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Abstract: Let G be a finite simple graph. A G-design (G-packing design, G-covering design)
of AK,, denoted by (v, G, A)-GD ((v, G, \)-PD, (v,G, A\)-CD), is a pair (X, B) where X is the
vertex set of K, and B is a collection of subgraphs of K, called blocks, such that each block
is isomorphic to G and any two distinct vertices in K, are joined in exactly (at most, at least)
A blocks of B. A packing (covering) design is said to be maximum (minimum) if no other such
packing (covering) design has more (fewer) blocks. In this paper, we determine the existence
spectrum for the K2 3-designs of AKy, A > 1, and construct the maximum packing designs
and the minimum covering designs of AK, with K33 for any integer A.
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1. Introduction

A complete multigraph of order v and index A, denoted by AK,, is a graph with v vertices,
where any two distinct vertices z and y are joined by X edges (z,y). Let G be a finite simple graph.
A G-design (G-packing design, G-covering design) of AK,, denoted by (v, G, A)-GD ((v, G, N)-
PD, (v,G,A)-CD), is a pair (X,B) where X is the vertex set of K, and B is a collection of
subgraphs of K, called blocks, such that each block is isomorphic to G and any two distinct
vertices in K, are joined in exactly (at most, at least) A blocks of B. A packing (covering) design
is said to be mazimum (minimum) if no other such packing (covering) design has more (fewer)
blocks. The number of blocks in a2 maximum packing design (minimum covering design), denoted
by p(v,G, ) (c(v,G,]N)), is called the packing (covering) number. It is well known that
Av(v — 1) v(v~1)

2¢e(G) 2¢(G)
where ¢(G) denotes the number of edges in G, |z denotes the greatest integer y such that y < z
and [z] denotes the least integer y such that y > z. A (v,G,A)-PD ((v,G,))-CD) is called to
be optimal and denoted by (v, G, A)-OPD ((v,G,\)-OCD) if the left (right) equality holds.
Obviously, there exists a (v, G, \)-GD if and only if p(v,G,X) = ¢(v,G, ) and a (v,G,A)-GD
can be regarded as (v, G,\)-OPD or (v,G, A)-OCD.
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The leave-edge graph L, (D) of a packing design D is a subgraph of MK, and its edges are
the supplement of D in AK,,. The number of edges in L,(D) is denoted by |Lx(D)|. Especially,
when D is maximum, |Lx(D)| is called leave-edge number and is denoted by Ix(v). Similarly,
the repeat-edge graph R»(D) of a covering design D is a subgraph of AK,, and its edges are the
supplement of AK, in D. When D is minimum, |R)(P)| is called the repeat-edge number and is
denoted by r5(v). Generally, the symbols Lx(D), Ix(v), Rx(D) and rx(v) can be denoted by
Ly, I, Ry and 7y, briefly. It is not difficult to show the following proposition:

Proposition 1.11'% If there exists a (v, K23,A)-GD, then p(v,Ka3,)\) = c(v,Ka3,\) =

Av{v—1

5> 1€, I =7y =0. Else,

I =Mv(v—1)/2—6p(v,K23,A) >0 and ry = 6c(v, K23,\) — Av(v—1)/2> 0.

The G-packing and G-covering problems have attracted much attention in the last fifty years.
Numerous papers were written on these subjects. In the last few years, the G-packing problems
with five vertices have been determined. What about the following graphs G are known!!3:

1. Forest of order five, by Y. Roditty, 1986.

2. G = Ks, by J. Yin, 1994,

3. Two triangles with a common vertex, by E. J. Billington and C. C. Lindner, 1998.

4. Stars of five vertices plus one edge, by G. Ge, 1999.

5. Graph of five vertices having pendant point and six edges or less, by S. Zhang, 1999.
After these known results, the remaining graphs with five vertices and six edges are only Ks 3
and Cs with a chord. Here and below, P,, denotes a path with n vertices, C,, denotes a cycle with
length n, K, denotes a complete graph with n vertices and K, ,, denotes a complete bipartite
graph with m and n vertices respectively.

Theorem 1.20) (J. C. Bermond, C. Huang, A. Rosa and D. Sotteau, 1980) There exists a
(v,K93,1)-GD if and only ifv=0, 1, 4, 9 (mod 12), forv > 5 and v # 9, 12.

In [10], the existence of (v, K23,A)-GD for A > 1 has been already researched. However,
some existence results were not contained in {10], as (12s + 5, K23,6t + 3)-GD for s > 1 and
any t. In §3, we discuss the existence of (v, K33, A)-GD for A > 1 and complete the existence
spectrum as follows.

Theorem 1.3 There exist (v, K23, A)-GD if and only if

(1) v=10,1,4,9 (mod 12) for any A, except (v,\) = (9,1), (12,1);

(2) v=2, 11 (mod 12) and A =0 (mod 6);

(3)v=3, 6, 7, 10 (mod 12) and A =0 (mod 2);

(4) v=5, 8 (mod 12) and A =0 (mod 3), except (v,A) € {(5,6t+3) : ¢t >0}.

In this paper, our main purpose is to determine the values p(v, K23, A) and ¢(v, K23, A) for
any v and A. The following theorems will be presented in the §2 and §4.

Theorem 1.4 There exist (v, K23, A\)-OPD and (v, K23,A)-OCD, for any positive integers A
and v, v > 5, with the exceptions of the following non-optimal cases:
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(1) p(9,Ka3,1) =5, ¢(9, Ko 3,1) =7, p(12,K23,1) =10, ¢(12,K23,1) = 12;

(2) p(6,K23,1) =1, ¢c(6,K23,1) =4, p(8,K23,1) =3, ¢(8,K23,1) = 6;

(3) (10, K,3,1) = 6, o(7, K23,1) = 6, p(11, K2,1) = 8;

(4) p(5,K2,3,6t + 3) = 10t + 4, p(5, K23, 6t + 5) =10t + 7,

c(5,K23,6t+1) =10t + 3, ¢(5,K23,6t+3) =10t +6, fort>0.

