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Abstract: Let G be a connected graph of order p, and let 4(G) denote the domination
number of G. Clearly, ¥(G) < [p/2]. The aim of this paper is to characterize the graphs
G that reaches this upper bound. The main results are as follows: (1) when p is even,
v(G) = & if and only if either G = C4 or G is the crown of a connected graph with £
vertices; (2) when p is odd, y(G) = ”——;—1 if and only if every spanning tree of G is one of
the two classes of trees shown in Theorem 3.1.
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1. Introduction

We use Bondy and Murty!!! for terminologies and notations not defined here and
consider simple graphs only.

Let G = (V, E) be a graph, V = V(G) and E = E(G) denote vertex and edge-set of
G, resp. If v € V(G), N(v) denotes the open neighborhood, d(v) = |N(v)| is the degree of
v, N[v] = N(v)U{v}. If § C V(G), G[S] is the subgraph of G induced by S,G — S denotes
the one induced by V(G) — S. A vertex z is often identified with {z}, N(5) = UyesN(v).
If 2,y € V(G),d(z,y) denotes the distance between # and y. P,,C,, and K,, are the
path, cycle and complete graph of order m, resp. If z is a real number, then [z] denotes
the greatest integer not larger than 2.

A dominating set D for a graph G = (V,E) is a subset of V such for all v € V - D,
there exists some u € D for which uv € E. The domination number of G is the size of its
smallest dominating set (s) and is denoted by ¥(G). ‘

Let H be a graph, A graph G is said to be the crown of H if G can be obtained by
adding a pendant-edge at each vertex of H, and the graph G (crown of H) is denoted by
H*. Clearly, for all graphs H,|V(H*)| = 2|[V(H)| and |E(H*)| = |E(H)| + |V(H)|.
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The following lemma is due to Orel?

Lemma 1.1 If a graph G with p vertices has no isolated vertices then 7(G) < [B).

A graph G without isolated vertices attains this upper bound if and only if it has
at most one odd component, and its every component attains its corresponding bound.
Thus, we need only consider connected graphs.

In this paper, we characterize the connected extremal graphs attaining that upper
bound. In Section 2, considering the extremal graphs with 2n vertices, we prove the
following result: Let G be a connected graph with 2n vertices, then 7(G) = n if and only
if either G = C4 or G is the crown of some connected graph with n vertices. In order
to characterize the connected extremal graphs of order 2n + 1, in Section 3, we construct
the two classes of trees, which are written as T and T5. (see Theorem 3.1), we prove
the result: Let T be a tree of order 2n + 1, then v(T) = n if and only if T € T} U T5.
Furthermore, if G is a connected graph with 2n + 1 vertices, then 7(G) = n if and only if
every spanning tree of G is in T} or T.

In order to obtain our main results, let us list some useful lemmas as follows:

Lemma 1.2 If H is a spanning subgraph of G, then y(H) > v(G).

Lemma 1.3 Let G be a graph, § C V(G), then 7(G) < 7(G[S]) + 7(G - §).
Lemma 1.4 For all graphs G,(G") = |V(G)|.

2. The extremal graphs with 2n vertices

In this section, we establish our theorem to characterize the connected extremal graphs
of order 2n.

Theorem 2.1 IfG is a connected graph of order 2n, then v(G) = n if and only if G & C,
or G is the crown of some connected graph with n vertices.

‘Proof Sufficiency: It is obvious from Lemma 1.4 and the fact 7(C4q) = 2.
Necessity: Let G be a connected graph of order 2n, and 7(G) = n.
Let D1 = {‘U € V(G’)Id(v) = 1}.D2 = N(Dl)

Claim 1 For all z,y € D1(z # y), we have N(z) N N(y) =

~ Assume, to the contrary, that N(z) N N(y) # 0 and v E N(:c) N N(y). Let §; =
N(v)OD1,S = $1U{v}. It is obvious that |S| > 3 since 2,y € 51 and v ¢ D;.7(G[S]) = 1
for it is a star. Clearly, there is no any isolated vertices in G — S. By Lemma 1.1 and 1. 3,
we have 7(G) < 7(G[S]) + 7(G - §) <1+ [2=-3] = n — 1, this is a contradiction.

Claim 2 If there exists a vertex v € V(G) — D; such that N(v)n D; = 0, then D; = §
(namely, §(G) > 2).

Assume, to the contrary, that D; # §. We choose such a vertex v € V(G) — D, and
N(v) N Dy = @ that there is at least one vertex u € N(v) and N(u)N D; # §.

Let N(u) N Dy = {uy,ug,- -, u}(t > 1)

51 24{”,’%“1,"2,'“,%},52 = {2z € V(G)|N(z) = {v,u}},
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§==581U85,|5|>t+2>3.

Since {u} is a dominating set of G[S] (namely, 7(G[S]) = 1), and there is no any
isolated vertices in G — 5§, by Lemma 1.1 and 1.3, we get v(G) < 7(G[S]) + 7(G S) <
1+ [2223] = n — 1, a contradiction.

