The Automorphism Groups of Complete Lie Algebras with Commutative Nilpotent Radical *

YANG Guo-qing

(Dept. of Math., Yantai Teachers' University, 264025)

Abstract: The automorphism groups of finite-dimensional complete Lie algebras with commutative nilpotent radical over complex field \mathcal{C} are given.

Key words: nilpotent radical; complete Lie algebra; automorphism groups.

Classification: AMS(1991) 17B/CLC O152

Document code: A **Article ID:** 1000-341X(1999)04-0641-05

1. Introduction

A Lie algebra is called complete Lie algebra if its centre is zero and its all derivations are inner. A complete Lie algebra is called simple complete Lie algebra if it has no non-trivial complete ideals.

Let $\mathcal L$ be a finite-dimensional Lie algebra over complex field $\mathbf C$. Then $\mathcal L$ has the Levi decomposition:

$$\mathcal{L} = \mathcal{S} + \mathcal{R},$$

where S is a maximal semisimple Lie subalgebra of \mathcal{L} , called a Levi subalgebra of \mathcal{L} ; \mathcal{R} is the maximal solvable ideal of \mathcal{L} , called the radical of \mathcal{L} . The ideal $\mathcal{N} = [\mathcal{L}, \mathcal{R}]$ is called the nilpotent radical of \mathcal{L} .

Since S is semisimple, R can be viewed as S-module. Let R_n be the direct sum of non-trivial irreducible submodules, R_0 the direct sum of one dimensional submodules. [1] proved that if L is a complete Lie algebra with commutative nilpotent radical, then L is a direct sum of two complete ideals:

$$\mathcal{L} = (\mathcal{S} + C(\mathcal{R}_0) + \mathcal{R}_n) \oplus C_{\mathcal{R}_0}(\mathcal{R}_n)$$

and

$$C_{\mathcal{R}_0}(\mathcal{R}_n) = \{x \in \mathcal{R}_0 | \operatorname{adx}(\mathcal{R}_n) = 0\}$$

Biography: YANG Guo-qing (1964-), male, born in Nanyang county, Henan provence. M.Sc, currently a lecturer at Yantai Teachers' University.

^{*}Received date: 1996-08-27

is a direct sum of 2-dimensional complete ideals. [2] proved that \mathcal{R}_n can be decomposed into direct sum of irreducible submodules V_1, V_1, \dots, V_m such that

$$C(\mathcal{R}_0) = \mathbf{C}I_1 + \mathbf{C}I_2 + \cdots + \mathbf{C}I_m, \ \ \mathrm{ad}I_i|_{V_i} = \delta_{ij}id, i,j = 1,2,\cdots,m.$$

Therefore if \mathcal{L} is a solvable complete Lie algebra with commutative nilpotent radical, then \mathcal{L} is simple complete if and only if \mathcal{L} is a 2-dimensional complete Lie algebra. In this case, the automorphism group of \mathcal{L} is isomorphic to the matrix group

$$\left\{\left[egin{array}{cc} 1 & 0 \ a_1 & a_2 \end{array}
ight] \middle| a_1,a_2 \in {f C}, a_2
eq 0
ight\}.$$

Therefore throught out the paper we assume that \mathcal{L} is a finite-dimensional non-solvable simple complete Lie algebra with commutative nilpotent radical over C, \mathcal{S}_0 is a Levi subalgebra of \mathcal{L} and \mathcal{S}_0 is simple.

2. The automorphism group $Aut\mathcal{L}$ of \mathcal{L}

We know every finite-dimensional S_0 -module is a highest weight module, so we can assume that

$$\mathcal{L} = S_0 + \sum_{i=1}^m \sum_{j=1}^{n_i} \mathbf{C} I_{ij} + \sum_{i=1}^m \sum_{j=1}^{n_i} V_{ij},$$
 (1)

where $V_{ij}(j=1,2,\cdots,n_i)$ are irreducible highest weight modules with highest weight $\lambda_i, i=1,2,\cdots,m$, and

$$[S, I_{ij}] = 0, [V_{ij}, V_{kl}] = 0,$$
(2)

$$\operatorname{ad} I_{ij}|_{V_{kl}} = \delta_{ik}\delta_{jl}id, j = 1, \dots, n_i, i = 1, \dots, m, \ell = 1, \dots, k_i, k = 1, 2, \dots, m.$$
 (3)

It is clear that the nilpotent radical of \mathcal{L} is $\mathcal{N} = \sum_{i=1}^m \sum_{j=1}^{n_i} V_{ij}$, the radical of \mathcal{L} is

$$\mathcal{R} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} CI_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{n_i} V_{ij}.$$

Lemma 1^[1] Let G_1 be a subgroup of $\operatorname{Aut}\mathcal{L}$ generated by $\{\operatorname{expadx}|x\in\mathcal{N}\}$. Let \mathcal{S}_1 be any Levi subalgebra of \mathcal{L} . Then there exists $\sigma\in G_1$ such that $\sigma\mathcal{S}_0=\mathcal{S}_1$.

