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Abstract W eak convergence and strong consistency of the renainder tem in the Bahadur repre-
sentation of the samplep - quantile are established From the resultsw e obtain asymptotic nor-
mality and the lav sof iterated logarithm for snooth quantile estimator.
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1 Introduction

One characteristic of the distribution that isof interest is the quantile function, w hich is
useful in reliability and medical studies

For the distribution function F , the quantile function is defined by

Q(p) = inf{x:F(x) = p}, O< p< 1
A natural estimator of the quantile functionQ (p) is the sample quantile function Q. defined
by

Qn(p) = Fo '(p) = inf{x: Fa(x) = p},
whereFa((*) is the enpirical distribution function (d f. ).

T here are several nonparametric estinatorsof Q (p) in the literature For example, the
sample quantile function, Fn *(p) = inf{x: Fa(x) = p}, 0< p < 1hasbeen studied, w here
Fn(x) isthe empirical distribution function based on the sample draw ing from popular distri-
bution function F. [2] gavemany of the known results concerning Fn" % A nother approach

has been to lveF.(xp,) = p forxpwhereFa(x) :J'_ _fa(dtwith fa(t) being a kernel esti-

mator (see [7]). [9] studied a kernel- type estimator w hich is the snoothed sample quan-
tile function F» *(p) based on the kernel method

The quantile function of the empirical distribution is a step function with jumps corre-
gonding to the observations The purpose of this paper is to present a snoothed nonpara-
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metric estimator for the guantile function based on the kernel method and obtain some
asymptotic results for the snoothed quantile estmator. From these results, we can establish
Bahadur representation for this snooth quantile estimator w ith exact convergent order and
exact constant in the order [9] showed that under general conditions this estimator is
strongly consistent, and it perform s better than the sample quantile function in the sense of
snaller mean squared error, particularily when the size of sanple is snall

Now, forO< p < 1, define the kernel- type quantile function estimator

Qn(p) = hn'IOlQn(t)k ITQ ,dt= ho 1lea]' (/ K I—n} dt, (11)

whereX @, X @, ,Xwm, (i= 1,2, , n- 1) aretheorder statisticsof X1, X2, , Xnand
k (t) is aprobability density function and h = h, is a sequence of band w idth

LetUibei i d uniform (0, 1) random variables, and the uniform empirical distribution
based on these reduced rv's is then given by

n

Gly)= Y Y IU=y), vy (0D,
where | (*) is the indicator of (*). L et & (t) denote the correpponding uniform process
ey) = n*Guly) - y), 0<y<1
Definedn, the inverse of Gn, and the uniform enpirical processun by
gn(y) = inf{t: Ga(t) = y},
un(y) = n”’(y- a(y)), O0<y<1
In thispaper we shall consider the snoothed quantile process
B =1 nf QM) Q® - Q®)
and the snooth Bahadur- Kiefer process
Ra(p) = @@ (p)) + B(p), O<p<1 (12
[1]wasthefirst to investigate the distance betw een the enpirical and quantile p rocesses
in the case the sample is com ing from the uniform U (0, 1) distribution. The best result con-
cerning thisproblem, isdue to [6], heproved the sharpest order in thisdistance In thispa-
per we consider the distance betw een the empirical and snooth quantile processes for the
sample coming from general d f.
Ourmain results are the follow ing theorem s

Theorem 1 Suppose thatF is tw ice diff erentiable on the neighborhood o Q (p) , f is continuous
and positive near Q (p) and f' is continuous on Q (p) . L et k be a probability density function
w ith f inite support (- ¢, c) for sasmec> OandI tk(t)dt= Q Let{h= hs,n= 1} be a sequence
d bandw idths satifying
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{ nhlgh'> 0 and 1 0 (1 3)

_nh
log h’
ash— . Then

im P(nt @ E)IRA(p) = 6 = f SN (Op (- p)) (du)

w here ®(*) isStandard nomal d. f. andN (0, 0°) denotes the nomal distributionw ith expec-
tation zero and varianced”

Theoren 2 Suppose that f is continuously diff erentiable and positive on real line Letk be a
p robability density functionw ith f inite support (- ¢, c) for sasnec> OandJ' tk()dt= Q Let
{h = hn,n = 1} be a sequence o bandw idths satisying

-1
3/2 = 0 a.nd - 1% 00 (1 4)
(loglog n) log h
asn— . Then
lim su 1/4(| -3/ |5 _  o5/hee 3/4 ) %
1 supn(loglog n)” ¥ [Ra(p) [= 27'3 ¥*(p (1- p))* a's (15)

forp (0,1) fixed.

Theoran 3 Suppose that f is continuously diff erentiable and positive on real line Letk be a
p robability density functionw ith f inite support (- ¢, c) for simec> OandI tk(t),dt= Q Let
{h = hn,n = 1} be a sequence d bandw idths satifying

(logh ) »»—~ 0 and Egm?l'_lﬁ 00 (1 6)
asn- oo,
If in addition, thatO0< infocx<1f (Q (x)) < 0. Then
lm supn**(log )" **(loglog n)~ ** ,8up R (p) |= 2 as 17)

From the lav of the iterated logarithm for empirical processw e immediately get

Corollary 1U nder all the conditions o Theoren 3w e have
lim sup (_n_

1.2 (Goglog D apf Qe R - Q) =1 as

and

Iminfné(loglog n)é os&f)lglf QM) () - Q) |= m8 vz g o
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2 Proof of the theorans

For convenience of presentationw e shall assume throughout thatg.(y) = Ofory < Oand
un(y) = Ofory = 1 W e quote some strong approximation resultsfor the enpirical process,
w hich are used in the proofsof our theoran s

Leth = hafor smplity.

