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Abstract: For a transient Bessel process X let I(t) = inf,>¢ X (s) and &(t) = inf{u >
t: X(u) = I(t)}. In this note we compute the joint distribution of I(t),£(t) and X,.

Key words: transient Bessel process; future infimum; location of the future infimum;
joint distribution

Classification: AMS(1991) 60J65/CLC 0211.62
Document code: A Article ID: 1000-341X(2001)03-0344-05

1. Introduction

Let X = {X(t),t > 0} be a Bessel process of index v = g —1,1i.e., a one-dimensional
diffusion on [0,00). It is known that X is transient(i.e.lim; o X (t) = oo almost surely)
if and only if d > 2 . When d is an integer,X can be realized as the radial part of an
R3-valued Brownian motion. Unless stated otherwise, we shall assume d > 2 throughout
the note.

For t > 0,define

I(t) = il;f; X(s)

and

£(t) = inf{u > t: X(u) = I(t)}.

In other words, for any given ¢t > 0,I(t) denotes the future infimum process associated
with X, and £(t) denotes the (almost surely unique) location of the infimum of X over
[t, 00).

There have been several contributions on future infima of some transient progress.
For example,Khoshnevisan et. al.(1994)studied the rate of escape of I(t),see also Khosh-
nevisan(1995) and Hu & Shi(1995). There also have many papers dealing with random
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time £(t). For example, Williams(1970,1974) proved a path decomposition theorem at £(t)
respectively in case of Brownian motion and linear diffusions; Shi,Z.(1996) established a
limsup behavior of £(t), see also the references therein.

The main aim of this paper is to derive the joint distribution of I(t),£(t) and X(t).
The Py—density of I(1) is well known, we refer to Khoshnevisan et. al.(1994).

2. Distribution of (I(t),£(t), X(t))

Let I(t),£(t) and X(t) be as above,and denote by P, the probability measure associated
with X when started from z. The main result of this paper is the following theorem.

Theorem 1 For a fixedt > 0,we have forz > y,2 > y,s > t,
d-2
P,(&(t) € ds,I(t) € dy, X(t) € dz) = TP,(X(t) € dz)P,(1y € ds — t)dy,
where(see Kent(1978))
1

1 _—vy (% v
P(X(0) € dy) = 712 L) exp(— 5(* + ¥y,

and I, is the usual modified Bessel function,and
P,(ry €ds —t)/ds
Ly [ 2e= 3N (-0(, (A2)N, (Ay) = T, (Aw) Nu(22))
Tz Jo J2 (M) + N2 (Ay)

where J,, and N, are the first kind and second kind Bessel functins of order v.
The proof of the theorem is based on the following lemma.

d),

Lemma For any z > y and s > 0, we have
d—2
P.(€(0) € ds,I(0) € dy) = —y—Pz(Ty € ds)dy,

where

_1
P (1, € ds)/ds = _l(ﬂ)u/ de~ 2
0

T T

Y12, (A2) N, (Ay) - L)V (Az))
J2(My) + N2 ()

where J, and N, are the first kind and second kind Bessel functions of order v.

dA,

Proof For any w < y < z,s > 0,by the Markov property

Po(1y < 8,I(0) > w) = Pp(1y, < 8,7y = )
= Py(Px(s,)(Tw = ),y < 8)
= Py(1w = 00)Ps(1y < 8)
= (1= ()*)Pelry < 5).
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Thus 0
Py(7, € ds,1(0) € dw) = 7"(%)2"-119,(7,, € ds)dw,

in particular,
Pu(r, € ds, 1(0) € dy) = %”P,(r,, € ds)dy.

Therefore
d—2
P.(£(0) € ds,I(0) € dy) = Px(r, € ds,I(0) € dy) = TP,(T,, € ds)dy.

Proof of the theorem For s > t,z > y and z > y, by the Markov property

Po(§(t) > 5, 1(t) > 9, X () € d2)
= P“(Kif‘{, X(u) > ix;{X(u),'i‘x;f;X(u) >y, X(t) € dz)

= P(Pxcol,inf_ X(w) > inf X (u),iaf X(a) > 1), X(0) € d2)
= Py(Px)(€(0) > s — t,‘i‘r;i(')X(u) > y),X(t) € dz)
= Py(X(t) € d2)P,(£(0) > s — t,ir;%X(u) > y),
thus
P (&(t) € ds, I(t) € dy, X (t) € dz) = Po(X(t) € dz)P.(£(0) € ds — ¢, I(0) € dy).
By the lemma,
d—-2
P,(£(0) €ds —t,1I(0) € dy) = TP,(‘ry € ds — t)dy,
therefore,
Po(£(t) € ds, I(¢) € dy, X(t) € dz) = d—;gP,(X(t) € dz)P,(r, € ds - t)dy.
By Kent(1978),
-1_-v z 1 v
Po(X(2) € dy)/dy = t7 2™ L(ZF)exp(~ (= + ¥y .
When d is an integer,Yin & Wu(1996) proved

oo e—';v(.—t) (Az)N, _J, (Az
P,(ry€eds—1t)/ds = —%(%)”/0 A (JJ(E?ALJ)VSGIE)(M; Q)N (A ))dA, (1)

where J, and N, are the first kind and second kind Bessel functions of order v. Since the
P, distribution of 7, for any real » has Laplace transformation (See Kent(1978) or Getoor
and Sharpe(1979))

—PTy __ Y VKV(\/@-E)
Ege™® =(2) X.(Vah3)’ z2>y
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where K, is the modified Bessel function. It follows that (1) holds for any positive real
number v.

This completes the proof of the theorem.

Corollary 1 (1) For any 0 < y < z, we have

- d-3 2 foo 3
PI) € dy)fay = ETDT i [7 oo (e fras,
z v

(2) Forr >0, let o, = sup{t > 0,X(t) < r}, then forz > 0,

W.zu _ it [ il P
Py(o, € dt)/dt = o -/7'- y IL(zy)e™ 7 dy.
t

Proof (1) Using theorem 1 we have
P(I(t) € dy)/dy
- / : / P.(£(t) € ds, I(¢) € dy, X(t) € dz)
/ / t——P L (X (1) € dz)Py(ry € ds —t)
= /_yi’_y_% (X (t) € dz)/oo P(1, €ds—t)

=t

= (a- 2" [TCYRX (0 € d2)

oo 1 2 2
= (@-2* [Tt (e - T ) e
d-3
I Gl g & / 2L ( —)e"Tadz
tzr y

(2) Observe that (o, < t) = (I(t) > r),thus
Pelor <8)= B(I() 2 1) = B(I() 2 ) = / P.(I(1) € dy)

o0 — d-3 2 ro 2
= / (—‘(d 233/ C—T/ 27V (22)e” 7 d2)dy.

The result may be obtained by differentiating on ¢.
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