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Abstract: Results of weakly commutative poe-semigroups are extended to pseudo-
commutative po-semigroups. We prove that pseudo-commutative semigroups can be
decomposed into semilattices of Archimedean po-semigroups and such decomposition is
not unique.
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1. Introduction

A semigroup S endowed with a partial ordering “<” is called a po-semigroup if the
multiplication of S is compatible with “<”, that is, a < b implies that za < zb and
az < bz for all z € S. Po-semigroups with a greatest element e are called poe-semigroups.
Poe-semigroups were studied by Kehayopulu in [3],[5] and [6]. Recently, some results of
Kehayopulu have been extented to weakly commutative po-semigroups by Jing and Chen
in [2]. It was proved in [3] that all weakly commutative poe-semigroups are semilattices
of Archimedean semigroups. In this paper, we amplify and strength the above result on
pseudo-commutative po-semigroups and prove that all such po-semigroups are semilattices
of Archimedean po-semigroups. We also demonstrate that the semilattice decomposition
of a po-semigroup into Archimedean po-semigroups is not unique. This answers a problem
posed by Kehayopulu in [3]. For terminology and definitions not given in this paper, the
reader is referred to M.Petrich[®) and N.Kehayopulul®].

2. Notations and Definitions

In this section, we give some basic definitions and notations which will be used in this
paper.
*Received date: 1996-11-19

Biography: GAO Zhen-lin (1950- ), male, born in Anhui province. Currently professor at Yangpu
College of Education.

— 633 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Definition 2.1 A subsemigroup T of a po-semigroup S is called Archimedean if for all
a,b € T there exists n € N = {1,2,-- -} such that a™ < zby for some z,y € T.
Examples of Archimedean po-semigroups can be found in [4].

Definition 2.2 A congruence o on a po-semigroup S is called a semilattice congruence
on S if and only if (a?,a) € o and (ab,ba) € o for all a,b € S.

Definition 2.3 A subsemigroup F of a po-semigroup S is called an order filter of 5 if
the following conditions are statisfied:

(i) a,b€ Sandabe F = ac Fandbe F;

(ii) a€ Fandc€ S,c>a=ce F.

Notation 2.4 Denote the smallest filter containing an element z of a po-semigroup S by
N(z). Call N(z) the principal order filter generated by z. A principal order filter N(z)
is called strictly simple if N(z) = {t € S|z < t}.

In the case of semilattices, all principal order filters are strictly simple. However, in
po-semigroups, there are principal order filters which are not necessary strictly simple
[56]. It was shown by Kehayopulu in {5] that some properties of poe-semigroups can be
discribed via the structure of its principal order filters.

Notation 2.5 Let S be a po-semigroup. Let N' = {(z,y)|N(z) = N(y)}. Then it is
well known that N is the semilattice congruences on $1%). This result is rather useful in

studying semilattice decompositions of semigroups.

Notation 2.6 Let SC(S) be the collection of all semilattice congruences on a po-
semigroup S. For any o € SC(S), denote the congruence class of ¢ € S by (z)». Define
“<L” by (2)s < (¥)s < (2)s = (2y), on the quotient semigroup S/o = {(z),|z € S}.

It is well known that (z), is a subsemigroup of S and [(S/o,-, <)] is again a po-
semigroup.

3. Weakly commutativity and pseudo-commutativity

Definition 3.10! A poe-semigroup S is called weakly commutative if for all z,y € S,
there exists an integer n € N = {1,2,---} such that (zy)" < yez, where e is the greatest
element with respect to the partial ordering “<”.

The concept of weakly commutative poe-semigroups was extended to weakly commu-
tative po-semigroups by Jing and Chen in [2]. They give the following definition.

Definition 3.202] A po-semigroup S is called meta commutative if for every z,y € S
there exists a natural number n such that (zy)" € (ySz], equivalently, (zy)"* < yaz for
some a € S.

