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Fundamental Groups of Triangle Geometries *
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Abstract: In this paper, depending on the theory of buildings, we obtain a kind of
miethod completely different froin past oues, to compute topological fundamental groups
of sowe triangle peowetries. This method will enable us to casily compute topological
fundamental groups of infinitely many finite triangle geometries.
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Ronan!® initiated the study of triangle geometries which all arise as quotients of certain
affine buildings. In [4] covering and fundamental group of a chamber system and its
geometric realization were defined. In [6] Ronan proved that if a chamber system has
rank 3 then its fundamental group is isomorphic to topological fundamental group of its
geometric realization.

Define of the fundamental group of a topological space is very intuition, but its com-
putation is often very complex. After some preliminary definitions in Section 1, we prove
in Section 2 main Theorem 2.3, which is concerned in fundamental group of a chamber
system. By using Theorem 2.3 we may easily compute topological fundamental groups of
infinitely many finite triangle geometries. In Section 3 topological fundamental groups of
many triangle geometries are computed.

1.Chamber systems and their geometric realizations

In [7] Tits defines a chamber system over the set I to be a set C, the elements of which
are called chambers, together with a partition of C for each ¢ € I. Two chambers z and
y are said to be i-adjacent if they belong to the same part of partition of C for some 1.

A gallery is a finite sequence of chambers (cq, -+, c) such that ¢;_; is adjacent to ¢;
for each 1 < j < k; and we always assume c;_; # ¢;. The gallery is said to have type
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4119 - - - i(a word in the free monoid on I) if ¢;_; is ij-adjacent to c;. If each i; belongs to
some given subset J of I, then we call it a J-gallery.

We call C connected (J-connected) if any two chambers can be joined by a gallery (or
J-gallery). The J-connected components are called residues of type J or simply J-residues.

The rank of a chamber system over [ is the cardinality of I.

Given residues R and S of type J and K respectively we say S is afaceof Rif R C §
and J C K. If we let cotype J mean type I — J, then given any residue R of cotype J the
following two observations are immediate:

(1) for each K C J, R has a unique face of cotype K;

(2) if S1, S, are faces of R of cotype Ky and K, then 51 and S; have the same face
of cotype Ky N K.

The observations above suggest that one can regard a chamber system C of finite rank
n as a CW-complex AC of dimension n — 1 which is called geometric realization of C in
the following way.

Associate to each residue of cotype {i} a vertex; then associate to each residue R of
cotype {7,j} an edge(1-simplex) identifying its boundary with the vertices corresponding
to the faces of R. Continue inductively, associating to each residue R of cotype {i1, -+ ,%}
a simplex o of dimension r — 1, and identifying the faces of ¢ with the simplexes already
associated to the faces of R. One can recover the chamber system from its geometric
realization by taking the chambers to be simplexes of maximal dimension (n — 1) and
i-adjacency to be sharing a face cotype {i}.

2. Covering and the fundamental group

By definition [4] an preserving adjacency map ¢:C — D of chamber systems is called
a 2-covering(or simply a covering) if it maps each rank 2 residue of €' isomorphically onto
a rank 2 residue of D of the same type. We say also that C is a cover of D. If C' has
rank 3, then the covering ¢:C — D induces a topological covering Ap : AC — AD of
geometric realizations (see [6,2.3]).

In any chamber system an elementary homotopy of galleries is an alteration from a
gallery of the form ywé to yw'é where w and w’ are galleries (with the same extremities)
in a rank 2 residue.We say that two galleries are homotopic if one can be transformed to
the other by a sequence of elementary homotopies.

If ¢ is a chamber in a connected chamber system C, a closed gallery based at ¢ will
mean a gallery starting and ending at ¢. The fundamental group =(C,c) is the set of
homotopic classes [y] of closed galleries 5 based at ¢, together with the binary operation
[v] - 7'} = [v7'] where y9y'means v followed by 7'; using 77! to denote the reversal of 7,
one has {y]7! = [y7!].

