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0. Introduction

The two-dimensional KdV equation was first derived by Kadomtsev and Petviashvili in
197011, and it is also referred to as the KP equation. Periodic traveling wave solutions to
the KP and modified KP equation have been investigated by Chen and Wen(?. Aizicovici
and Wen[® studied the existence and uniqueness of anti-periodic traveling wave solution to
a forced generalized KP equation with the aid of monotonicity methods*%! and Schauder’s
fixed point theorem. In [6,7,8],a class of KdV-Burgers equation are discussed.

In this paper,we study the periodic traveling wave solutions to a forced generalized
KdV-Burgers equation. In section 2, we discuss the boundness of solutions. Section 3
contains main results concerning the existence and uniqueness of solutions.

1. Formulation of the problem
We consider the generalized inhomogeneous two-dimensional KdV-Burgerse equation
{ue + [f(u)ls + Qtzz + Ptgee}s + 8wy, +§=0, 2,y € R, t >0, (L.1)

where f € C?(R),and 8 > 0,6 # 0 and a are given constants, while § denotes a real-valued
continuous function of z,y and t.
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We are interested in solutions of the form
u(z,y,t) = u(z),z = kz + ly — wt,

where k > 0, and /,w are constants,and we assume that §(z,y,t) = g(kz + ly — wt), with
g:R— R
9(z+T)=g(z), Vz€ R, (1.2)

where T > 0 is a fixed constant.

Straightforward computation shows that (1.1) can be reduced the fourth-order ordinary
differential equation

dz=

{ UM (2) + UG (2) — U2 (1.3)

_ )+ i f(U(2)) + 1(2) = 0,
Ut o) = vt(T), i=0,1,2,3

where periodic conditions on U*), i = 0,1,2,3 are imposed, and

b=ak 87t e = 7k 4wk — §1%),
r=B8"%"% gi(2) = B kT g(2). (1.4)

Integrating (1.3) twice,we obtain

—U"(z) = bU'(2) + cU(z) + F(U(z)) = G(z),z € R,
v) = vy, i=0,1, (1.5)

where
F(r)=~rf(r), r€R,
and
G"(z) = ¢1(2),G(z + T) = G(2).

For convenience,we consider the following periodic boundary value problem P1:
—&—bz+cz+ F(z)=h(z),z:R - R,z€R, (1.6)1

20) = 2'(T), i=0,1. (1.6);
Without loss of generality,we assume F(0) = 0 and z(0) = z(T) = 0.

2. Preliminary results
Consider the Sobolev space W12(0,T; R) and define the subspace of W2
E = {z ¢ W' z0)(0) = 2()(T),i = 0,1}

Lemma 1 Assume that (1)F € C(R),h € C(R), (2) inf,eREEﬂ = A > —o, and (3)
1+ T-z—z(c + A) > 0, then the solution of the problem (1.6) is bounded, and the following
estimate expressions hold

]| < klIGI, (2.1)
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2] < KT/*(|G I, (22)
where K = (1/T? + c+ A)™! > 0,]]./lx = sup,¢p.r [R(2)].
Proof By (1.6), we have
(=2,z) — b{z,z) + c(z,z) + (F(z),z) = (h,z),z € E,
le.
T T
/ (22 + cz® + F(z)z]dz = / h(z)zdz. (2.3)
0 (

)

From Cauchy inequality,we have

T T2 (T )
/ |2|*dz < —2—/ |z|°dz. (2.4)
0 0

From condition (2) and Schwartz inequality,the (2.3) becomes

2 T T 2 1.11/2 T 1/2
(g + e+ ) [ lafde < ([ P2 leaz!

Hence we obtain 5
llz]l < (772 +c+ )R (2.5)

On the other hand ,we have

2 T T 2
(gz+ctd) [ lefdz < sup (h(2)] [ feldz < TV2IIA(:)] | o]
] z€[0.T) 0

It then follows that 0
el € T2 + ¢+ ) Al (26)

The proof is completed.

Corollary 1 Under the conditions of Lemma 1, if F(z) is monotonically nondecreasing,
1+ %c > 0, then the solution is bounded for the problem (1.6),and

llzll < ElR]l, (2.7)

[l < T*/2k||Allx., (2.8)

where k = (£ + ¢)7'.
Since f(z) is continous and monotonically nondecreasing and f(0) = 0, thus z f(z) > 0.
Taking A = 0 in each expression of Lemma 1,then it the yields the corollary 1.

