theorem 1 in [4]) to prove some results

Theorem 1 'S upp ose A, B Sk, set $A = UDU', D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_k)$ and $\widetilde{B} = U'BU = (b_{ij})$.

Here σ , $\Phi_{\sigma,m}(\lambda)$ and $b\sigma$ are defined by

$$\Phi_{\overline{\alpha},m} (\lambda) = \sum_{\sigma} (\lambda_{i1}^{n} + \lambda_{i2}^{n} + \ldots + \lambda_{in}^{n}) / m - \lambda_{i1} \lambda_{i2} \ldots \lambda_{in},$$

$$b_{\sigma} = b_{i_1 i_2} b_{i_2 i_3} \dots b_{i_m i_r}$$

Received May. 5, 1994.

2 Main result

The following result is an improtant proposition of definite positive matrices **Lemma** 1 L et A $S^{k \times k}$, then $A_r^{1/n} \ge A_r^{(1/n)} > 0$ for $r \not \in A$ and $n \not N$.

Proof For any real function $f(\lambda)$, given a real symmetric matrix A, we define

$$f(A) = U^T f(D)U = U^T \operatorname{diag}(f(\lambda_1), ..., f(\lambda_r))U$$

$$A = \begin{bmatrix} A_{r} & A_{12}^{T} \\ A_{12} & A_{r}^{(c)} \end{bmatrix}, A_{1/n}^{1/n} = \begin{bmatrix} A_{1/n}^{(1/n)} & A_{12}^{(1/n)} \\ A_{12}^{(r,1)} \end{bmatrix},$$

 $A_r, A_r^{(1/n)} = R^{r \times r}$, others are corresponding block matrices. We know that $f(\lambda)$ is a monotone increasing function on S_k in terms of [2], that is,

(for any
$$A, B S_k$$
): $A > B f(A) > f(B)$,

note that A = S = By [2], we have:

$$f(A_r) \ge A_r^{(1/n)} > 0$$
, says, $A_r^{1/n} \ge A_r^{(1/n)} > 0$ for $r \in K$, $n \in N$.

Lemma 2 Suppose A, B $S^{k \times k}$ and $A \ge B$, then

$$tr(A^n) \ge tr(B^n) (n = 1, 2, 3, ...).$$

Proof By the positivity of A and B, we can set

$$\sigma(A) = \{ \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k \} \ (\lambda_k > \ 0),$$

$$\sigma(B) = \{\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k\} \ (\mu_k > 0).$$

Corollary 7. 7. 4 in [3] tells us: $\lambda \ge \mu_i > 0$, $i \in \mathcal{K}$. Therefore

$$\lambda_i^n \ge \mu_i^n > 0$$
, $i \quad \underline{K} f \text{ or any } n \quad N$.

So,
$$\operatorname{tr}(A^n) = \sum_{i=1}^K \lambda_i \ge \sum_{i=1}^K \mu_i^n = \operatorname{tr}(B^n).$$

Lemma 3 Let A $S_K(K, N)$, then $\operatorname{tr}(A_r^m) \leq \operatorname{tr}(A_r^m)$ for all m and all r K. Here A_r and A_r^m are the rth p rincipal m ain submatrices of A and A^m , respectively.

$$-31 -$$

Proof Note that for the case r = k or m = 1, it is trivial Now let m > 1 and $1 \le r < k$, and set $F = A^m$ corresponding to (1, 1), we have

$$F = \begin{bmatrix} F_r & F_{12} \\ F_{21} & F_r^c \end{bmatrix}$$

and $F_r = A_r^{(m)}$, also $A = F_r^{1/m}$ (defined as in Lemma 1), then we may write $A_r = F_r^{(1/m)}$, $F_r^{(1/m)}$ is the rth principal main submatrix of $F_r^{1/m}$. If the result is not true, that is, $\operatorname{tr} A_r^{(m)} > \operatorname{tr} (A_r^m)$, then

$$\operatorname{tr}(F_r) = \operatorname{tr}(A_r^{(m)}) < \operatorname{tr}(A_r^m) = \operatorname{tr}[(F_r^{(1/m)})^m]$$
 (2.2)

By Lemma 1, $0 < F_r^{(1/m)} \le F_r^{1/m}$, while we have

$$0 < \operatorname{tr}\{ [F_r^{(1/m)}]^m \} \le \operatorname{tr}\{ (F_r^{1/m})^m \} = \operatorname{tr}(F_r). \tag{2.3}$$

From Lemma 2, a contridiction

Now we complete this part by theorem 1:

Theorem 1 L et A S_k , B I_k , then (1, 1) holds for all m = 1, 2, 3, ...