Note Jing and Chen!? still called the above po-semigroups weakly commutative po-
semigroups. In order to make it distinct from the weakly commutativity defined by
Kehayopulul® for poe-semigroup, we call the above po-semigroups meta comutative. Clearly,
for poe-semigroups, meta commutativity means weakly commutativity as e is the greatest
element with respect to the partial ordering “<”.
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Inspired by the above definitions, we make the following definition for po-semigroups.

Definition 3.3 A po-semigroup S is called pseudo-commutative if for any z,y € S, there
existsn € N = {1,2,---} such that (zy)"* < yz™.

Clearly, a pseudo-commutative po-semigroup, is a special case of a meta commutative
po-semigroup when n > 2. '

Definition 3.4 A po-semigroup S is called weakly pseudo-commutative if for any z,y € S,
there exists some n > 1 such that (zy)" < yz* for a given integer A > 1, where X is not
necessarily equal ton. If A\ = 1 and ¢ # y, then we call this sort of weakly pesudo-
commutative po-semigroups 2-cyclic-commutativel!l],

Clearly, 2-cyclic-commutativety does not imply 3-cyclic-commutativity. In general, k-
cyclic-commutativity does not imply (k + 1)-cyclic-commutativity and vice versa. Also,
k-cyclic-commutative po-semigroup is a special case of meta commutative po-semigroup
when k& > 3 (We leave the details of the checking to the reader).

The following example illustrates that the class of pseudo-commutative po-semigroups
is a proper subclass of the class of meta commutative po-semigroups.

Example 3.5 Let S be a po-semigroup with Hasse diagram and Cayley table as follows:

Ja b ¢ d d
a a a a a a
bla b b a

C a ¢ ¢ a b
dila a a d ,LC

Then we can check that S is meta commutative, however, S is not pesudo-commutative,
for instance, (cb)™ £ bc™ for all integer n > 1.

Example 3.6 The following po-semigroup is a pseudo-commutative po-semigroup but
is not 2-cyclic-commutative, for instance (de)® < ed?, but (de)" ¢ ed for alln € N =

{1,2, .. }

a b ¢ d e b €
allb a a a a l
blla & b b b
clla b b b b *
dila b b b b
ella b ¢ d e c d

We now consider the commutativity of poe-semigroups. We have the following results.
Proposition 3.7 Any pseudo-commutative poe-semigroup is weakly commutative.

Proof Let .S be a pseudo-commutative poe-semigroup. Since e is the greatest element
of S, we have £ < e and y < e for all 2,y € S. This implies that zy < ey and zy <
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ze. Consequently, there exists k > 1 such that (zy)* < (ey)* < yeF, by the pseudo-
commutativity of S. Similarly, (zy)* < (ze)? < ez’. Thus, (zy)*t* < yeFez? = y(eFe)z <
yez, since e is the greatest element of S. This shows that S is weakly commutative.

Remark 3.8 From the above proof, it can be easily seen that S is meta commutative
as well. However, the converse is not true unless e is also the multiplicative idenitity. As
under such circumstance, it is not difficult to show that S is weakly commutative if and
only if § is 2-cyclic-commutative. Thus, all the conditions of commutatives are equivalent
if the greatest element e of the poe-semigroup S is the multiplicative identity of §. Since
the proof is rather routine, we omit the proof.

Proposition 3.9 Let § be a poe-semigroup. If every principal order filter of S is strictly
simple, then § is weakly-commutative, meta commutative, pseudo-commutative, weakly
pseudo-commutative and 2-cyclic-commutative.

Proof Let z,y € S. Obviously zy € N(zy), the principal order filter generated by zy.
Then z € N(zy) and y € N(zy), by the definition of fiiter. Since N{zy) is a filter and e is
the greatest element of S,e € N(zy) as well. Consequently yez € N(zy). Since N(zy) is
strictly simple, zy < yez. Also, since yz € N(zy), so zy < yz by the strictly simplicity of
N(zy). Thus for any k > 2, we have (zy)* < (yz)* = (yz)(y2)* *(yz) = y(z(yz)* 2y)e.
Let s = 2(yz)* 2y € 5. Then (2y)* < ysz < yez. This shows that $ is meta commutative
and weakly commutative. Furthermore, since every principal ordered filter is strictly
simple, we have yez € N((zy)¥). This leads to y € N{((zy)*) and 2* € N((zy)*) for all
A > 1, by the definition of filter. Hence yz* € N((zy)*). Consequently, (zy)* < yz* as
N((zy)¥) is strictly simple. This proves that § is pseudo-commutative, weakly pseudo-
commutative and in particular, 2-cyclic commutative.