In what follows, we will denote K23 by the notation (a,b;c,d,e), where the vertex-set
is {a,b,c,d, e} and the edge-set is {(a,c), (a,d), (a,e), (b,¢), (b,d), (b,e)}. In order to state
more clearly, we will write down the corresponding leave-edge graph (repeat-edge graph) in each
construction.

2. Case A =1
Lemma 2.1 There exist (v, K23,1)-OPD forv=>5 and 7.

Proof (5a K2,3) 1)_OPD : B= {(0) 1;2?3a 4)}’ Ll = {(0, 1), (2,3), (2, 4), (3, 4)}
(7,K23,1)-0PD : B =1{(0,1;2,3,4), (3,4;2,5,6), (5,6;0,1,2)},
= {(Ovl)a(374)’(5:6)}' a

Theorem 2.2 There exist (v, K2,3,1)-OPD for v > 14.

Proof Consider values of v according to their residue class mod 12. The classesv =0, 1,4, 9 (mod 12)
have been already covered by Theorem 1.2. For the other cases we give the constructions as fol-
lows.

(1) v=2,11 (mod 12), v > 23 :

b2
By Theorem 1.2, there is a (v —2, K2 3,1)-GD, say (X, A). Let LSJ {zs, ¥i, z:} be a partition
=1
of X and {e, b} (X = 0. Define a collection of Ka3’s: B = {(a,b;zs,y3,2:) : 1 <@ < ¥52}.
Then (X J{a,b}, AUB) is a (v, K2,3,1)-OPD and L, = {(a,b)}.
(2) v=3, 6 (mod 12), v>15:

v v=3
By Theorem 1.2, there is a (v—2, K2 3,1)-GD, say (X,.A). Let U {z:, %, z:} be a partition
of X\{zo} for a given vertex zo € X. Let {a, b} X = 0, we deﬁne a collection of K 3’s:
= {(a,b; %i,¥i,2:) : 1 < i < 233} Then (X [J{a,b}, AUB) is a (v, K2,3,1)-OPD and L, =

{(a’ b)a (a1 -TO)’ (baxO)}'
(38) v=5,8 (mod 12), v > 17:

I} =5 —5
By Theorem 1.2, there is a (v—4, K2 3,1)-GD, say (X, A). Let U {z:,¥i, 2} and U {z;,9;, 2}
be two partitions of X\{zo} for a given vertex zo € X, where two pa.rtltlons can be 1dent1ca1
Let {a,b,c,d} X = @ and ({zo,0,b,¢,d}, B') be a (5,K23,1)-OPD. Define a collection of
K2,3’S
B ={(a, bz %), (¢,d57;,;,%) : 1 <i < 232

Then (X U{a,b,¢,d}, AUB UB) is a (v, K2,3,1)-OPD and its leave-edge graph is the same as
that of (5, K2,3,1)-OPD on the vertex set {xo,a,b,c,d}.
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(4) v=7,10 (mod 12), v > 19 :

v=7 v—=7

3 =,
By Theorem 1.2, there is a (v — 6, K2 3,1)-GD, say (X, A). Let U {zi, v, 2}, U {=;

i=1 i=1
r—7

! 7 —%_— 14 1 "
y;, 24 and U {z;, v;, =, } be three partitions of X\{zo} for a given vertex g € X, where
i=1

these partitions can be identical. Let {a,b,¢,d,e, f}() X = 0 and ({z0,q,b,¢, d,e,f},B') be a
(7, K2,3,1)-OPD. Define a collection of K2 3's
B = {(a,b;%5, i, 2:), (¢, d2i,9s,2i), (& fii, i, 2:) 1 1 <i < %51}
Then (X U{a,b,¢,d,e, f}, AUB UB)isa (v, K23,1)-OPD and its leave-edge graph is the same
as that of (7, K2,3,1)-OPD on the vertex set {zo,4a,b,¢,d,¢, f}.
(5) (14,K23,1)-0PD : X = ZyolJ{z,y, 2, t},
B: (0,978, z), (7,8;4,5,6), (2,3;7,8,9), (4,2;9,2,¢), (2,6;0,4,1),
(1,z;2,7,8), (4,5;0,1,3), (2,4;5,9,2), (7,8;9,2,%), (5,£9,2,y),
(0,1;3,y,1), (3,5;6, 1), (0,6;1,9,2), (3,6;2,z,y), (1,4;9,z,2).
Ly = {(7,8)}. ]

Theorem 2.3 There exist (v, K2 3,1)-OCD for v > 14.

Proof (1) v=0, 1, 4, 9 (mod 12) : See Theorem 1.2.

(2) v=2, 11 (mod 12), v > 23 :

Let (Zyv—2U{a, b}, A{JB) be the (v, K33, 1)-OPD given in Theorem 2.2(1), in which
Ly = {(a, b)}. Adding a block (a, z; b, y, z) into AlJ B, we obtain just a (v, Ks3, 1)-OCD,
where x, y, z € Zy—2 and Ry = {(a,y), (a, 2), (b, ), (z,v), (z, 2)}.

