Power Groups and Order Relations

Yang W enze
(Dept of Math., Yunnan Educational College, Kunming 650031)

Abstract Let G be a non-monoidal group, E be a normal subsemigroup of G such that $E^2 = E$ and $1_G / E$. Then we can define a partial order in G by setting E as the positive cone, and G becomes a partially ordered group. Then we can study both the group G and power group on G with identity E by the order. The structure of G is clear if the order is maximal and the power group on G can be expanded to be of quasi-quotient type if G is lattice ordered.

Keywords ordered group, sem igroup, power group, monoidal group.

Classification AM S (1991) 06F15, 20M 10/CCL O 152

1 Introduction

Let G be an arbitrary group, all non-empty subsets of G form a monoid P(G) under the subset multiplication A subgroup of P(G) is called a power group on G, and G, the generating group of . If N is a normal subgroup of G then G/N is a power group on G, whose elements are cosets of N and multiplication can be done by their representatives, that is $aN \cdot bN =$ ab. Does every power group on G behave in this way, or is it of quotient type? The answer is yes if G is a torsion group ${}^{[6]}$ But there exists another improtant type of power groups which is not of quotient type: Let E be a non-empty subset of G satisfying $E = E^2 = E$. $E = \{e_1e_2 | e_i\}$ E, and H, a subgroup of $N_G(E) = \{g \mid G \mid g^{-1}Eg = E\}$, then $= \{hE \mid h\}$ group on G which is not of quotient type if E is not a subgroup of G. For example, replacing Gby Q^+ , the multiplicative group of positive rational numbers, and E by Z^+ , the set of all positive integers, we get a power group = $\{qZ^+ \mid q Q^+\}$, in which $q_1Z^+ \cdot q_2Z^+ = q_1q_2Z^+$, but is not of quotient type because its elements are not cosets of any subgroup of Q^+ . However, this new type of power groups does not go much further than the quotient one- it "looks like" quotient, so we call it quasi-quotient Of cause, a power group of quotient type is also of quasi - quotient type Thus comes another question: Is the type of every power group on G quasiquotient? The answer is no in general But we have such a result in [7], that if the identity 1_G of G is contained in E, the identity of power group on G, then is of quasi-quotient type That makes the group theoretical property P worthwhile to study, where P is that every nonempty subset E of G satisfying $E^2 = E$ contains 1_G . A group G is called monoidal if it has the property P. So the type of every power group on a monoidal group is certainly quasi-quotient Unfortunately, monoidality is a fairly restrictive property. It has been proved that in a quite

^{*} Received Jun 25, 1994 Supported by the National Natural Science Foundation of China

large class of group s, monoidality is equivalent to being torsion - by - cyclic - by - finite Even the group $Z \oplus Z$ is not monoidal [5]. So there are plenty of group s such that some power groups on which may not be of quasi- quotient type. For example, let $G = Z \oplus Z$ and $A_r = \{(x,y) \mid \sqrt{2}x + y > r, x,y \in Z, r \in R\}$. Then $= \{A_r \mid r \in R\}$ is a power group on G with identity $E = A_0$ not containing (0,0) and group operation $A_{r1} + A_{r2} = A_{r1+r_2}$. This power group on $G = Z \oplus Z$ is not of quasi- quotient type since if r is an irrational number other than $m = (x_r, y_r) + E$ with $(x_r, y_r) = Z \oplus Z = G$. But embedding G in $G = R \oplus R$, and setting $A_r = \{(x,y) \mid G \mid \sqrt{2}x + y > r, r \in R\}$, we get a power group G on G where G is an isomorphism from G to G, and G is an expansion of G. Can any power group be expanded to be of quasi- quotient type? This is what the paper will deal with

Let G not be monoidal, E be a non-empty subset of G such that 1_G / E, $E^2 = E$ and G = C $N_G(E)$, then G can be partially ordered by defining $P = \{1_G\}$ E as its positive cone. In that case, we can study both groups G and Γ by the order Adopting the notation in [1], by pogroup, f o - group l - group and O - group we mean partially ordered, fully ordered, latticeordered and fully orderable group respectively. Let Γ be a power group on G with identity E, then every element A of Γ amm a has a low er bound in G (see L emma 2). And if every element of Γ has a g 1 b in G, then Γ is of quasi-quotient type (see Lemma 3). So, if G can be embedded in a complete l-group G, then Γ can be expanded to be of quasi-quotient type. However, an l- group can be embedded in a complete l-group if and only if it is Archimedean, and an A rchim edean group must be A belian $^{[3]}$ Thus, the l-groups which can be embedded in a complete l-group are very limited. But the completeness turns out to be unnecessary for power group expansion since we have proved in this paper that if G is an l-group, then any power group Γ on G with identity E as the positive cone of G possesses an expansion $\overline{\Gamma}$ which is of quasi-quotient type (Theorem 2). It has also been abtained in this paper that if the identity E is m ax in al and normal, then the po-group G is dericted, and there exists a normal subgroup N of G such that G/N is an O-group (Theorem 1), which yield immediately a corollary that an abelian group is an O - group if and only if it is to rso in-free

2 Partial orders and power groups

In this paper, we study only those power groups whose identity does not contain the identity of its generating group.