Remark 3.10 (i) The converse of Proposition 3.9 does not hold. There are pseudo-
commutative po-semigroups in which their principal ordered filters need not be strictly
simple. Such examples can be found in [6].

(ii) Statments of Proposition 3.9 still hold for general po-semigroups, except the case
of weakly commutativity. The following is a non-trivial po-semigroup in which all its
principal order filters are strictly simple, yet it is even not a semilattice.

Example 3.11 Let S = {a,b,¢c,d} be the set with the following Cayley table and Hasse
diagram:

-Ha b ¢ d i
afle d ¢ d
bib d b d o b
ci|le d ¢ d ‘d
di|d d d d

We leave the reader to verifty that S is a po-semigroup. It is now easy to see in this
example that all principal filters of S are strictly simple. In this example, we observe that

N{a) = {a,c} and {t € S|t > a} = {a}. Thus, N(a) # {t € S|t > a}. But § is clearly
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3-cyclic-commutative.
We now give a condition for k-cyclic-commutativity to be (k+ 1)-cyclic-commutatjvity.

Proposition 3.12 Let S be a k-cyclic commutative po-semigroup. If S is weak pseudo-
commutative then S is (k + 1)-cyclic-commutative.

Proof Since S is k-cyclic commutative, we have (a1a2~--ak)’\ < ap---aza; for some

integer A > 1, where ay,az,- - -, a; are distinict elements of S. Consider ((ajaz - - - ax)ag+1)-
By the weakly pseudo-commutativity of §, for the given integer A > 1, there exists an
integer n > 1 such that ((ajas - - ax)ar )™ < apg1(as -+ ax). Then, (a1az - - - apagyr)™ <
ap41(@rag_q - - aza;) by the k-cyclic commutativity. This shows that S is (k + 1)-cyclic- .
commutative.

4. Filters and Archimedean semigroups

In this section, we study the semilattice decomposition of po-semigroups. We start
with a characterization for Archimedean po-semigroups.

Lemma 4.1 Let o be a semilattice congruence on a po-semigroup S. Then the o-
class (a), of a € § is an Archimedean semigroup if and oniy if y € (a), = there exists
ne€ N ={1,2,---} such that y" < uav, for some u,v € (a),.

Proof We only prove the sufficiency part as the necessity part is obvious. Let a,% € (z),.
Then (a), = (b)s = (2),. This implies that a € (z), = (b),. By the given condition,
we immediately have a™ < ubv for some n € N = {1,2,---} and u,v € (z),. Thus, the
semigroup (z), is Archimedean.

The following theorem discribes the principal ordered filters of pseudo-commutative
po-semigroups.

Theorem 4.2 Let S be a pseudo-commutative a po-semigroup. Define T(z) = {a €
S|z* < wav,3k € N = {1,2,---},3u,v € N(z)}. Then T(z) = N(z).

Proof .Clearly, T(z) = {t € S|z* < utv,3k € N = {1,2,--},3u,v € N(2)} is a subset
of §. To prove that T'(z) = N(z), we only need to prove that T is also a principal filter
containing z. Clearly, z € T and so T # 0.

(i) T(z) is a subsemigroup of S. In fact, let a,b € T(z), then, by the definition
of T(z), we have 2" < wjavy, 2™ < usbvy for some myn € N = {1,2,---} and some
u1,v1,u2,v2 € N(z). Since § is pseudo-commutative, we have (ujav,)¥ = ((u1a)v;)* <
vi(wa), 3k € N = {1,2,---}; (uabva)’ = (ua(bva))t < (bvp)ub, 3¢ € N = {1,2,---}.