Lermuma 2.1 Let ¢ : C — D be a covering. Given a gallery v in D starting at some
chamber d and given ¢ € ¢~ !(d), there is a unique gallery ¥ in C starting at ¢ and with

e(7) =1.

Proof By induction on the length of the gallery v, we may assume it is true for galleries
of shorter length than 4. Since ¢ : C — D be a covering, ¢ maps each rank 1 residue of C
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isomorphically onto a rank 1 residue of D of the same type. Let v = (dy = d,d4,---,d,)
has type i1z - - -4y, then there exists a unique chamber ¢; € C such that ¢(c;) = d; and
c1 is 7;-adjacent to ¢, and therefore the result follows by induction.

Lemma 2.2 Let ¢ : C — D be a covering and two galleries v1,7, in D starting at d are
homotopic, then their liftings 41,7, in C starting at ¢ € ¢~ 1(d) must have the same end
chamber.

Proof It suffices to show the case that 4; and 7, are elementary homotopic. Let y; = ywé
and y; = yw'é, where w and ' are galleries in a {i,j}-residue R of D with the same
extremities. By Lemma 2.1 the gallery v;(¢ = 1,2) has a unique lifting 4; in C starting
at c. Let 71 = 3@d where ¢(7) = 7,9(@) = w and @(§) = 6. Let S be a {i,j}-residue
containing end chamber of 4 in C'. Because ¢ : C — D be a covering, there exists a gallery
w’ in S such that w’ and @ have the same extremities and ¢(w') = w'. By the uniqueness
of lifting(Lemma 2.1) one has v, = Jw’é. Hence 71 and 7, have the same end chamber.

Obviously if 41, ¥, are homotopic galleries in C, then ¢(71), ¢(72) are homotopic
galleries in D.

Let G be a group, Pi, Ps,---, P, be subgroups of G. Take the elements of G as
chambers, and set g and h are i-adjacent if and only if ¢P; = hP;.

We write this chamber system as

(G;l;PlaPZa"'aPn)-

Theorem 2.3 Let the building C = (G;1; P1, P2,---,P,) be a universal cover of a
chamber system D = (H;1;Q1,Q2,---,Q,). If a homomorphism ¢ : G — H of groups
induces a covering ¢ : C — D of chamber systems, then

n(D,1) = kerep.

Proof Let vy be any closed gallery in D based at 1. By Lemma 2.1 the gallery v has a
unique lifting 7 in C starting at 1, the end chamber of ¥ is defined to be f(7).
Define f : 7(D,1) — kerp by
(D) = £(3)-

By Lemma 2.2, f is well-defined. Let y; and 7, be two closed galleries in D based at 1,
¥1 and ¥, be their liftings in C starting at 1 respectively. Let

Y2 = Ly, 5 f(32), 35 = (fF(), FG)was -+, F(n) F(52)).

Then ¢(35) = ¢(52), and thus 4175 is a lifting of y;72. We have

fIml]-[]) = fviv2]) = F(31) F(F2) = F(n]) fF([v2))-

Hence f is a homomorphism.
For any y € keryp, take any gallery 4 from 1 to y in C, then ¢(7) is a closed gallery in
D based 1 and f([¢(7)]) = y. thus f is a epimorphism.
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If f([7]) = 1, then 7 is a closed gallery in C based at 1. Because C is a building, C is
simply-connected(i.e., #(C,1) = 1). Let ¥, = (1), then [¥] = [0} and so

Y] = ()] = lp(Go)] = [(1)].

Therefore f is a monomorphism.
Especially, if n = 3 we have
7(AD) = kerep.

3. Examples of fundamental groups of triangle geometries

A triangle geometry will mean a rank 3 chamber system (or its geometric realization)
for which all the rank 2 residues are projective planes (generalized 3-gons).

In a triangle geometry, the vertices are the rank 2 residues, and the edges joining these
vertices are the rank 1 residues. Each chamber is a 2-simplex containing three vertices
and three edges. The most extreme case is a tight triangle geometry, in which there are
only three vertices.