Lemma 2^[3] Let Int S_0 be the inner automorphism group of S_0 generated by $\{\text{expadx}|x \in S_0 \text{ is ad-nilpotent}\}$, Γ_0 the graph-automorphism group of S_0 . Then Aut S_0 is the semidirect product of Int S_0 and Γ_0 .

Set

$$G_0 = \{ \sigma \in \operatorname{Aut} \mathcal{L} | \sigma |_{\mathcal{S}_0} = \operatorname{id} \}, \tag{4}$$

$$W = \{\sum_{i=1}^m \sum_{j=1}^{n_j} \mathbf{C} I_{ij} + \sum_{i=1}^m \sum_{j=1}^{n_j} \mathbf{C} v_{ij} | v_{ij} \text{ is a highest weight vector of } V_{ij} \}$$

associated with highest weight
$$\lambda_i$$
, (5)

$$W_i = \{ \sum_{j=1}^{n_i} a_{ij} v_{ij} | a_{ij} \in \mathbf{C} \}, i = 1, 2, \cdots, m,$$
 (6)

$$N_0 = \{ \sigma |_W | \sigma \in G_0 \}. \tag{7}$$

Lemma 3 Let $\sigma \in G_0$ and $V_{\lambda} \subseteq \mathcal{N}$ be the weight vector space associated with weight λ . Then $\sigma V_{\lambda} \subseteq V_{\lambda}$ and $\sigma W_i \subseteq W_i, i = 1, 2, \dots, m$.

Proof Since $\sigma|_{\mathcal{S}_0} = \mathrm{id}$, for any $x \in \mathcal{S}, v \in \mathcal{N}$ we have

$$\sigma[x,v] = [x,\sigma v]. \tag{8}$$

It is easy to prove the lemma by (8). \square

Lemma 4 The group G_0 is isomorphic to N_0 .

Proof Define $f: G_0 \to N_0$ by $\sigma \to \sigma|_W$. It is clear that f is a homomorphic mapping. Let $\sigma_1, \sigma_2 \in G_0$ be such that $\sigma_1|_W = \sigma_2|_W$. Then

$$\sigma_1(v_{ij}) = \sigma_2(v_{ij}), j = 1, \dots, n_i, i = 1, \dots, m.$$

As V_{ij} is a highest weight module, for any $v \in V_{ij}$, v has the following form:

$$v = [x_1, [x_2, \cdots, [x_n, v_{ij}] \cdots],$$

where $x_1, x_2, \dots, x_n \in \mathcal{S}_0$. By $\sigma_1|_{\mathcal{S}_0} = \sigma_2|_{\mathcal{S}_0} = \mathrm{id}$, we have

$$\sigma_1 v = [x_1, [x_2, \cdots, [x_n, \sigma_1 v] \cdots], \ \sigma_2 v = [x_1, [x_2, \cdots, [x_n, \sigma_2 v] \cdots].$$

Therefore $\sigma_1 v = \sigma_2 v$. \square

Lemma 5 Let $\sigma \in G_0$. Then

$$\sigma|_{S_0} = \mathrm{id}, \sigma I_{ik} = I_{ii_k}, \sigma v_{ik} = c_{ik} v_{ii_k}, k = 1, 2, \dots, n_i, i = 1, \dots, m,$$
(9)

$$\sigma([x_1,\cdots,[x_n,v_{ik}]\cdots])=[x_1,[x_2,\cdots,[x_n,\sigma v_{ik}]\cdots], \qquad (10)$$

where i_1, i_2, \dots, i_{n_i} is a range of $1, 2, \dots, n_i, c_{ik} \in \mathbf{C}^* = \mathbf{C} \setminus \{0\}, x_1, x_1, \dots, x_n \in \mathcal{S}_0, n \in \mathbf{Z}$ and $n \geq 1$.

Proof By the fact that $[S_0, I_{ij}] = 0$, we have

$$\sigma[\mathcal{S}_0, I_{ij}] = [\mathcal{S}_0, \sigma I_{ij}] = 0. \tag{11}$$

Since $\sigma I_{ij} \subseteq \mathcal{R}$ and $V_{ij} (j=1,\dots,n_i,i=1,\dots,m)$ are non-trivial irreducible \mathcal{S}_0 -modules, by (11) we have

$$\sigma I_{ij} \subseteq \sum_{i=1}^m \sum_{j=1}^{n_j} \mathbf{C} I_{ij}.$$

By the fact that $\sigma W_i \subseteq W_i (i=1,2,\cdots,m)$ we know that $\sigma I_{ij} \subseteq \sum_{k=1}^{n_i} \mathbf{C} I_{ik} = U_i$.