Theorem 1 is immediate from Lemma 3

3 About N_k

Now we deal with the inequality (1. 1) for nonnegative matrices We have

Proof For n=1, it is trivial Now suppose it is valid for n-1, then from the formula

$$A^{n} - B^{n} = A (A^{n-1} - B^{n-1}) + (A - B)B^{n-1}$$

and the hypothesis we know that A^{n} - B^{n} N k

Next we use Lemma 4 to get Theorem 2

Theorem 2 L et A, B, AB - BA N k, then

(for any
$$m N$$
): $\operatorname{tr}(AB)^m \le \operatorname{tr}(A^m B^m)$. (3.1)

Proof We use induction on m to verify the inequality $(AB)^m \le A^m B^m$. It is trivial for m = 1. Now suppose it holds for m - 1, then for m, we have:

$$A^{m}B^{m} = A (A^{m-1}B^{m-1})B \gg A (AB)^{m-1}B. (3.2)$$

From the hypothesis, $AB \gg BA \gg 0$, and by Lemma 4, we get $(AB)^{m-1} \gg (BA)^{m-1}$, so (3.2) is followed by

$$A^{m}B^{m} \gg A (AB)^{m-1}B \gg A (BA)^{m-1}B = (AB)^{m},$$

that is,

$$A^m B^m \gg (A B)^m$$

By the definition " \gg ", (3 1) is immediate

Next we present some results related to [4].

Theorem 3 L et $A = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_k)$, $\overline{B} = (b_{ij})$ N_k , then (1.1) holds M oreover, the equality in (1.1) holds if f

(for any pair
$$(i, j)$$
: $1 \le i, j \le k$): $\overline{b_{ij}} = 0$ $\lambda = \lambda_i$ (3.3)

Proof Since \overline{B} is nonegative, we have $\overline{b_{\sigma}} \ge 0$ for any σ (see [4]). By arithematic-geometric means we get: (for any σ): $\Phi_{\alpha,m}(\lambda) \ge 0$ So,

$$\sum_{\sigma} \Phi_{\sigma,m} (\lambda) \overline{b_{\sigma}} \geq 0$$

(2 1) is immediate from Theorem 1 in [4].

Now we consider the case $\sum_{\sigma} \Phi_{\overline{a},m}(\lambda) \overline{b\sigma} = 0$ In this case $\Phi_{\overline{a},m}(\lambda) \overline{b\sigma} = 0$ for all $\sigma = (i_1, i_2, ..., i_m)$. Suppose there exists a pair (i, j) in $K \times K$ such that $\overline{b_{ij}} = 0$, then we set $\sigma_i = (i, j, j, ..., j)$ whose first coordinate is i and the others are all j. We get $\Phi_{\overline{a},m}(\lambda) \overline{b\sigma} = 0$ But $\overline{b\sigma} = \overline{b_{ij}} \overline{b_{jj}^{m-1}} = 0$ So, $\Phi_{\overline{a},m}(\lambda) = 0$, whereas

$$\Phi_{\sigma,m}(\lambda) = 1/m \left[\chi_1^m + (m-1) \chi_j^m \right] - \lambda_i \chi_j^{m-1}, \ \lambda_i, \lambda_j > 0,$$

from arithematic-geometric mean inequality we get $\lambda = \lambda$.

Conversely, if we have:

(for any pair
$$(i, j)$$
: $1 \le i, j \le k$): $\overline{b_{ij}} = 0 \quad \lambda = \lambda_k$

Then $\overline{b\sigma} = 0$ $\Phi_{\alpha,m}(\lambda) = 0$ for any possible σ So, we have $\Phi_{\alpha,m}(\lambda) \overline{b\sigma} = 0$ for any σ That is $\sum_{\sigma} \Phi_{\alpha,m}(\lambda) \overline{b\sigma} = 0$ From the proof of the above theorem, we get the equality of (1.1).

It is easy to see that (2 1) holds when A, B S_k and \overline{B} N_k

Theorem 4 Suppose that A, B S_k, \overline{B} described as the above is nonnegative. Then the equality of (2.1) holds iff AB = BA.

Proof The sufficiency is obvious Now we come to prove its necessity: As \overline{B} is non-negative, we know the equality of (1. 1) holds iff: (for any pair (i, j): $1 \le i, j \le k$): $\overline{b_{ij}}$ 0 $\lambda = \lambda$. (by Theorem 3)

Next we prove AB = BA:

For k=1, it is trivial Suppose it is true for all the matrices of order less than k. Then for k, if for any pair (i,j): i, $1 \le i, j \le k$, $\overline{b_{ij}} = 0$, that is, B is diagnal, then AB = BA is immediate. If there exists a pair (i,j): i, $1 \le i, j \le k$ such that $\overline{b_{ij}} = 0$, we have $\lambda = \lambda_k$. Without the loss of generality, we set

$$\lambda_1 = \lambda_2 = \dots = \lambda_r, 1 < r \leq k.$$

If r = k, then AB = BA. Now for r < k and $\lambda_i = \lambda_i = \ldots = \lambda$ λ_{i+1} $(i = 1, 2, \ldots, k-r)$, we get $\overline{B} = \overline{B}_1$