Example 3.1 Let G =< a,b,cla® = b* = c3 = 1,(ab?)? = b%a,(bc?)? = c?b,(ca®)? =
aZC>,H=<r,ylr"‘:y3:1(y)=y -

By [5] Theorem (2.5), C = (G;1;(a), (b ) (c)) is a building. H is a Frobenius group
of order 21. If exists z € H satlbfyug (yz*)? = 22y and (z2%)? = 2%z, but z ¢ («) and
z ¢ (y). Then D = (H;1;(z),(y),(z)) is a tight triangle geometry. Define homomorphism
¢ : G — H which is determined by ¢(a) = z,¢(b) = y and ¢(c) = z. Then ¢ induces a
covering ¢ : C' — D of chamber systems.

Let 2y = s, then s” = 1. By Theorem 2.3,

(1) set yz? = s, then z = yz?y ie., z’yz2’y = 1, 7(AD) is a normal subgroup of G
generated by c?ba’b;

(2) set yz? = s?, then z = z%y% ie,, zyz = 1, 7(AD) is a normal subgroup of G
generated by cba;

(3) set yz? = 5%, then z = yzy? ie., 2%yzy® = 1, 7(AD) is a normal subgroup of G
generated by c?bab?;

(4) set yz? = s* then z = y*z? ie, zzy = 1, 7(AD) is a normal subgroup of G
generated by cab;

(5) set yz? = s°, then z = y’zy ie., z2y’zy = 1, 7(AD) is a normal subgroup of G
generated by cZb%ab;

(6) set yz? = s°, then z = z, a contradiction.

In cases (1),(3) and (5), their triangle geometries are each other homeomorphic and
so their topological fundamental groups are each other isomorphic.

By [2] Theorem 4, G is isomorphic to the subgroup U =< «, 8,5 > of GL(3, R}, where
R=GF(2)[d,u"']and u = 1 +d + d?, and

1 00 010 u u  ud
a=10011|,8=]111],y=u?|14+4d d+d® d
011 00 1 d 1+d 1
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The isomorphism g from G to U is determined by

g(a) = a,g(b) = B%,g(c) = 7>

Therefore we have
In cases (1),(3),(5), *(AD) is isomorphic to the normal subgroup of U generated by

ud 0 u
w ) uw 1+d® d+d°
0 1 1+d

In cases (2), (A D) is isomorphic to the normal subgroup of U generated by

U ud ud
u?! d? 1+ d? d?
d d+d* 1+4+d°

In cases (4), (A D) is isomorphic to the normal subgroup of U generated by

ud 0  u(l+4d)
ul 14 d° 1 0
d+d*> 1+d U

Furthermore we can reduce modulo ideals of R and produce infinitely many finite
triangle geometries. In fact any ideal L of R such that R/L is a nonzero finite ring
induces-via reducing the coefficients of «, 3,y modulo L - a homomorphism ¢ from U
onto a subgroup of SL(3, R/L), then Dy, = (o (U); 1; pr(< a >),pL(< B >),or(< v >))
is a triangle geometry and 7(ADy) is isomorphic to kerpy.

Example 3.2 G = (a,b,cla® = 8% = ¢ = 1,(ab®)? = 8a, (bc®)? = cBb,(ca®)® = aB¢),
H = <:l:,yi:cg = y{) = la(zys)z = y8z>'

By 8], C = (G;1;(a),(b),(c)) is also a building. H is a Frobenius group of order 9-73.
Similar to Example 3.1, if exists z € H satisfying (yz®)? = 2%y and (22%)? = 2%z, but
z ¢ (z) and z ¢ (y), then D = (H;1;(z),(y),(z)) is a tight triangle geometry. Define
homomorphism ¢ : G — H which is determined by ¢(a) = z,¢(b) = y and ¢(c) = =.
Then ¢ induces a covering ¢ : C — D of chamber systems.