Let Γ be a power group on G and E, the identity of Γ . Since 1_G / E and $E^2 = E$, an order E in G can be defined by setting its positive cone $P = \{1_G\}$ E, i.e., $a \le b$ if and only if $a^{-1}b$ E, which is called order E or order Γ . The order is left isotone, i.e., $a \le b$ implies $ca \le cb$ for any a, b, c in G. If E is normal in G, then the order E is also right isotone and G becomes a C pogroup with order C. Since C is dense in C there exists C is dense in C.

Conversely, if G is an order dense $p \circ g$ roup and E is the set of all strictly positive elements of G, then $1_G / E$ and $E^2 = E$. So, there exists a power group on G with identity E. Upon the fact, whenever talking about power group on an order dense $p \circ g$ group, we always mean this kind of power groups throughout this paper.

Let \leq_1 and \leq_2 are orders in set G, then order \leq_2 is called an extension of order \leq_1 if $a \leq_1 b$ always implies $a \leq_2 b$ for any a, b = G. Obviously, any order is its own extension, the trivial extension. An order is maximal if it has only the trivial extension

Lemma 1 There exists a maximal order in a non-monoidal group among the orders defined by power groups on it

Proof Let G be a non-monoidal group. Denote

$$S = \{X \subseteq G \mid 1_G / X, X^2 = X\}.$$

By Zorn s Lemma, there exists a maximal element E in S, which is desired

Theorem 1Let Γ be a power group on G such that the order Γ is max in al. Let $N = \{n \mid G \mid nE = En = E\}$, the representative set of the identity E of Γ . If $G = N_G(E)$, then

- (1) N coincides with the max in all subgroup of G such that $N = \emptyset$;
- (2) N is m onoidal;
- (3) G is a dericted group;
- (4) G/N is an O -g roup.

Proof (1) It is obvious that N is a subgroup of G and N $E = \emptyset$. Let K be a subgroup of G satisfying K $E = \emptyset$. Since $(KE)^2 = K^2E^2 = KE$ and $E \subseteq KE$, it follows that KE = E or 1_G KE by the maximality of E. If $1_G = ke$ with k = K and e = E, then $k^{-1} = K$ E contrarying to $K = E = \emptyset$. Therefore KE = E and $K \subseteq N$.

- (2) If N possesses a non-empty subset E_1 such that $E_1^2 = E_1$ and 1_G / E_1 , then $E^* = E$ E_1 also has the property, a contradiction
 - (3) Let g G be a fixed element Denote

$$T = g^{i}E \qquad (0 \le i < +),$$

then $T^2 = T$ and $E \subseteq T$. We claim that $g = EE^{-1}$ where $E^{-1} = \{e^{-1} \mid e = E\}$. Suppose it is false, then gE is not a subset of E and E = T, that forces $1_G = T$ by the maximality of E. Then there exists a positive integer n such that $1_G = g^nE$. Since $g^nE = g^nE \cdot E$, so $E \subseteq g^nE$. Similarly, there exists a positive integer k such that $E \subseteq g^{-k}E$ for $g^{-1} = E^{-1}$. From $E \subseteq g^nE$, we conclude that $E = E^k \subseteq (g^nE)^k = g^nk E$ and from $E \subseteq g^{-k}E$, $E \subseteq g^{-nk}E$, so $g^{nk}E = E$. But $1_G = g^{nk}E$, that is impossible

Therefore, $g = EE^{-1} = E^{-1}E$ for all g = G. A cording to Clifford, G = G is a dericted group.

(4) For any g G, n N, $n^g E = g^{-1} n g E = g^{-1} (n E) g = g^{-1} E g = E$, so $N \triangleleft G$. And the order induced in N is trivial by (1), so N is convex.

By factoring out N we can assume N=1. For any g G, either $gE\subseteq E$ or $g^{-1}E\subseteq E$ by the proof of (3), i.e., either g^{-1} L(E) or g L(E) where L(E) is the set of all lower bounds of E. Taking $L(E)^{-1}$ to be the positive cone, we makes G into an f o -group.

As a corollary, we can now easily obtain Levis Theorem [4].