Summing up the above two claims, we have proved that every non-pendant vertex of
G is adjacent to exactly one pendant vertex if D; # 0. Namely, G is the crown of the
graph G - D;.

Claim 3 If Dy = §(6(G) > 2), then n = 2 and G = C4.

Choose such a vertex v € V(G) that d(v) = §(G) > 2.

Let §; = {z € V(G)|N(z) = N(v)}, note that S; # @ since v € $1.5 = §; UN(v), G’[S]
is a connected graph, and there is no any isolated vertices in G — S, by Lemma 1.1 and
1.3, we have

n=1(6) <2(Gls) (@ - ) < B+ 2221 <

This implies |.S| = 2t is even and ¥(G[S]) =

Let G, = G[S],G2 =G - S.

Next we’ll prove that G; = C4 and G, = 0.

It is obvious that E(G1{51]) = #. And further, E(G1[{N(v)]) = 0 (otherwise, there
exists v; € N(v) such that v; is adjacent to some vertices in N(v). Obviously, S; and
N(v)—{v:} are two disjoint dominating sets of G1, and |S1[+|N (v)—{v1 }| = |S|-1 = 2¢-1,
which contradicts y(G1) = jﬂ = t), note that the definition of Sl, we know G, is a
complete bipartite graph. Hence 7(G;) =t = 2 and |V(G1)| = 2t = 4. Which implies
Gi1 2 K32 =0C4.

Now we prove G = G; = Cy4 (nemaly, G; = 0).

Assume, G, # 0, there exists w € V(G;) such that w is adjacent to at least one of v,
“and v, in Gy, where {v1,v;} = N(v),V(G;) = {v,v1,?',v2} and d(v') = 2. Without loss
of generality we may suppose wv; € E(G).

Let §' = {v,v",v1,v2,w}, 5" = {z € V(G,)|N(z) C §'}

So = §'U 8", Gs = G[So},|So| > 5, note that §(G) > 2, it is easy to see that {w,wv;}
is a dominating set of Gs, this is, 7(G3) < 2. There is no any isolated vertices in G - So,
by Lemma 1.1 and 1.3, we have 7(G) < ¥(G3) + v(G — So) < 2+ [2"_5] =n-1a
contradiction. We have finished the proof of Theorem 2.1. O '

The following two corollaries are immediate from Theorem 2.1.

Corollary 2.2 If G is a graph of order 2n,6(G) > 1, then ¥(G) = n if and only if every
component of G is C4 or the crown of some connected graph.

A graph G is said to be k-domination critical if ¥(G) = k and for every edge e €
E(G),7(G + €) < 7(G).

Corollary 2.3 IfG is a connected graph with 2n vertices, then G is n-domination critical
if and only if
Gﬁ“{ Cy, whenn=2,
~ | K, whenn>3.
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3. The extremal graphs with 2n + 1 vertices

In this section, we consider the connected extremal graphs of order 2n + 1. First, we
construct two classes of trees, which are written as T) and T,. We define

= {T" -~ v|T is a tree of order n + 1 and v € V(T*) — V(T)}

Namely, T € T if and only if T can be obtained by deleting some pendant vertex from
the crown of some tree with n + 1 vertices.

Let T, = {T|T is such a tree of order 2n + 1 that it can be constructed by Fig.1}

In Fig.1, d(u) = 2,d(uy) > 2,d(up) > 2.T} is the crown of some tree T;.v; is adjacent
to exactly one pendant vertex viin TX(1 < j < s +t). Obviously, u;(i = 1,2) is not
adjacent to any pendant vertices, s > 1and ¢t > 1. E"H \V(T;)| = n—1.

Fig.1

Theorem 3.1 IfT is a tree of order 2n + 1, then ¥(T)=nifand only if T € Ty UTs.

Proof Sufficiency: (1) T ¢ Ty:then T = Tg — vo for some tree Ty of order n+1,vg is some
pendant vertex in 7. By Theorem 2.1, 7(T0) =n-+ 1. Let D be the smallest dommatmg
set of T'. Clearly, D U {vo} is a dominating set of Tg, it implies

1T)+124(T5) =n+1,4(T) > n.

On the other hand, y(T) < [M}M] = n, thus 7(T) = n. .
(2) T € T3: T can be constructed in Fig.1, since Ty UT, U---UT,,, U P3 is a spanning
subgraph of T, by Lemma 1.2 and Theorem 2.1, we have

s+t
NWT)<YTFUTFU---UTs,UPs) = Z|V ) +1=n.
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On the other hand, let D be the smallest dominating set of T. Clearly, for every
pendant vertex v € V(T), N[u]n D # 0,N[v]n D # 0, N[u] N N[v] = @, if v’ is another
pendant vertex, N[v'| N N[v] = §. Which imply |D| > n, thus 7(T') = n.