3) v=3, 6 (mod 12), v>15:

Let (Zy-2lU{a,b}, AUB) be the (v,K33,1)-OPD given in Theorem 2.2(2), in which
Ly = {(a,b), (a,x0), (b,2p)}. Without loss of generality, there is a block (zg,z;y, z,t) €

o3
A, where 2,y,2,t € Z,_o. Let CJ {x:, s, 2} be the partition of Z,._2\{zg} given in Theo-
rem 2.2(2). Noting that the arbiﬁo;;.riness of the partition, let (z1,y1,21) = (2,y,2). Taking
H = {(z0,2;y, 2,t), (a,b;,y,2)} € AUB, let H = {(z,z0;a,b,t), (z,a;y,2,b), (b,zo;y,z,t)}.
Then, (Z,~2U{a, b}, (AUBUH )\H) is a (v, K23,1)-OCD and R, = {(z,b), (b, t), (t,z0)}

(4) v=>5, 8 (mod 12), v > 17:

Let (Zy—aU{a,b,¢,d}, AUUB |UB) be the (v,K23,1)-OPD given in Theorem 2.2(3), in
which L1 = {(a,b),(a,c),(c,b),(z0,d)}. Take a block (zo,t;x,y,2) € A, where z,y,z,t €

v—5 v—=5

Zy.4. Let ‘01 {zs,vi, 2z} and ‘01 {x;,y;,z;} be the partitions of Z,_4\{zo} given in Theorem
2.2(3), where (z1,%1,21) = (z,9,2) and (27,9;,2;) = (y,2,t). Taking H = {(zo,t; 2,7y, 2),
(a,b;2,9, 2), (¢, d; ¥, 2,8)} € AUB UB, let H = {(z0,b;,y, 2), (¢c,a;y,b, 2), (d, t; zo, Y, 2), (a,t;
¢,d,x)}. Then, (Zy-s U{a,b,c,d}, (AUBUB UH )\H)isa (v, K23,1)-OCD and Ry = {(t, ),
(a,d)}.

(6) v=17, 10 (mod 12), v > 19 :

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Let (Zy—¢U{a, b, ¢, d, e, f}, AUB UB) be the (v, K23, 1)-OPD given in Theo-
rem 2.2(4), in which Ly = {(d, e), (b, ¢), (a, zo)}. Take a block (zo, t; x, y, 2) € A,
v—7 vT7

5 =, .,
where z,y,2,t € Zy_4. Let U {z:,yi,2:} and U {=;,y;, 2} be the partitions of Z,_¢\{zo}
=1 =1

given in Theorem 2.2(4), where (21,91,21) = (¥,2,t) and (z},v;,2) = (z,9,t). Take H =
{(z0,t; 2,9, 2), (a, b9, 2, t), (¢, d; 2, 94,8)} € AUB B, and let

H ={(z0,t;z,0,2),(c, d; e, ,t), (b, y; 20, ¢, 1), (v, 2; 6, b, d) }.

Then, (Z,—¢U{a,b,c,d,e, f},(AUBUB UH\H) is a (v,K23,1)-OCD and R; = {(b,z0),
(c,€),(d, 2)}.

(6) v=14:

A (14, K33, 1)-OCD can be formed by adding a block (7, a; 8, b, ¢) to the (14, Ka 3, 1)-
OPD given in Theorem 2.2(5), where a, b and ¢ are distinct points in Zio | J{z,, 2,t}\{7,8}
and R; = {(7,b), (7,¢), (8,a), (a,b), (a,c)}. o

Below, we list the leave-edge graphs L; and repeat-edge graphs R; for each subcase. These
graphs will play an important role in constructing GD, OPD and OCD for any A.

Table A
v>14 l Ly T1 Ry
=2, 11 (mod 12) | 1 ——e 5
=3, 6 (mod 12) | 3 A 3 ——o—e
*>—
=5, 8§ (mod 12) | 4 A"‘* 2
*r—e >
=7, 10 (mod 12) | 3 — 3 —
~——se ~——e
Suppose Hy, Hs, ---, H, be some subgraphs of K,, where each H; = (z;, yi; ai, b, ¢;) is

isomorphic to Ka3, 1 < i < s. Each a; (or b; or ¢;) in any H; is called a 2-claw in H;, as well
each z; (or y;) in any H; is called a 3-claw in H;. The union [sj H; is denoted by Q,. Let x be a
vertex in §,. The degree-type of z is denoted by T'(z) = 2m?tioif z appears in m H; (as 2-claw)
and in n H; (as 3-claw). Obviously, if the degree of x is denoted by d(z), then d(z) = 2m + 3n.
For example, if Q7 = H; |J H2|J H3 and

H, ={(0,1;2,3,4)}, H>=1{(3,4,2,5,6)}, Hz={(5,6;0,1,2)},

then T(0) = T(1) = T(3) = T(4) = T(5) = T(6) = 2'31, T(2) = 233% = 2. Obviously, the
subgraph family €, is just the block set B (or D) for (v, Ka3, 1)-PD (or (v, K33, 1)-CD). It
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is not difficult to verify the following properties.

Proposition 2.4 Let £, UH and T(z) = 2™=3" for z € V(K,).

(1) Zmz = 3|, an = 2| |;
(2) nI =n, =0 (or mg = my = 0) == edge (z,y) belongs to no H;(€ ,);
(3) ng =ny =k (or my =my = k) and edge (z,y) belongs to some H;(€ Q,) =
Hz, vi % * %) € Qu}| <k (or {(*, % z, y, %) € W}| <K);
(4) Let Q = {z € V(K,): T(x) =2™=3'} and
[QNV(L1)| for packing B
7= { 0 for covering D,

then

)= > me < (3], (2.1)

Nnge>2

For convenience, we list all the possible degree-type T'(z) for given d(z), 5 < d(z) < 13.

d(z) | T(x) || dlz) | T(z) d(z) T'(z)
5 2131 8 2% 2132 11 2133 213!
6 23, 3° 9 2%31 3° 12 | 2%, 3% 2337
7 2737 10 | 2%, 2737 13 2°3%, 2233

Lemma 2.5 p(9, K33,1) =5, ¢(9, Ka3,1) = 7, p(12, K2,3,1) = 10, ¢(12, K3,3,1) = 12.