Let $A_i = (a_{kl}^{(i)})_{k,l=1}^{n_i}$ be the matrix of $\sigma|_{U_i}$ relative to the base $\{I_{i1}, I_{i2}, \dots, I_{in_i}\}$ of $U_i, B_i = (b_{kl}^{(i)})_{k,l=1}^{n_i}$ the matrix of $\sigma|_{W_i}$ relative to the base $\{v_{i1}, v_{i2}, \dots, v_{in_i}\}$ of W_i . Since

$$[I_{ik}, v_{ij}] = \delta_{kj} v_{ij}, \sigma[I_{ik}, v_{ij}] = [\sigma I_{kj}, \sigma v_{ij}],$$

we have

$$B_i E_{jj} = (a_{1j}^{(i)} E_{11} + a_{2j}^{(i)} E_{22} + \dots + a_{n,j}^{(i)} E_{n,n_i}) B_i, \quad j = 1, 2, \dots, n_i,$$
(12)

where E_{jj} denotes the $n_i \times n_i$ matrix which is 1 in the j,j entry and 0 everywhere else. As $\sigma \in \operatorname{Aut} \mathcal{L}$, A_i and B_i are reversible matrices. Therefore E_{jj} is similar to $\sum_{k=1}^{n_i} a_{kj}^{(i)} E_{kk}$, so there exists only one non-zero element in $\{a_{1j}^{(i)}, a_{2j}^{(j)}, \cdots, a_{n_ij}^{(i)}\}$. Assume that $a_{kj}^{(i)}$ is non-zero, then $a_{kj}^{(i)} = 1$. By (12) we can deduce that only $b_{kj}^{(i)}$ is non-zero in $\{b_{1j}, b_{2j}, \cdots, b_{n_ij}\}$. Therefore (9) is true.

Theorem 1 G_0 consists of the transformations of \mathcal{L} satisfing (9) and (10).

Proof Let σ_0 be a transformation of W such that

$$\sigma_0(I_{ik}) = I_{ii_k}, \sigma_0(v_{ik}) = c_{ik}v_{ii_k}, k = 1, 2, \cdots, n_i, i = 1, 2, \cdots, m,$$

where i_1, i_2, \dots, i_{n_i} is a range of $1, 2, \dots, n_i, c_{ik} \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. It is clear that σ_0 is an automorphism of Lie subalgebra W of \mathcal{L} . Extend σ_0 to the transformation σ of \mathcal{L} by

$$\sigma|_{W} = \sigma_{0}, \sigma|_{\mathcal{S}_{0}} = \mathrm{id}, \ \sigma([x_{1}, [x_{2}, \cdots, [x_{n}, v_{ik}] \cdots]) = [x_{1}, [x_{2}, \cdots, [x_{n}, \sigma_{0} v_{ik}] \cdots],$$

where $x_1, x_2, \dots, x_n \in \mathcal{S}_0$. Since $V_{i1}, V_{i2}, \dots, V_{in_i}$ are isomorphic each other, it is easy to prove that $\sigma \in \operatorname{Aut}\mathcal{L}$. By Lemma 4 and Lemma 5 the Theorem holds. \square

Theorem 2 If S_0 is not $A_l(l > 1)$, $D_l(l \ge 4)$ or E_6 , then $\operatorname{Aut} \mathcal{L} = (\operatorname{Int} \mathcal{L})G_0$, where $\operatorname{Int} \mathcal{L}$ is the inner automorphism group of \mathcal{L} generated by $\{\operatorname{expadx} | x \in \mathcal{L} \text{ is adnilpotent}\}$.

Proof Let $\sigma \in \operatorname{Aut}\mathcal{L}$. Then $\sigma \mathcal{S}_0$ is a Levi subalgebra of \mathcal{L} . By Lemma 1, there exists $\sigma_0 \in \operatorname{Int}\mathcal{L}$ such that $\sigma \mathcal{S}_0 = \sigma_0 \mathcal{S}_0$. Therefore $\sigma_0^{-1}\sigma|_{\mathcal{S}_0} \in \operatorname{Aut}\mathcal{S}_0$. By Lemma 2, $\sigma_0^{-1}\sigma|_{\mathcal{S}_0} \in \operatorname{Int}\mathcal{S}_0$, so there exists $\tau \in \operatorname{Int}\mathcal{L}$ such that $\tau|_{\mathcal{S}_0} = \sigma_0^{-1}\sigma|_{\mathcal{S}_0}$. Therefore $\tau^{-1}\sigma_0^{-1}\sigma \in G_0$. We deduce that $\sigma \in (\operatorname{Int}\mathcal{L})G_0$. On the other hand, we know that $(\operatorname{Int}\mathcal{L})G_0 \subseteq \operatorname{Aut}\mathcal{L}$. The theorem holds. \square