Lemma 2 Under the conditions (1) and (2) of Lemma 1, and b # 0, then the solution is
bounded for the problem (1.6), and

T -1

6]~ *[|Rll,

||I|| S 75 /2 _ (29)
el < T 181 1hlloc-
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Proof By the (1.5), making inner product ,we have

T T T
b/ Ii'|2dz+/ F(z)dz =/ h(z)édz,z € E, (2.10)
4] 0 0

where, since 2(0) = z(T)

Hence
T
0

T T
b [ 1aldz < ([ b)) [ laa) s,
0 0
which implies

2] < b~ {|A]]. (2.11)
It follows from (2.4) that
T
< —=[b|"!||A]}. 2.12
2]l < \/§| I~ 1Al (2.12)
Similarly,we have
2]} < T2181 " | ) o, (2.13)
T3/2
|| < —=1b7|~]lso- 2.14
||||_\/§l|l||| (2.14)
The proof is complete.
From r
2] < TV 14da)? (2.15)

and Lemmas 1 and Lemma 2, we can obtain following corollaries,

Corollary 2 Assume that all conditions of Lemma 2 hold,then the solution of the problem

(1.6) is bounded, and
z(2)] < ! ! 2.16

Corollary 3 Assume that all conditions of Lemma 1 and Lemma 2 hold,then

min{k, %lbl“}llhll,
lz(2)I] < { nﬁn{kT‘/’,%’flbl"‘}llhllm- (2.17)

Corollary 4 Under the conditions of Lemma 1 or Lemma 2, if h(2) = 0, then non-trival
periodic solution cannot exist for the problem (1.6).

3. Main theorems
We firstly consider the problem P,:
—%+ F(z) = h(z), (3.1)
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28(0) = 2¥(T), i=0,1, (3.2)

and define a functional J ;: E — R as
T
I@) = [ (51 + V(e)dz - (h,2), Ve € B, (3.3)
0

where V(z) = [; F(z)dz. Then it is easy to prove the following variational principle.
Lemma 3 The critical points of J in E are the solutions of (3.1) and (3.2).

Lemma 4 On E the usual W2 norm is equivalent to the following norm:
T 2
2]l = (/ I#]2dt)V/? vz € E. (3.4)
4]
Proof We know that for all z € E, (2.4)and (2.15) hold, and

T T
/ |z|2dz < T max |z(t)|* < Tz/ |£]%dz,
4] z€l 0

T ” T T2 T
/ 2z < / (122 + |2])dz < (1 + 7)/ I27dz. (3.5)
0 0 [§]

Theorem 1 Suppose that (1) F(z) € C(R),h(z) € [0,T), h(z + T) = h(z) and
f(;r h(z)dz = 0, (2) V() > M,V € R. Then Problem P, has at least one T-periodic

solution.

Proof By (2.4), we have

T :
(h,z) < |lAllg:ll=llz: < %Hh”mHzHu- (3.6)
From (3.3),(3.6), we obtain
J2) > Ll - elhll s + MT (37)
2 giElee = gtz ' :
It follows that J(z,) — oo when |(|z.||g = ||2.||[z: — o0,and that J(z) is bounded from

below in E. Hence by the standard regularity theory,the minimum solution z(z) is a C?

solution of leg‘m} .

Theorem 2 Assume that (1) F(z) € C(R),h(z) € [0,T), h(z4+T) = h(z) and fOT h(z)dz =
0,(2)inf,cp T2 = A > —c0, and (3) T(1+ 2)V2 < LasA > 0or (14 272)8 > kas A <0,

2]

where K = max {|b],|C|},0 = /\L_l Then the problem P, has at least one solution
z € C*0,T).

Proof Let W € C?[0, T}N E is any T-periodic function. We consider the periodic problem

—z! + F(zy) = h{z) + b — cw,0 < z < T, (3.8)

w
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z{0(0) = 28/(T),i = 0,1. (3.9)

w

By Theorem 1, (3.8),(3.9) have at least one T-periodic solution z,, € C*(R) for a given
w € E. Moreover, the map R, defined by Rw = z,,, is continuous. We can show that ® is
compact in £ C W'? as well. Assume that ||w||g < r for some r > 0, i.e. ||w]|co,7) < 7 or
|lwl|r2 < r by Lemma 4. Taking inner product for (3.8), we obtain