Proof By Theorem 1.2, the following packing (covering) are maximum (minimum).
(9,K23,1)-PD, B: (0,1;2,5,7), (2,8:3,6,7), (3,6:0,1,7), (4,5;3,7,8), (4,80,1,2).
Ly ={(0, 1), (2, 5), 3, 6), (4, 5), (4, 6), (5, 6)}.
(9, K23,1)-CD, B: (0,1;2,5,7), (2,8;3,6,7), (3,6;0,1,7), (4,5;3,7,8),
(4,8;0,1,2), (1,6;0,4,5), (5,6;2,3,4).
Ry ={(0, 6), (2, 6), (4, 6), (1, 4), (1, 5), (3, 5)}.
(12, Ko 3, 1)-PD, B: (0,1;2,5,7), (4,8;0,1,2), (3,6;0,1,7), (4,5;3,7,8), (9,¥;3,4,5),
(0,9;1,z,v), (2,6;5,9,x), (2,8;3,6,7), (7,8;9,z,v), (6,z;3,4,y).
Ly ={(0, 9), (0, =), (1L, 9), (2, ), (4 5), (5, 2)}.
(12,K,3,1)-CD, B: (0,1;2,5,7), (2,8;3,6,7), (6,7;3,4,y), (4,5;3,7,8), (3,6;0,1,7),
(4,8;0,1,2), (7,8;9,2,9), (9,¥;3,4,5), (0,4;2,5,9), (2,6;5,9,z),
0,9;1,z,9), (z,¥;1,2,5).
R, = {(0, 2), (0, 5), (5, ), (2, z), (2, 4), (4, 9}. 0

Lemma 2.6 p(6, Ks3, 1) =1 and ¢(6, K23, 1) = 4.

Proof First, we have p(6, K23, 1) < L%§J = 2 and ¢(6, Ka3, 1) > [6X57 = 3. It is easy to
see that H = Kg — K33 is a union of K4 and K3 with one common vertex. Obviously, there is
no subgraph K33 in H. Thereby, p(6, K23, 1) =1 and there exists no (6, K3 3,1)-OPD.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Furthermore, it is not difficult to see that the graph H can not be covered by two Kz 3’s.
Thus, there is no (6, K2,3,1)-OCD. Here we give a minimum (6, Ka3, 1)-CD :

D: (0,1;23,4), (0,5 1, 2, 3), (2, 3; 1, 4, 5), (3, 5; 0, 2, 4).

Ry ={(0, 2), (0, 3), (0, 3), (1, 2), (1, 3}, (2 5), (2, 5), (3, 9, (8 5} ]

Lemma 2.7 ¢(5, K23, 1) =3 and ¢(7, Kp3, 1) =5.

Proof (1) There exists no (5, Kz3, 1)-OCD. In fact, |D| = ¢(5, Ka,3, 1) > [2%2] = 2. But
Ky — K, 3 is a union of disjoint K3 and K3, which cannot occur in one K5 3. So, there is no
(5, K2,3, 1)-OCD. Here, we give a minimum (5, K23, 1)-CD :

D: (0,1;2 3, 4), 0,2 1,3, 4), (2,40, 1, 3)..

Ry ={(0, 2), (0, 3), (0, 4), (0, 4), (1, 2), (1, 2), (1,4), (2, 3)}.

(2) There exists no (7, K3, 1)-OCD. Suppose there is a (7, Ka3, 1)-OCD, say (X, D).

Then s = f%] = 4 and r; = 3. By Proposition 2.4, we consider all possibilities of R; with 3
edges.

Case 1 If K7|JR; has at least three vertices with degree 6 (there are five such graphs), then
there exist at least two vertices with the same type 23 or 3% which is contradict to Proposition
2.4(2).

Case 2 If R, is a union of three disjoint Ps, then there are six vertices with degree 7 and one
vertex with degree 6 in K7 J Ri. Then we have :

T(z) | 22 32 o2
number of vertices z | m 1—-m 6

By Proposition 2.4(1), 3m + 2 x 6 = 3s = 12 implies m = 0. Let T'(z) = 3? for certain z € X,
then the other six vertices of X have the same degree-type 223!. It is not difficult to see that

the structure of D must be in the form :
(z) A; *, *7 *)’ (z’ A; *7 *7 *)! (A’ A; 0, o’ o)’ (A, A; o’ o’ o)’

where the six A\s, the six *’s and the six ¢s are all partitions of X\{z}. Thus the last two blocks

are contradict to Proposition 2.4(3).
Case 3 If R; is a union of disjoint P> and Ps, then there are two vertices with degree 6, four
vertices with degree 7 and one vertex with degree 8 in K7 |J R;. Then, we have

T(z) | 28 32 223! 24 2132
number of verticesx | m  2-m 4 n 1—n

By Proposition 2.4(1), 3m +2 x4+ 4n+1—n = 12, ie, m + n = 1. But, by Proposition
2.4(2), m # 0, thus m = 1 and n = 0. For Ry = P,UUP3, let P2 = (a, b), P = (z, ¢, 2)
and the other vertices in K7 are ¢ and d. Then we have T(y) = 2!32, T(a) = T(b) = T(z) =
T(z) = 223!, T(c) = 2% and T(d) = 3%. It is not difficult to see that the structure of D must

be in the form : (A, A; ¢, *1, *2), (¥, D ¢, %3, *4), (d, 2 ¢, 9, o), (d, y; 02, 03, 04),
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where {¢1, 02, ¢3, ¢4} = {a, b, z, 2z} = {1, %2, *3, *x4}. Thereby, {*1, *x2} C {02, 03, ¢4}
or {x3, x4} C {02, 03, ©4}. It is impossible by Proposition 2.4(3) for T'(x;) = T(¢;) = 223! and
1<, j<d.

Therefore, there is no (7, K23, 1)-OCD. The following (7, K33, 1)-CD implies the con-
clusion ¢(7, Kg3,1)=5:

D:(0, 1; 2 3, 4), (0,3 1,4, 5), (1, 5 2,6, 4), (3, 4 2, 5 6), (5 60, 1, 2).
Rl = {(07 4)’ (0’ 5)’ (1’ 2)7 (17 3)7 (17 4)7 (17 6)! (2! 5)7 (37 5)7 (47 5)}' D

Lemma 2.8 P(& K?,37 1) :37 6(8’ K2,37 1) :67 p(lO, K2,37 1) =6 &Hdp(ll, A’2,37 l) = 8.