Lemma 6 Let \mathcal{G} be a Cartan subalgebra of $\mathcal{S}_0, \Delta^{\vee} = \{\alpha_1^{\vee}, \cdots, \alpha_n^{\vee}\}$ the simple coroot system of \mathcal{S}_0, τ_0 a graph-automorphism of \mathcal{S}_0 . Let $\mu_{ij} \in \mathcal{G}^*$ be such that

$$\mu_{ij}(lpha_k^ee) = \lambda_i(au_0(lpha_k^ee))(j=1,2,\cdots,n_i,i=1,2,\cdots,m,k=1,\cdots,n).$$

Then τ_0 can be extended to an automorphism of $\mathcal L$ if and only if

$$\{\mu_{ij}|j=1,2,\cdots,n_i,i=1,2,\cdots,m\}=\{\lambda_{ij}=\lambda_i|j=1,2,\cdots,n_i,i=1,2,\cdots,m\}.$$

Proof Let $\{e_i, f_i | i=1, 2, \cdots, n\}$ be the Chevalley generators of \mathcal{S}_0 . Assume that

$$au_0(lpha_k^ee)=lpha_{ik}^ee, k=1,2,\cdots,n.$$

If τ_0 can be extended to an automorphism τ of \mathcal{L} , then τv_{ij} is a highest weight vector associated with highest weight μ_{ij} . So

$$\{\mu_{ij}|j=1,2,\cdots,n_i,i=1,2,\cdots,m\}=\{\lambda_{ij}=\lambda_i|j=1,2,\cdots,n_i,i=1,2,\cdots,m\}.$$

Inversely, assume that $\{\mu_{ij}|j=1,2,\cdots,n_i,i=1,2,\cdots,m\}=\{\lambda_{ij}=\lambda_i|j=1,2,\cdots,n_i,i=1,2,\cdots,m\}$. Then for any module V_{kl} , there is a responding highest weight module $V_{i_ki_l}$ in $\{V_{ij}|j=1,2,\cdots,n_i,i=1,2,\cdots,m\}$ associated with highest weight $\mu_{kl}=\lambda_{i_ki_l}$. Define

$$\tau|_{\mathcal{S}_0} = \tau_0, \tau(v_{kl}) = v_{i_k i_l},$$

$$\tau([x_1, [x_2, \cdots, [x_s, v_{kl}] \cdots]) = [\tau_0 x_1, [\tau_0 x_2, \cdots, [\tau_0 x_s, \tau v_{kl}] \cdots], \tau(I_{kl}) = I_{i_k i_l},$$

where $x_1, x_2, \dots, x_s \in \mathcal{S}_0$. It is easy to prove that $\tau \in \operatorname{Aut} \mathcal{L}$. \square

Theorem 3 If S_0 is $A_l(l>1)$, $D_l(l\geq 4)$ or E_6 . Then

- (1) Aut $\mathcal{L} = (\operatorname{Int} \mathcal{L})G_0\Gamma_0$, Γ_0 consists of the automorphisms of \mathcal{L} introduced in the proof of Lemma 6.
- (2) $(\operatorname{Int}\mathcal{L})G_0$ is a normal subgroup of $\operatorname{Aut}\mathcal{L}$ and if S_0 is $A_l(l>1), D_l(l>4)$ or E_6 , then $[\operatorname{Aut}\mathcal{L}: (\operatorname{Int}\mathcal{L})G_0] \leq 2$, if S_0 is D_4 , then $[\operatorname{Aut}\mathcal{L}: (\operatorname{Int}\mathcal{L})G_0] \leq 6$.

References:

- [1] MENG Dao-ji. Some results on complete Lie algebras [J]. Communications in Algebra, 1994, 22(13): 5457-5507.
- [2] JIANG Cui-po and MENG Dao-ji. The classification of complete Lie algebras with commutative nilpotent radical [J]. Proceeding of the American Mathematical Society, 1998, 126(1): 15-23.
- [3] JACOBSON N. Lie algebras [M]. Wiley (Interscience), New York, 1962.

具有交换幂零根基的完备李代数的自同构群

杨国庆

(烟台师范学院数学系, 264025)

摘 要: 给出了复数域上具有交换幂零根基的完备李代数的自同构群.