Let zy® = s, then s™ = 1. Set y2® = s' where i € {1,2,--,71}, we can express z by
z and y, and thus obtain the fundamental group 7(AD) by Theorem 2.3. For examples:

(1) set yz® = s, then z = yzBy ie., z8y2%y = 1, 7(AD) is a normal subgroup of G
generated by c®ba®b;

(2) set yz® = 52, then z = 2%® ie, zy'2z = 1, 7(AD) is a normal subgroup of G
generated by cba;

(3) set yz® = s° then z = yz7y? ie., 28y27y? = 1, 7(AD) is a normal subgroup of G
generated by ¢%ba”b?;

(4) set yz® = s? then z = y®2%y% ie., zy®2y = 1, 7(AD) is a normal subgroup of G
generated by cb®ab.
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Let k = GF(8) = GF(2)[e] where ¢® + e+ 1 = 0, and let R be the ring k[d,u"1] where
dis a indeterminate and u = 1+ d + d®. Define A € aut R which is determined by A(e) = €?
and A(d) = d. Then A’ = idg. Define a, 8,7y € SL(3,R) « (A) and 6 € GL(3, R) by

1 0 0 0 0 u
a=A[ 00 1 |,0=|¢e¢+d 1+ed e? ,B=a" y=p°
01 e e? e2+e+d 1+ed

Then a® = 3° = 4% = 1,(aB®)? = B3, (B7%)? = v%3,(7a®)? = a®y and 6° is a scalar
matrix. Let U =< a,f3,7y >, then U < SL(3, R) < (). By [8] G is isomorphic to the U.
Any ideal L of R such that R/L is a nonzero finite ring induces-via reducing the coefficients
of a,8,vy modulo L - a homomorphism ¢, from U onto a subgroup of SL(3,R/L) x (),

then Dp = (pr(U); Lien((a)), er((B)),pr((7))) is a triangle geometry and T(ADy) is
isomorphic to keryy .

‘Example 3. 3 G = (a,b,cla® = ¥ = ¢ = 1,(ab)? = ba,(bc)? = cb,(ca)® = ac). H =
(2, 2[e% = y® = 2% = 1, (29)? = ya, (y2)? = 23, (22)? = 22, (z3°2)? = 1).

By [6] Theorem (2.5), C' = (G;1;(a),(b),(c))is a building. H is isomorphic to L3(2)(see
(1] Lemma 2) and D = (H;1;(z),(y),(z)) is a triangle geometry. Define homomorphism
¢ : G — H which is detelnnned by ¢(a) = z,¢(b) = y and ¢(c) = z. Then ¢ induces a
covering ¢ : C — D of chamber systems.

By [1] Theorem 8, G is.isomorphic to the subgroup U =< a, 3,y > of GL(3, R), where

1 0 0 0 1 0
a = o o0 1 |,8=|-1 -1 -4},
d—1 -1 -1 0 0 1
@ @ e
B -1 -d 27Y2-4d)
7= 0 1 0
“Hd+1) 0 0

and d is a unit in Z, satifying d*> + d + 2 = 0, R is the subrings of Q, generated by 27!, d.
Therefore we have #(A D) is isomorphic to the normal subgroup of U generated by

-1 ~d—2 27Y(-3d+2)
271 2(1-d) 3-d 2
1 1 271(3d + 2)

If pis an odd prime such that —7 is not a square in G F(p)-this happens exactly for
p = 3,5,6 (mod 7)-then there is a ring homomorphism from R onto GF(p?) such that
the automorphism becomes the involutory automorphisin of GF(p?). Hence it induces a
group homorphism ¢,, from U into SU3(p). If p is an odd prime such that —7 is a square
then we have a ring homomorphism from R onto GF(p) inducing a group homomorphism
¢p from U into SLs(p). Dy = (¢p(U); 1;0,({@)), 9((8)), ¢, ((7))) is a triangle geometry
and 7(AD,,) is isomorphic to kery,,, where ¢,(U) is isomorphic to SUz(p) or SL3(p)(see
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