Corollary (Lev1) An abelian group is an O - group if and only if it is torsion-free

Proof Let G be a torsion-free abelian group. If G is monoidal, then, by [5], G Z, an f o-group. While G is non-monoidal, let N, E be defined as in Theorem 1. Now G/N is an O-group and E is monoidal, therefore E E or E or E , which result in that E is also an E -group, because the class of E - groups is closed with respect to forming extension.

Lemma 2 Let Γ be a power group on G, then every element of Γ has a lower bound in G with respect to the order Γ .

Proof Let $A \cap \Gamma$, and A^{in} be the inverse of A in Γ , then $A^{\text{in}}A = E$. Taking an element $a \cap A^{\text{in}}A$, we get $aA \subseteq A^{\text{in}}A = E$, i.e., $A \subseteq (a)^{-1}E$. Therefore $(a)^{-1} < a$ for all $a \cap A$, thus $(A^{\text{in}})^{-1} \subseteq L(A)$.

Lemma 3 Let Γ be a power group on G, then Γ is of quasi-quotient type if each element of Γ has a g. l b in G. This condition is also necessary when G is an l-group with respect to order Γ .

Proof Let $A \cap \Gamma$, and a^* is a glb. of A, then $A \subseteq a^*E$. By Lemma 2, $(A^{\text{in}})^{-1} \subseteq L$ (A), so $a^* \ge (a)^{-1}$ for all $a \cap A^{\text{in}}$. Therefore $(a^*)^{-1} \cap L$ (A^{in}) and $(a^*)^{-1}E \supseteq A^{\text{in}}$, that implies $a^*E \subseteq A$. Now $a^*E = A$ and a^* is a representative of A.

If G is an l-group and $A = a^*E$, then $a^* L(A)$ and $a^* c L(A)$ for any c L(A). Suppose $a^* c > a^*$, then $a^* c a^*E = A$, so A L(A) \emptyset . But that is impossible because A = AE, which means that there is no minimal element in A. Hence $a^* c = a^*$ and a^* is a glb. of A.

3 Expansion of power groups

By Lemma 3, if G is a complete l-group, then every power group on G is of quasi-quotient type. Therefore, if a po-group can be embedded in a complete l-group, then the power group on it can be expanded to be of quasi-quotient type. But, actually, the completeness is not necessary by the following

Theorem 2L et Γ be a pow er group on G and G be an l-group w ith respect to order Γ , then Γ expands to a pow er group of quasi-quotient type

Proof Let G be an order-dense l-group. A non-empty subset X of G such that U(X) \emptyset associates with a subset X = LU(X), where U(X) and L(X) are the sets of upper and lower bounds in G of X respectively. It is easy to check the following properties:

- $(1) \quad X \subseteq X^{\#} ,$
- $(2) \qquad (X^{\#})^{\#} = X^{\#},$
- (3) $X \subseteq Y \text{ implies } X^{\#} \subseteq Y^{\#}$.

Let

$$M = \{X \stackrel{\#}{\mid} \emptyset \quad X \subseteq G, \ U(X) \quad \emptyset\}.$$

and define a composition * inM as

$$X^{\#} * Y^{\#} = (X^{\#} Y^{\#})^{\#},$$

where $X^{\#}Y^{\#}$ is the set of all xy with $x = X^{\#}$, $y = Y^{\#}$. Applying (1)- (3), one can check that M is a complete l-monoid with identity $1_{G}^{\#} = LU(1_{G})$ and set inclusion as its partial order

Let \overline{G} denote the subgroup of M consisted of all its units and define

$$\Phi : g \to g^{\#} = LU(g)$$

for g G, then Φ is an o-monomorphism from G to M, and \overline{G} is the Dedek index tension of $G^{[1,3]}$.

Let E, \overline{E} be the sets of all strictly positive elements of G, \overline{G} respectively. Since G is orderdense, $E^2 = E$ and $\Phi(E) * \Phi(E) = \Phi(E)$. Claim \overline{G} is also order-dense, i.e., $\overline{E} * \overline{E} = \overline{E}$. In fact, if $X^\# \supset 1_G^\#$, there exists X where $X^\#$ such that X and X and X and X and X be $X^\# \cap \Phi(E)$, so X is X.

Let Γ be a power group on G with identity E, for each A Γ assign an

$$\overline{A} = \Phi(A) * \overline{E} = \{a^\# * X^\# \mid a = A, X^\# = \overline{E}\}.$$

Since $\Phi(E) \subseteq \overline{E}$ and $\Phi(A) = \Phi(A|E) = \Phi(A) * \Phi(E)$, we get $\Phi(A) = \Phi(G) = \overline{A}$. Thus, $A \to \overline{A}$ is an isomorphism from Γ to $\overline{\Gamma} = \{\overline{A} \mid A = \Gamma\}$, and $\overline{\Gamma}$ is an expansion of Γ .