Lenma 11f nh/(logh ') = o asn— o , thenw e have
_ -1\ 12
oSUp. ﬁipth (y+ t,n)- K(y,n) |- O((nhlogh H") as (21
w here def ineK (s,t) = Oass< Oands> 1
Proof See [3] Theoran 1 15 2
L enma 2A ssume that the regularity conditions in Theoren lare satisf ied, thenw e have
S, S lun(y + ) - un(y) |= O((hlogh ")**) a's (2 2)
Proof From [3] Theoram 4 5 3, we have
- 1/2
n Y sup sp Un(y + 9 - unl(y) |
- 1/2 - 1/2
=n " sp ﬁ£h|un(y+ 9 - nKy+ sn)|
+on l/zosup un(y) - n "’k (y,n) |
<y=p
+n 10§‘;'Qp aji)th (y+ s,n)- Ki(y,n) |
= A1+ A+ As (2 3)

w here
A2= 0 (n ¥(log n)”?*(loglog n)**) a s
For sufficiently largen, we obtain

Ar<n 2 Sup fun(y) - n° V2K (y,n) | = O (0" **(log n)“*(loglog n)**) a s
=y=p

By Lenmal, weobtain
As= O ((n *hlogh HY*?) a's
Thus the result of Leanma 2 follow s from the boundednessof A 1,A 2,A 2

n

Lenma 3 [[8] Th 1A] Suppose thatk(t) isa b[undj integral function on real line and
1
k

I o [t () | = 0.D ¢ inegn(x) :I_ 9 () an - dt Then at every pointx o conti-
nuity o g(*)

3

Imgn(x) = g(Xj’_ _k(ndt,

asg (x) is unif o continuous, then the equality above holds true unif omly on x.
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Proofsof Theorem 1and Theorem 2L etq.(p) = inf{s Gn(s) = p} = F@Qn(p)), andQ.(p)
= Q (gn(p)). For sufficiently largen, wecanwrite

Ra(p) [= n™*f @ (p)) hJ’ Qn (t)k[ Jdt- Qs (p)‘

n"’f @ (p)) (.C[Q (4 (1) - Q(an(p))] hk[ h Jdt‘

SECION reymiCICR qn(lo)lﬁk[“"h—t dt
[1e0- @)1 EgE) T ot

|1(p) + |2(p). (2 4)
w here & lies betw een g (p - ht) and g (p).

+

ByLenma 2 1 and the fact that] yk(y) dy = 0, we have

11(p) = -rc(un(p- ht) - un(p))k(t)dt‘ﬁ ﬁﬂ un(p - ht) - un(p)J’_cck(t)dt

= un(p+ B - un(p)|=0C((hlogh )" as (2 5)
By theC: -inequality, w e have

2 1 |p-_t
+2nj’[t o] f(Q(E)) hk[ —H dt (2 6)

U singL enma 1 andL enma 2w e obtain that the first integration of (2 6) isnot greater

Q|1 |p-t
un (1) - un(p)|J' o) nklon ot

=o(n 2hlog h') as
it then follow sfrom L anma 2 that

t- pl2lfr@QEN|1 | p-t o i
I[ h] f°Q (&) hk[ h J dt f3(Q(p)§tk(t)dt

Hence the third integration of (2 6) isnot greater thanO (n%hz). Thusw e obtain that
l(p) = O(n Yhlogh™* n*?h?) as 27
Sinced n hlogh *= 0 (h— o), thenwe have

than

nz p

o< t< 1

nill(p)ﬁ 0 as and nilz(p) >0 a s
By Theorem 1of [4] we mmediately obtain Theorem 1
Since

and —nh—ﬁoo

(loglog n) "~ 0 log h’
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asn— o , weobtain from (2 5) and (2 7) that
n*(log logn)" **I.> 0 a's (2 8)

and

n1/4 3/4

(loglogn)” I.-» 0 a's (2 9)
Thus, it followsfrom (2 4), (2 5) and (2 7) that

n**(loglog n)" ** R+ (p) - Ra(p) |+ 0 as (2 10)
Therefore, Theorem 2 follow sfrom (2 10) and [6] Theoran 1

Proof of Theorem 3W e can prove Theorem 3 by the same argument used in the proof of T he-
oram 2, wemay w rite

3R, [Ra(p) - Ra(p) | = sup 1:(p) + sup 12(p). (2 11)

By assumption (1 14) and 0< info=x=1f (Q (x)) < o, we have

Jt @) | Q]|
S0 Q) KO9SR Ty <
ByLenmal, it follow s that

at- - e Free) BN

<n?
ogggllz(p) =n ogggl E]JEC

=0o(m %hlog ht n“2h?) as
By L enma 1, weobtain

50,12 (p) = sup, Sup

Since
-1
Eh.lag_h_% 0 and _nh__ﬁ w

log n log h

un(p+ ) - un(p) |= O((hlog(n/h))*® as

w e obtain

n"*(log n)" *?(loglog n)~ * Ogﬂglll(p)e 0 as
and

n**(log n)" **(loglog n)~ * Suplz(p)> 0 as

Therefore, w e have

Ra(p) - Ra(p)|> 0 as (2 12)
[3] Theoran 5 2 2, the result of Theoran 3 follow sfrom (2 12)

1/4 - 1/4 - 1/4
n”*(log n) (log log n) Sup,
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