T T T
/ |£.|%dz + A/ |2.|2dz < / (h(z) + bW — ew)z,,dz. (3.10)
0 0 0

From conditions (2) and (3) in Theorem ,we have

2 T ” T o T
ﬁ/ |:c.u|‘dz+/\/ |2, dz 5/ (1A(2)] + 1% ~ cwl]|zw|dz
0

< sup (2) / luldz + K / ([l + [w])|zu|dz
< (T‘/‘Slér;lh(z |+ VEK [l gl e, (3.11)

where K = max{|b|, |c|}, ] = [0,T]. Therefore this implies
24+ AT?
where [|h|| = sup,c;|h(2)|. On the other hand,by (3.10), when A > 0 we have

2wl < (T'?||h|l~ + V2KTr), (3.12)

T, 2 T..
[ P < (2 + VK wlig) ez
0 2

thus
[EMIPRES f{T‘”nhnx +V2Kr}. (3.13)
When A < 0, we have
\/—T 1/'1
w “Nh|] o 2Kr ;. .
l2ollzs < 5ya AT bl + V2K (3.14)

By (3.12) to (3.14),and (2.15),(3.5),they clearly imply that the family {z,,} is equicontinu-
ous. Futhermore, from (2.15),(3.13) and (3.14) it follows that {z,,} is uniformly bounded.
By virtue of Ascoli-Arzela theorem,{z,,} is relatively compact in C[0, T],i.e., R is compact.
Now choose r > 0 such that

w{TV2|hfl + VKDY <,

or equivalently

Y 1
T2\l < 2 (1= V2kp, (3.15)
where g = ,/2+—1T-_r as A > 0,or y = (,ﬁ%;was/\< 0 and 8 = ,/ﬁ This is clearly

possible by condition (3) in Theorem 2 . From Lemma 4,we have ||z, ||[g < rand ||| <7
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or ||zyl||pz < r and |2, < rVz € I. This shows that ® maps a suitable ball B = B(0,r) C
C[0,T] N E into itself, i.e., RB C B. By applying Schauder’s fixed point theorem, it
follows that ® has a fixed point w,i.e., w = z,,.Consequently,z = z,, € C%[0,T] is the
desired solution of the problem Py, since both h and F' are continuous.

The proof is complete.

Theorem 3 Assume that (1) h(z) € [0,T],h(z + T) = h(z ) fo h(z)dz = 0, (2) F(=) is
continuous and monotonically nondecreasing, (3) 1 KT(1+ /2 5 0, K = max{|b], ||},
then the problem P, has at least one solution z € C%[0,T].

Proof From the condition (2) and F(0) = 0,we have zf(z) > 0. Taking A = 0 in the
proof of Theorem 2,then the theorem is proved.

Theorem 4 Assume that (1) the problem P; has a T-periodic solution,(2) F(z) is
Lipschitz continuous,(3) 1 + Z-(c — L) > 0, where L > 0 is the Lipschitz contstant,then
the problem P, has a unique solution z € C*(R).

Proof Suppose that z;(: = 1,2) are two different solutions of the problem P;. Let
v =2, — &g, then
—v" —bv' + cv + F(z1) — F(z2) = 0, (3.16)

v(‘)(O) = 'u(")(T),i =1,2.

Taking inner product for equation (3.16), we have

/OT |v/|2dz + c/UT v2dz + /(,T(F(zl) = F(z2))vdz = 0. (3.17)

Hence

T R T o T 2
l/o |v’|‘dz+c/“ vidz| < L v dz. (3.18)

From (2.4) and the condition (3), it yields

2

(75 +¢= Dbz <o0. (3.19)
Hence

lv(z){l: = 0, Vz€R. (3.20)

By (3.18),we have ||v'||;2 = 0. Futhermore, it follows from that (2.15) |v| = O,ie., 2; =
z5,Yz € R. This implies the problem P; has a unique solution.

Theorem 5 Assume that (1) the condition (1) of Theorem 4 holds, (2) F(z) is continuous
and monotonically nondecreasing (3) > + ¢ > 0, then the problem P; has at most one
solution.

Proof From condition (2) ,we have
T 2 T )
/ [v'|*dz + c/ vidz < 0. (3.21)
¥] V]
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Therefore

2
(77 +O)llvllz: <0 (3.22)
By 7—?7 + ¢ > 0. We have ||v||2, = 0. Similarly,we have |v| = 0,i.e.,zy = z;, The theorem is
proved.
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%18 4T Y KdV-Burgers FIER EIRAITIE %

® K R, & # R’
(1. BRERKENHYFERE EKE 400044; 2. REBRAERF A, OH, Athens, 45701)

W B AXHRTRiETHE X KdV-Burgers H BRI AT HMBME, i1 TRY
AREHSHTRAMGITR, ETTTRT ANBMFEERE—#.
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