Hence,
™ < (ulavl)k < vl(ula)k = vl(ula)k“lula = vyuja, where u] = (ula)k’_lul. (1)

Similarly,

™ < (uzbvz)‘ < (bvz)ug = b(’Ug’U,[z') = bvf2 where U.I'z = Uzué- (2)
The inequality (1) implies that v;uja € N(2™) C N(z). Hence, vyu} is in N(z). Similarly,
we have bv, € N(z) and so vy, € N(z). Now, from (1) and (2), we have z"*+™ <
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(viu) ) ab)(vy) with nk + mf € N = {1,2,---},v1u] € N(z) and v5, € N(z). This implies
that ab e T.

(i) Leta € T and a < b for some b € S. Then, 2™ < uav for some n € N = {1,2,---},
and some u,v € N(z). As a < byuav < ubv and thereby 2" < ubv. This shows that
be T(z).

(iii) Let ab € T(z). Then z* < wu(ab)v for some k € N = {1,2,---} and some
u,v ¢ N(z). As utv € N(2*) C N(z) for all t € T(z) and N(z) is a principal filter
of &, we have t € N(z) for all t € T(z). Thus T(z) C N(z) and hence ab € N(z).
Consequently a € N(z) and b € N(z). This implies that ua € N{z) and bv € N(z). By
2% < u(ab)v = (u)a(bv) = (ua)b(v), we have a € T(z) and b € T(z).

Thus, by (i), (ii) and (iii), the defined subset T'(z) of S is indeed a principal filter of S
containing z € S. It is easy to see that N(z) C T(z). Thus N(z) = T(=).

Note (i) The converse of Theorem 4.2 does not hold. This part is different from the
corresponding results in [2] and [3].

(ii) It is noticed that if S is a meta commutative po-semigroup, then by using the
similar arguments, we can easily prove that N(z) = {y € S|z < ysy for some k > 1
and s € S}. If the po-semigroup S has a greatest element e, then we can also show that
N(z) is of the form {y € S|z* < yey,In € N = {1,2,---}}. Hence, we have the following
results:

Corollary 4.3 (1')[2] A po-semigroup S is meta commutative if and only if N(z) = {y €
Sle* < ysy,Ine N = {1,2,---},s € §}.

(1'1')[3] A poe-semigroup S is weakly commutative if and only if N(z) = {y € S|z* <
yey,dn € N ={1,2,---}}, forallz € S.

The following lemma is crucial in proving the main theorem:

Lemma 4.4°% Let N be a semilattice congruence on a po-semigroup S. Then a,b €
S,a <b= {a,ab) € N.

Theorem 4.5 (Main theorem) All pseudo-commutative po-semigroups can be decom-
posed into semtlattices of Archimedean po-semigroups.

Proof Let S be a po-semigroup and let N' = {(z,y)|N(z) = N(y), for z,y € S}. As
N € SC(5),(z)n is a semigroup for every z € S. We now prove that each (z)y is an
Archimedean po-semigroup. For this purpose, let b € (z)x. Then (2)y = (b)y, that
is N(z) = N(b) and so b € N(z). By Theorem 4.2, N(z) = T(z), so ' < ubu’ for
some integer m > 1 and some u,u’ € N(z). As ¢ € N(z) = N(b),2" € N(b) for all
ke N = {1,2,---}, in particular, we have ™3 ¢ N(b). By applying Theorem 4.2
again, N(b) = T'(b) and hence " < va™*3y for some n € N = {1,2,---} and some
v,v" € N(b) = N(z). Then, by the properties of semilattice congruence and Lemma
4.4, we can deduce that (z)y = (b)y = (b")v = (b"vz™ ')y = (bvzv')y = (Vbvz)y
and (z)y = (2™)v = (2™ubv)y = (zubu')y. Hence, v'bvz € (z)y and (zubu') €
(z)a. Since S is pseudo-commutative, we have (bvz™*+3v')* < o/(bvz™+3)* for some
ke N ={1,2,---}. As b" < ve™30, we have b"*+! < bvz™3¢/. This implies that
bR < (bua™+3y/)r < v'(bve™+3)F with bu € N(b) = N(z). Again, from 2™ < ubu/,
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we deduce that 2™*3 < z3ubu/. Consequently, b("* 1k < o/(bve™3)F < o (bvzlubu/)* =
v'[(bv)zlubu' < v'zlubu/(bv)*. Let v* = ubu'(bv)*. Then we have b("tDF < o/23y* =
(v'z)e(zv*), where (n+ 1)k = A € N = {1,2,---}. Since (v'z)z(zv*) € N(b*) C N(b), we
infer that both v’z and zv* are in N(b) = N(z). So, from b € (b)) = (z)n, we prove that
there exists A > 1 such that, b* < (v'z)z(zv*), with v’z and zv* € (z)x. Hence, (z)y is
an Archimedean po-semigroup. The proof is completed.