Proof Similar to Lemma 2.7, we will give a detailed proof in Appendix, which is published in
our website: http://qdkang.hebtu.edu.cn (online). Here we will give the maximum packings (or
minimum covering) for these orders.
(8, K23,1)-PD, B:(3,40,1,2), (6,7;0,1,2), (6,7;3,4,5).

Ly = {(0,1),(0,2), (0,5), (L,2), (1,5), (2,5), (3,4), (3,5), (4,5), (6, 7)}.
(8,K3,1)-CD, B:(3,4,0,1,2), (0,6;1,2,7), (6,7;0,1,2),

(6,7;3,4,5), (2,5;0,1,3), (3,5;1,2,4).
Ry = {(0,2),(0,7),(1,3),(1,5),(1,6),(2,3),(2,3),(2,6)}.

(10, K23,1)-PD, B:(0,4;5,6,7), (1,3;2,4,5), (6,7;1,2,3), (6,7;5,8,9),
(8,9;0,4,5), (8,9;1,2,3).
Ly = {(O 1)7 (07 2)a (0’3)7(()’ 4)’(133): (274) (275);(6a 7)7 (87 9)}

(11, K23, 1)-PD  B:(4,80,1,2), (9,%;0,1,2), (3,6;0,1,7), (4,5;3,7,8),
(0,1;2,5,7), (9,2;3,4,5), (2,8:3,6,7), (9,:6,7,8).
Ly = {(U 1)7 (2a5)a (336)1 (45 5); (4,6)* (5,6),(9,1‘)} )

Lemma 2.9 There exist (v, Ka3, 1)-OCD for v =10 and 11.

Proof
(10,K23,1)-0CD, B: (0,6;2,3,5), (1,7;0,6,8), (1,8;0,3,4), (4,90,5,6),
(2,6;0,7,8), (2,7;1,4,5), (3,9;2,4,7), (5,9;1,3,8).
Ry = {(0, 1), (0, 2), (6, 7)}.
(11, K23,1)-0CD, B: (0,1;2,4,8), (0,2;2,6,7), (3,90,1,2), (3,9;,6,7),
(1,5;0,2,6), (7,5;1,4,8), (2,3;4,5,8), (6,9;3,5,8),
(4,7;6,8,9), (4,7;5,6,x).
Ry ={(4, 5), (4, 6), (5, 6), (3, 6), (9, 2)}. 0O
Now, let us list the leave-edge graphs and the repeat-edge graphs for given maximal packing
designs and minimal covering designs in our constructions, where 5 < v < 15 and A = 1.
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Table B
v L1 R1 v L1 Rl

sl AN N [ | A — | L.

S RA— e | L

3. Graph designs for A > 1

The necessary condition to exist a (v, Kag, A)-GD is Av(v — 1) =0 (mod 12). Let Anin
be the minimum positive integer A satisfying this condition. Obviously, Amin should be a factor
of 6, and the existence of (v, K23, Amin)-GD implies the existence of (v, K23, nAmin)-GD for
any positive integer n. We have the values of A, as follows.

Amin 1 2 3 6

v= (mod 12) 0,1,4,9 3, 6,7 10 5, 8 2, 11

Theorem 3.1 Forv=0, 1, 4, 9 (mod 12), v > 5 and A > 1, there exist (v, K23, A\)-GD with
the exceptions of (v, A) = (9, 1) and (12, 1).

Proof For v =0, 1, 4, 9 (mod 12) and v # 9 and 12, there exists a (v, K23, 1)-GD by
Theorem 1.2. Since Anin = 1 in this case, there exist (v, K23, A)-GD for any positive integer
X. However, there is no (v, Ka3, 1)-GD for v = 9 and 12. But there exist the following designs:

(9, K2,3,2)-GD, X = Z3 X Zg,
B: (00, 12; 01, 02, 11), (00, 02; 01, 10, 12),
(0o, 21; 02, 11, 12), (1o, 115 01, 02, 20) mod (3, —).

(9,K2,3,3)-GD, X = Zy,
B:(0, 1; 2, 3,4), (0,2; 1, 4, 6) mod 9.

(12, K2,3,2)-GD, X = Zn U{OO},
B:(0, 1; 2, 3, c0), (0, 2; 3, 7, 6) mod 11.

(12,K23,3)-GD, X = Z11|J{c0},
B:(1, 0 0, 2, 3), (0,2 3, 7, 6), (0, 1; 3,7, 9) mod 11.
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Furthermore, for any positive integer A > 2, there exist nonnegative integers s and ¢ such that
A = 25+ 3t. Thus, there exist (v, K23, A\)-GDsfor v=9, 12 and A > 2. 0

Theorem 3.2 There exist (v, Ka3, 6)-GD for v=2, 11 (mod 12) and v > 11.

Proof By Theorem 2.2, there exists a (v, Kag3, 1)-OPD with {; =1 for v = 2, 11 (mod 12)
and v > 15. Take six (v, K23, 1)-OPD’s on the same v-set X, say By, Ba, ---, Bg. Let
a, b, ¢, T, y € X. Without loss of generality, the leave-edge graphs of these B; can be chosen as
6
(a, %), (b, @), (e, @), (a, v), (b, y) and (¢, y) respectively. Then (X, (U Bs) (=, v; a, b, O)})
i=1
is just a (v, Ka3, 6)-GD. For the remaining two orders, v = 11 and 14, we can give the following
constructions immediately.
(11, K2,3,6)-GD, X = Zy,
B:(0, 1; 2, 3,4), (0, 1; 5,6, 7), (3, 4, 0, 1, 2),
(1, 3; 0, 4, 5), (0, 6; 1, 4, 5) mod 11.