Necessity: T is a tree with 2n + 1 vertices and 7(T) = n. Let D, = {v € V(T)|d(v) = -
1},D; = V(T) — D;. Note that Dy # 0 and D, # @ (otherwise, T = K3, this contradicts
V(T)| = 2n + 1).

Case 1 Vz € Dy, N(z)N Dy # 0.

In this case, |Di| > |D2|. It is easy to see that D, is a dominating set of T, thus
|Ds| > n, note that |Dy] + |Dy| = 2n 4 1, we have |D;| = n 4+ 1 and | D3| = n. Hence,
there exists exactly one vertex zo € D3 such that |[N(zo) N Dy1| = 2, and when z # 2o,z €
Do, |N(z) N Dy| = 1. Which imply T € T;.

Case 2 There exist some vertices z € D such that N(z) N D; = .

Subcase 2.1 There is exactly one vertex v € D, such that N(v) N D; = 0.

In this subcase, we’ll prove that for every z € Da(z # v),|N(z) N Dy| = 1 (It implies
Te T1)

Assume, to the contrary, that there exists v’ # v,v’ € D such that [N(v') N Dq| > 2.
Let Pyy = (vvjvg---v;_1v’) be the shortest path joining v and v', where ¢ = d(v,v").

Let S; = {z € V(T)|d(z) = 1 and N(z) C V(P:41)}. Obviously, [S1| > t + 1, let
§ = S1 UV (Pey1), 151 > 2t + 2.{vy,v2,---,v;_1,v'} is a dominating set of T'[S], it implies
v(T[S]) < t.T — S has no any isolated vertices, by Lemma 1.1 and 1.3 we get

(2n +1) — (2t + 2)
2

1(T) < TSN + (T - S5) <t +] J=n-1

a contradiction.

Subcase 2.2 D, has at least two vertices z and y such that N(z)ND; = @ and N(y)nD; =
0.

In this subcase, Dy — {z,y} is a dominating set of T. It implies |D3z| > n+2 and hence
|D1] < n — 1, thus, D; is not a dominating set of T, namely, there exists a vertex u € D,
such that N[u] N N(D;) = 0. Furthermore, d(u) = 2 (otherwise, d(u) > 3.T — N[u] has
no any isolated vertices, by Lemma 1.1 and 1.3, '

2n+1-—-4
2

a contradiction). Let N(u) = {u1,us}, note that |[V(T — N(u])| = 2n — 2, thus,

Y(T) < (T - Nlul) + 1(TIN[u]]) < | J+1=n-1,

n = 3(T) < H(TINu]) + 9(T - Nlu) < 1+ (n~1) = n.

It implies 7(T — N[u]) = n—1, by Theorem 2.1, every component of T'— N[u] is the crown
of a tree, all those components are written as 17,75, -+, Typ,-

For every j(1 < j < s +t),T; has exactly one vertex v; adjoining to one of u; and u,.
Without loss of generality we may suppose that v; is adjacent to u;.

Next we prove that v; is adjacent to (exactly) one pendant vertex in T7.
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Assume, to the contrary, that N(v;) N D, = §, note that T} is the crown of T}, there
is a vertex v’ € D; such that d(vj;,v') = 2. Let N(v') = {v"}, Ps = (v/v"vjujuuy) be a
path in T, it is easy to see that T — V(Ps) has no any isolated vertices. By Lemma 1.1
and 1.3, we have

V(T) < Y(Pe) +4(T ~ V(Pe)) < 2+ 8 on-1,

2n41 -
2
this is a contradiction. Hence, in subcase 2.2, we have proved T ¢ T5.
We have finished the proof of Theorem 3.1. O

Theorem 3.2 IfG is a connected graph of order 2n + 1, then 4(G) = n if and only if
every spanning tree of G is in Ty U Ts.

Proof Necessity: It is immediately from Lemma 1.2 and Theorem 3.1.

Sufficiency: Assume, to the contrary, ¥(G) < n—1, let D be a dominating set of G
with |D| = 9(G) < n — 1. Deleting some edges from G, we can get the spanning subgraph
G1 satisfying the following three properties:

(1) Y2ee V(G)- D,|N(z)n D| =1.

(2) G:1[V(G) - D] has no any edges.

(3) G1[D] has no any cycles.

Obviously, G, is a forest and D is its dominating set. By adding some edges of G
to G, we can get a spanning tree T of G, clearly, D is a dominating set of T, namely,
7T) < |D| < n - 1. By Theorem 3.1, T ¢ T; U T3, a contradiction. We have finished the
proof of Theorem 3.2.
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AEfRABHEMNERENIE
wHER A% S8
(HFZGERERE R, WA 330013)

WE BGH-PHE +(G)FRGCHEHE BR1(C) < (2. £XHEHRA
ERPXA ERGEEE. FEER: (1) Y p HBEE, +(G) =2 ¥HY G C,
RE G HEEBENT; (2) 4 p HEYE (G) = B2 BHEANY G HEEERM Y
EFE 3.1 PHIRBFE AR Z —.
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