Remark 4.6 The semilattice congruence A’ on the po-semigroup S in Theorem 4.5 is
the greatest congruence in S. For if o € SC(S) and (a,b) € o then (a), = (b),. Since
(b), is Archimedean, a™ < ubv for some positive integer n € N and u,v € (b),. Clearly,
N(a™) C N(a), thereby ubv € N(a) and so b € N(a), since N(a) is a filter. This shows
that N(b) C N(a). Similarly, we can prove that N(a) C N(b). Thus N(a) = N(b), that
is, (a,b) € N. Hence, ¢ C N, in otherwords, A is the greatest congruence among all the
semilattice congruences defined on S.

Finally, we demonstrate that the semilattice decomposition of a pseudo-commutative
po-semigroup need not be unique.

Example 4.7 Let S = {a,b,c,d} be a set with Cayley table and Hasse diagram shown
below:

~Ha b ¢ d od
alldb b ¢ ¢
bllb b ¢ ¢ a ¢
cllec ¢ ¢ ¢

b
dile ¢ ¢ ¢

Then S is a po-semigroup (One can use the method adopted by KeyayopuluP! to verify
the details). Since all principal ordered filters of the above semigroup S are strictly simple,
by Proposition 3.9, S is pseudo-commutative as well as 2-cyclic-commutative.

Now,let N = {(z,y) € SxS|N(z) = N(y)} = Sx 5, and 5 = {(a,a),(d,b),(c,c),(d,d),
(a,b),(b,a),(c,d),(d,c)}. Then, we can verify that A and 7 are semilattice congruences
on S. Furthermore, for any o € SC(S), we have either ¢ = A or . Thus SC(S) = {N,n}.
Clearly, 1 does not satisfy the condition in Lemma 4.4, so we have n ¢ A/. Considering
the 7-classes. We can easily find that (a), = (), = {a,b};(c), = (d), = {c,d}. Since
a® = b and &% = b, we have (a), is Archimedean. Similary, d> = ¢,c® = ¢, we have (c)y 1s
Archimedean. Thus, apart from N, the congruence 7 is also a semilattice congruence on
S. This example shows that the decomposition of a po-semigroup S into a semilattice of
Archimedean po-semigroups is not necessarily unique.

We would like to mention here that there are pseudo-commutative po-semigroups on
which the semilattice decomposition into Archimedean po-semigroups can be unique. Ex-
ample 3.11, for instance, is such an example. In fact, in Example 3.11, we can observe

that SC(S) = {N, o}, where N = {(a,b)|N(a) = N(b)} = {(a,a),(b,b),(c,c),(d,d),(a,c),
(c,a),(b,d),(d,b)} and ¢ = S x S. However, it is clear that (4), is not Archimedean for
(b); = Sand @™ £ zbyforalln € N = {1,2,---}, where ,y € (b),. Thus, in this example,
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S can only be decomposed uniquely into semilattice of Archimedean po-semigroups with
respect to the semilattice congruence N.

Note (i) In Example 4.7, the semilattice congruence N is not the least semilattice con-

gruence on the po-semigroup S. This answers a question posed by Kehayopulu in [4].
(ii) Some of the results on semilattice decomposition of weakly commutative semi-

groups were annouced by Kehayopulu and Tsingelis in AMS Abstracts (15)(3), 1994.
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