We need to prove that $\overline{\Gamma}$ is of quasiquotien type. It is sufficient to show that every element of $\overline{\Gamma}$ has a g. 1 b. in \overline{G} by Lemma 3. Because $\overline{A} = \Phi(A) * \overline{E}$, what we really need to show is that $\Phi(A)$ has a g. 1 b. in \overline{G} for any \overline{A} . $\overline{\Gamma}$.

By Lemma 1, L(A) Ø so $(L(A))^{\#}$ M. If a A, then a UL(A), that implies $a^{\#}$ $= L(a) \supseteq LUL(A) = (L(A))^{\#}$, therefore $(L(A))^{\#}$ is a lower bound of $\Phi(A)$ in M. On the other hand, if $X^{\#} \subseteq a^{\#}$ holds for all a A and some $X^{\#}$ M, so does $x \subseteq a$ for all x $X^{\#}$, a A, hence $X^{\#} \subseteq L(A)$. Now we conclude that $X^{\#} = (X^{\#})^{\#} \subseteq (L(A))^{\#}$, so $L(A))^{\#}$ is a g. 1 b. of $\Phi(A)$ in M.

This last step is to show $(L(A))^{\#}$ \overline{G} . By Lemma 2, $(A^{\text{in}})^{-1} \subseteq L(A)$, so $(L(A))^{\#}$ • $(L(A^{\text{in}}))^{\#} \supseteq L(A)$ • $L(A^{\text{in}}) \supseteq (A^{\text{in}})^{-1}$ • $A^{-1} = (A \bullet A^{\text{in}})^{-1} = E^{-1}$, therefore $(L(A))^{\#} * (L(A^{\text{in}}))^{\#} = ((L(A))^{\#} * (L(A^{\text{in}}))^{\#})^{\#} \supseteq (E^{-1})^{\#} = 1_{G}^{\#}$. On the other hand, $L(A)L(A^{\text{in}}) \subseteq L(AA^{\text{in}}) = L(E) = 1_{G}^{\#}$ implies that $L(A)^{\#} * (L(A^{\text{in}})^{\#} = (L(A) \bullet L(A^{\text{in}}))^{\#} \subseteq (1_{G}^{\#})^{\#} = 1_{G}^{\#}$. Thus, $(L(A^{\text{in}}))^{\#}$ is the inverse of $(L(A))^{\#}$ and $(L(A))^{\#} = (L(A) \bullet L(A^{\text{in}}))^{\#} \subseteq (1_{G}^{\#})^{\#} = 1_{G}^{\#}$. Thus, $(L(A^{\text{in}}))^{\#}$ is the inverse of $(L(A))^{\#}$ and $(L(A))^{\#} = (L(A) \bullet L(A^{\text{in}}))^{\#} \subseteq (1_{G}^{\#})^{\#} = 1_{G}^{\#}$.

Now, every element \overline{A} of $\overline{\Gamma}$ can be expressed in the form $\overline{A} = (L(A))^{\#} * \overline{E}$. Expecially, if A = aE, then $(L(A))^{\#} = a^{\#}$ and $\overline{A} = a^{\#} * \overline{E}$.

Acknowledgements The author is grateful to Prof D. J. S. Robinson for his comments

References

- [1] G Birkhoff, Lattice theory, Ame Math. Soc., Providence, Rhode Island, 1973, 287-319.
- [2] A. H. Clifford, Partially ordered abelian groups, Annals Math., 41 (1940), 456-473
- [3] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford London New York Paris, 1963, 9
 100
- [4] F. W. Levi, A rithm etische gesetze im gebiete diskreter gruppen, Rend Palemon, 35(1913), 225-236
- [5] D. J. S. Robinson and W. Yang, On subsem ig roups and submonoids of groups, Ricerche di Matematica, 43 (1994), 173-179.
- [6] W. Yang, Groups where every elements is no enp ty subset of a group, J. Southwest Teach Col, 2(1985), 106-108
- [7] W. Yang, Groups in which every element is a non-empty subset of a group, J. Yunnan Educ Co1, 3 (1988), 1-4

幂群与序关系

杨 文 泽 (云南教育学院数学系, 昆明650031)

摘 要

设 G 为非 mono idal 群, E 是它的正规子集, 满足 $E^2 = E$ 并且 1_G E. 利用 E 作为正锥, 可以在 G 上定义一个偏序,并且 G 成为一个偏序群 这样就可以利用这个序关系同时研究群 G 以及 G 上的以 E 为单位元的幂群 当 E 是极大子半群时, 得到 G 的一个结构定理; 在 G 是格序群的条件下, G 上的幂群 Γ 可以膨胀为一个拟商群