(]4,K273,6)—GD, X — Z13 U{OO},
B:(0, o1, 2, 3), (co0, 7; 1, 2, 3), (0, 7; 1, 2, 3) x5 mod 13. o

Theorem 3.3 There exist (v, Ka3, 2)-GD forv=3, 6, 7, 10 (mod 12) and v > 5.

Proof By Theorem 2.2 and 2.3, when v = 7, 10 (mod 12) and v > 19, there exist both
(v, K23, 1)-OPD, say (V, A), and (v, K23, 1)-OCD, say (V, B). And, by Table A for the
special structures given by us, the corresponding leave-edge graph L; and repeat-edge graph R,
are isomorphic, i.e., both arc three disjoint Py’s. Without loss of generality, we can let Ly = R;.
Then, (V, AUB) is just a (v, Ks3, 2)-GD. For the remaining orders v = 7 and 10 in this case,
we have:
(7,K23,2)-GD, X =Z7, B: (0, 1; 2, 4, 6) (mod 7).
(10, K33,2)-GD, X = Z5 X Za,
B: (00,40; 11, 31,41), (00,30; 10,11, 20), (01,31; 11,21, 30) mod (5,-').
As for the cases v = 3 or 6 (mod 12), we give the following direct constructions.
v =3 (mod 12): X = {Zgy1 % Z2) U{oo}, |B] = (6¢+ 1)(4t + 1),
(21, 31; o0, 04, 11)
(20, 30; 00, U, o)
B: (0p, 20; 04, 31, 30) mod 6t + 1.
(01, 215 0o, 30, 31)
(0o, 40; 11, 21, 31)
01, Oo; (3%)o, (32— 1), (31 —2)g) x 2 )
(00, 0o (3, (310 (31 2y s | mOAOHL, 25 st
v =6 (mod 12): X = Zig45 U{oo}, B| = (2t + 1)(12¢ + 5),
B: (6t+1, 6t+2; 00, 0, 12¢+3)  mod 12t + 5,
(0, 3; 6i+4, 6i+5, 6i+6)x2 mod 12¢ + 5, 0<e<t—1. a

Theorem 3.4 There exist (v, K2,3,3\)-GD for positive integer v = 5,8 (mod 12) and X > 0
with the exceptions of (v, ) € {(5, 2t +1): t > 0}.
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Proof (1) v =5 (mod 12) and v # 5, X = Z1ae4s, |B| = (3t + 1)(12t + 5),
0, 4; 6t—1, 6t, 6t+1)
(0, 4; 6t, 6t+1, 6t +2)
0, 4; 6t —1, 6t, 6t+2)
(0, 4; 6t —1, 6t+1, 6t+2)
(0, 3; 6i+4, 6i+5, 6i+6)x3 mod12t+5, 0<i<t—2.
(2) v=8 (mod 12), X = Zyg¢47U{oo}, |B] = (3t +2)(12t + 7),
(o0, 0; 6t+1, 6t+2, 6t+3)
B: (0,12t +4; 6t+1, 6t+2, 6t4+3) [ Ted1AHT,
(0, 3;6i+4, 6i+5, 6i+6)x3 mod12+7, 0<i<t—1.
(8) There exists a (5, K23, 3\)-GD for even A. It is enough to give a (5, K23, 6)-GD as
follows : (0, 2; 1, 3, 4) and (0, 1; 2, 3, 4) develop 5.
(4) There exists no (5, K23, 3X)-GD for odd A. In fact, let the vertex set of K5 be Zs.
All edges in K5 are separated into two classes (1) and (2), where

B: mod 12t + 5,

(V=A{(z, z+1): z€ 25}, (2)={(z, z+2): z € Zs}.

It is not difficult to see that, among six edges in any K, 3 contained in K3, there are four (or
two) edges in the class (1) and two (or four) edges in the class (2). A (5, K23, 3A\)-GD consists
of 5A K3 3’s, which cover exactly 3AK5s. It is impossible for odd A, since the number of edges in
difference class (1) (or (2)) is even for 5A K3 3’s, but the number of edges in same class is odd
for 3AK5. 0

Summarizing all the results of Theorems 3.1-3.4 and Theorem 1.2, the conclusion of Theorem
1.3 follows.

4. Packing and covering designs for A > 1
The following Lemma is a modifying version of Theorem 4 in Section 3 of [11].

Lemma 4.1 Given positive integers v, A and p. Let X be a v-set.

(1) Suppose there exist a (v, Ka3, A)-OPD=(X, D) with leave-edge graph Lx(D) and
a (v, K23, u)-OPD=(X, £) with leave-edge graph L,(E). If |Lx(D)| + |L.(€)| = Ir+u(v) <6,
then there exists a (v, K23, A+ p)-OPD with leave-edge graph L (D){J L,(£).

(2) Suppose there exist a (v, K23, A)-OCD=(X, D) with repeat-edge graph R»(D) and a
(v, K23, p)-OCD=(X, £) with repeat-edge graph R,(E). If |[Rx(D)| + |Ru(E)| = ra+u(v) <6,
then there exists a (v, K23, A+ u)-OCD with repeat-edge graph Rx(D)J R, (€).

(3) Suppose there exist a (v, K23, A)-PD=(X, D) with leave-edge graph L»(D) and a
(v, Ka3, u)-CD=(X, ) with repeat-edge graph R,(€). If R.(£) C LA(D) and |LA(D)| ~
|RL(E)] = Lipu(v) < 6, then there exists a (v, Ka3, A+ p)-OPD with leave-edge graph
Ly(D)\Ru(€).

(4) Suppose there exist a (v, K23, A)-CD=(X, D) with repeat-edge graph R»(D) and
a (v, Ka3, u)-PD=(X, £) with leave-edge graph L,(£). If L,(€) C Rx(D) and |Ra(D)| —
|L(€)| = ra+u(v) < 6, then there exists a (v, K23, A+ p)-OCD with repeat-edge graph
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RA(D)\L,(E).

In order to prove Theorem 1.4, for each v, we need only to consider the cases 1 < A < Apin,
where Ay, is the smallest A to exist (v, Ka3, A)-GD. However, for the case that there exists no
(v, Ka3, 1)-OPD or (v, K23, 1)-OCD, we have yet to consider the additional case A = Apin +1.
Below, in the proof of Theorems 4.2-4.4 we will use the method given by Lemma 4.1 and the
graphs listed in Table A and Table B.

Theorem 4.2 There exist (v, K3, A)-OPD and (v, K3, A\)-OCD for A > 1 and v =
2, 11 (mod 12).

Proof Here, Ay, = 6.

For v > 14, by Theorem 2.2 and Theorem 2.3, there exist (v, K23, 1)-OPD and (v, K3 3, 1)-
OCD. From the leave-edge graph L; and the repeat-edge graph R; listed in Table A and by
Lemma 4.1, we can list the following table to get (v, K23, A)-OPD and (v, K33, A)-OCD for
1< X <6.

A 1 2 3 4 5

I\ 1 2 =2l 3=10 +1 4 =2l =L+l
L)

r\ 5 4=r -1 S3=ry -1, 2=r3—1 =741
R, —— —

For v = 11, there exists no (v, K23, 1)-OPD. From Table B, we have the table below,
where (11, K3, 2)-OCD can be obtained from (11, K53, 2)-OPD by adding a block containing
its leave-edges.

A 1 2 3 4 5 7

l)\ 7 2:l1—7"1 3:[1-7‘2 4=2l2 5=l1—T4 1:l2-—’l"5
) 5 4 3:7‘1—l2 237‘2—l2 1:7'3"‘12 =715+ 712
VAN S

Theorem 4.3 There exist (v, K23, A)-OPD and (v, Kz 3, A\)-OCD forv =3, 6, 7,10 (mod 12)
and A > 1.

Proof Here, Ayin = 2.

For v 2 15, by Theorem 2.2 and Theorem 2.3, there exist (v, K23, 1)-OPD and (v, Ky, 1)-
OCD. Since Amin = 2, we can get the desired conclusion immediately.

For v = 6, 7 and 10, there exists no (v, Ka3, 1)-OPD or (v, K23, 1)-OCD by Lemma
2.6-2.8. We need to construct (v, K33, 3)-OPD and (v, Ka3, 3)-OCD for these values of v.
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First, for v = 6, we give:

(6,K2,3,3)-OPD, B: (0,1;2,3,4), (0,4;1,2,3), (0,2;3,4,5), (2,5:1,3,4),
(1,5,0,2,3), (1,2;0,3,5), (4,5;0,1,3).
L ={(4, 5), 4, 5), (3, 4)}.
(6,K33,3-0CD, B: (0,1;2,3,4), (0,4;1,3,5), (0,2;3,4,5), (2,5;1,3,4),
(1,5;2,3,4), (1,2;0,4,5), (4,5;0,1,3), (0,3;1,2,4).
L, ={(1’ 4)1 (17 4), (0’ 4)}

For v = 7, take the construction of (v, Ka3, 1)-OPD in Lemma 2.1 as B;. Let By =
o(B1) and Bs = 0?(B,), where o = (0)(2)(3)(5)(146) is a transform on Z;. Then, B = B;
UB:UBsU{(0, 3; 1, 4, 6)} forms a (7, K23, 3)-OPD. Infact, L1 (B1) = {(0, 1), (3, 4), (5, 6)},
so L1(Bz) = {(0, 4), (3, 6), (1, 5)} and Ly(Bs) = {(0, 6), (1, 3), (4, 5)}. Thus, L3(B) =
{1, 5), (4, 5), (5, 6)}. Furthermore, A =BJ{(0, 5; 1, 4, 6)} forms a (7, Ka3, 3)-OCD.

For v = 10, take the following constructions in Lemma 2.9.

(10, Ka3, 1)-PD = (Z1, Bi), where L1(By) = {(0, 1), (0, 2), (6, 7), (0, 3), (0, 4),
(8, 9), (1, 3), (2, 4), (2, 5)}; (10, Ka,3, 1)-OCD = (Zy9, A;), where R1(A;) = {(0, 1), (0, 2),
(6, 7)}. Let Az = 7(A1), where 7 = (0)(5)(13)(24)(68)(79) is a transformation on Z9. Then, it
is not difficult to see that B = By |J A1 JA2 and A = BUJ{(1, 2; 3, 4, 5)} are (10, K23, 3)-
OPD and (10, K3, 3)-OCD respectively. As well, L3(B) = {(1, 3), (2, 4), (2, 5)} and
R3(A) = {(2a 3)1 (17 4)7 (1’ 5)} =

Theorem 4.4 When v =5, 8 (mod 12),
(1) there exist (v, Ka3, A)-OPD for (v, A) # (5, 6t+5), (5, 6t+3),%>0;
(2) there exist (v, Ka3, A\)-OCD for (v, \) # (5, 6t+1), (5, 6t+3),¢t>0;
(3) p(5, K2,3,6t +3) = 10t + 4, p(5, Kn3,6t+5) = 10t +7,
o(5,Ka3,6t +1) =10t + 3, c(5,Ka3,6t+3) = 10t +6.

Proof Here, Apin = 3.

Case 1 (v>17)

By Theorem 2.2 and Theorem 2.3, there exist (v, K23, 1)-OPD and (v, K23, 1)-OCD.
From the leave-edge graph L, and the repeat-edge graph R; listed in Table A and by Lemma 4.1,
we can list the following table to get (v, K23, A)-OPD and (v, K3, A)-OCD for 1 < A < 3.

A 1 2

Ix 4 2=lL-n
LA i *—e o o .
X 2 4=r14+171
Ry

Case 2 (v=25)
(1) There exist no (5, K23, 1)-OCD and no (5, K23, 3)-GD by Lemma 2.8 and Theorem
3.4. And, a (5, K23, 2)-OPD can be given as follows.
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B:(0,1;2 3 4), (0,2 1,3, 4), (2,1; 0, 3, 4). Ly=1{(@3, 4), (3, 4))}.

(2) Suppose there exists a (5, Ka3, 6t — 1)-OPD (or (5, K23, 6t +1)-OCD), then there
are 10t — 2 (or 10t + 2) blocks in its block set B with 2 left (or repeated) edges. Obviously, every
vertex should appear in each block. Let x € V(K5), T(z) = 2P349. By the equations listed in
Proposition 2.4(1), we have (p, q) = (6t—2+X, 4¢—X) (or (6t+2—X, 4¢+ X)), where 0 < A < 2.
Hence, the degree type of each vertex can only be

A. 26t—234t(0r 26t+234t), B. 26t—134t—1(0r 26t+134t+l), or C- 26t34t—-2(0r 26t34t+2).

Suppose there are a vertices of type A, b vertices of type B, ¢ vertices of type C. By the equations
listed in Proposition 2.4(1), we get three solutions:

()-CG) ()-)

So, there are only three possible structures (suppose V(K5) = {z, vy, 2, u, v})
() T(z)=T(y)=T(z) =2523%;,  T(u) =T(v)=2034%"2
(or T(z) =T(y) =T(z) =250423%; T(u)=T(v) = 26:34+2))
Lei—1  (or Retqr) : i S—
(i) T(z)="T(y)=207231" T(u)=T(v)=20"13%"1; T(z)= 266342
for T(z)=T(y) =200723%; T(u)=T(v)= 2604134+, T(z) = 26t34t+2 )
Lgi—1  (or Regq1) - 3
(iii) T(z) = 250°23%; T(y)=T(z) = T(u) = T(v) = 26t-134—1,
(or T(z) =28+23% T(y) =T(z) = T(u) = T(v) = 260+134+1))

Y 7
Lgi—1  (or Rert1) : —

Let s, t € V(Ks), T(s) = 2™3%~™, T(t) = 2"3%"". It is not difficult to see that the edge (s, t)
appears m + n — 2k times in B :

T . 2—claw
| TR =
H ] ! i
i ' ! '
) H ! !
1 | ' 1
]
| : ! | 8—2n+k
e —
m L i 3—claw
8—m

Obviously, the edge (s, t) appears even times if m = n. In fact, (u, v) need to appear 6t — 3
(or 6t + 3) times in (I), (z, y) need to appear 6¢ — 1 (or 6t + 1) times in (II), and (s, t) need
to appear 6t — 1 (or 6t 4 1)times in (III). It is contradict to the result given above. Thus, there
exists no (5, Ka3, 6t —1)-OPD and no (5, K3, 6t + 1)-OCD.
(3) First, we give a maximum (5, K»3, 5)-PD as follows.
B: (1, 3; 0, 2, 4) (mod 5), and (1, 2; 0, 3, 4), (2, 3; 0, 1, 4).
Ls = {(07 2)? (07 3), (07 3)7 (07 4)’ (17 3)7 (17 4)7 (1: 4)7 (2’ 4)}
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Furthermore, by the existence of (5, K23, 1)-OPD and (5, K23, 6)-GD, we have the table as
follows.

A 1 2 3 4 5

Ix 4 2 6=10+1; 4=10+1 8
——e [ J—

L A. — I:h. — }1

SN 8 4=T‘1—-ll 6=7‘1—l2 2=7‘2-lz 4=7‘3—12

B ]1 — I:::& A

There exist (5, K23, A)-OPD for A # 3, 5 (mod 6); there exist (5, K23, A)-OCD for X #
1, 3 (mod 6). Obviously,
(6t+5)x5x4

p(5, K3, 6t +3) = CHAE 104 4y 5(5, K 3,68+ B)=——Ze——=10t +7;

g6t+1!x5x4+8

o5, Ko,3,6t 4 1) = ——2e——=10t +3, (5, Kn3,6t +3) =EFAE_ 101 1 6.

Case 3 (v =8)
There exist no (v, K23, 1)-OCD and (v, Ka3, 3)-GD by Lemma 2.8 and Theorem 3.4.
We give the following constructions :
A (8, Ka3, 2)-OPD: B: (0, 1; 2, 3, 4), (0, 2; 3, 4, 5), (0, 1; 5, 6, 7),
0,5 1,6, 7, (1,20,3,7), (1, 7; 2, 4, 6),
(2, 3; 4,5, 6), (3,4, 5,6, 7), 4, 7; 3, 5, 6).
Ly = {(2’ 6)’ (5’ 6)}
A (8, Ka3, 2-OCD: A=BU{(2, 5 1, 3, 6)}. R ={(, 2), (1,5), (2, 3), (3, 5)}.
Furthermore, we have the table as follows.

A 1 2 4
I 10 2 4=l +1,
N pae—
IS\ 8 4 2=r9—1s
’ ]

Summarizing the Theorems 4.2-4.4, we complete Theorem 1.4.
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AK, BIRK K3 HFTIKITFIR/ Ko 3 BEIIT

RRE:, THR?
(1 FATRALRCEBIRIT, WA AR 050016; 2. KMIHEAE, Kk 300222 )

HE: T —THRWARE 6, Ak, B G- %Kit (6- R, ¢ BH), ITH (0,6, N-GD ((v,G,\)-PD,
(v,G,N-CD), —1 (x,B), P x & Kk, WAE, BE K WTEEK, &MTE FHXK4H)
HEMTF 6, B k., PE—0ERET (&L, E0) HIE 8 ¢ A MRAF. —MEK (B2) &%
WHRABEK (BN 0, WREAHEHXMER BEE) RITEEFEL (F) R4 Fx
MFA>1HET (v, K23, \)-GD WHFER, HIWMEE A WiET Ak BERK Ko BRI
%N K 3- Bkt
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