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Abstract: A € B(H) is called Drazin invertible if A has finite ascent and descent. Let
op(A) = {A € C: A— X\ is not Drazin invertible } be the Drazin spectrum. This paper
A C
0 B
Hilbert space H @ K, then the passage from op(A) U op(B) to op(Mc) is accomplished by
removing certain open subsets of op(A) Nop(B) from the former, that is, there is equality

shows that if M¢c = < is a 2 X 2 upper triangular operator matrix acting on the

O'D(A) @] O’D(B) = (TD(MC) ug,

where G is the union of certain holes in o p(Mc¢) which happen to be subsets of op(A)Nop(B).
Weyl’s theorem and Browder’s theorem are liable to fail for 2 x 2 operator matrices. By using
Dragzin spectrum, it also explores how Weyl’s theorem, Browder’s theorem, a-Weyl’s theorem
and a-Browder’s theorem survive for 2 x 2 upper triangular operator matrices on the Hilbert
space.
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1. Introduction

Let H and K be infinite dimensional Hilbert spaces, let B(H, K) denote the set of bounded
linear operators from H to K, and abbreviate B(H, H) to B(H). If A € B(H), write o(A) for the
spectrum of A and o, (A) for the approximate point spectrum of A, p(A) = C\o(A). If A € B(H),
we use N (A) for the null space of A and R(A) for the range of A. For A € B(H), if R(A) is closed
and dimN(A4) < oo, we call A upper semi-Fredholm operator, and if dimH/R(A) < oo, then
A is called lower semi-Fredholm operator. Let ®(H) (®_(H)) be the set of all upper (lower)
semi-Fredholm operators. A is called Fredholm operator if dimN (A4) < oo and dimH/R(A) < oo.
Let A be semi-Fredholm and let n(A) = dimN(A) and d(A) = dimH/R(A), then we define the
index of A by ind(A) = n(A) — d(A). An operator A is called Weyl if it is a Fredholm operator

¢ of finite ascent and descent”. We write
a(A) and B(A) for the ascent and the descent for A € B(H) respectively. The essential spectrum

of index zero, and is called Browder if it is Fredholm
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o.(A), the Weyl spectrum o,,(A) and the Browder spectrum o,(A) of A are defined respectively
by: 0.(A) = {A € C : A— A is not Fredholm}, o, (A4) = {A € C : A — Al is not Weyl} and
op(A) = {A € C: A— Al is not Browder}.

Following [1, Difinition 4.1] we say that A € B(H) is Drazin invertible (with a finite index)
if there exist B,U € B(H) such that U is nilpotent and

AB=DBA, BAB=B, ABA=A+U.

Recall that the concept of Drazin invertibility was originally introduced by Drazin in [2] where el-
ements of an associative semigroup satisfying an equivalent relation were called pseudo-invertible.
It is well known that A is Drazin invertible if and only if it has finite ascent and descent, which
is also equivalent to the fact that A = A; @ Ay, where A; is invertible and Ay nipotent (see [3,
Proposition A] and [4, Corollary 2.2]). It is also well known that A is Drazin invertible if and
only if A* is Drazin invertible, where A* is the conjugate of A. The Drazin spectrum of A is
defined by:
op(A)={AeC: A— X isnot Drazin invertible }.

If G is a compact subset of C, write int G for the interior points of G; iso G for the isolated
points of G; acc G for the accumulation points of G; and 9 G for the topological boundary of
G. When A € B(H) and B € B(K) are given we denote by M¢ an operator acting on H @ K

of the form M¢ = 61 g , where C € B(K, H).

In Section 2, we will characterize the Drazin spectrum of M. Our result is: For a given pair
(A, B) of operators, there is equality, for every C € B(K,H), op(A)Uop(B) = op(Mc) UG,
where G is the union of certain holes in op(M¢) which happen to be subsets of op(A) Nop(B).

In Section 3, we will use Drazin spectrum to study Weyl’s theorem. Our result is: If

op(A) Nop(B) has no interior points and if A is an isoloid operator for which Weyl’s theorem

holds, then for every C € B(K, H), Weyl’s theorem holds for ( 40

0 B
A C
holds for ( 0 B ) .

2. Drazin Spectrum for 2 x 2 upper triangular operator matrices

) = Weyl’s theorem

Lemma 2.1 Suppose A € B(H) and B € B(K). If both A and B are Drazin invertible, then
for every C € B(K,H), M¢ = ( 61 g ) is Drazin invertible. Hence for every C' € B(K, H),
op(M¢) Cop(A)Uop(B).
Proof Suppose a(A) = B(A) =p and «(B) = B(B) = ¢q. Let n = max{p, ¢}.

1) First we will prove that for any C' € B(K, H), a(M¢) < oo. If we have N(MZ'!) =

N(MZ"), we get the result. So we only need to prove N(MZ"™) C N(MZ").
If up € N(MZ"™) and ug = (20, yo), then:

0= MZ" (0, y0) = (A*" g+ AP Cyg+A*" 'O Byo+- - -+ A"CB"yo+- - -+CB*"yo, B> yp).
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It follows that B?"*lys = 0 and
AP lpg + A" Cyg + A" 1CByo + --- + A"CB"yg + - - - + CB*"yy = 0.
Then yo € N(B?*"*1) = N(B") and hence
Ao 4 A Cyo + A" 1CByg + -+ - + A"TICB" lyg = 0,
which means that A"t1[A"zg + A" 1Cyo + A" 2CByg + - - + CB" 1yg] = 0, and hence
Azo+ A" Cyog + A" 2CByg + -+ + CB™" 'yg € N(A™H!) = N(A™).

Then A"z + A2"~1Cyo + A*"2CByg + - + A"CB" 1y, = 0.
Now we get that

(A?"zg + A" 1Cy 4 -+ APCB™ Yyg + AV LOB "y + - - + CB*" yo, B*y0) = 0,

that is, M2"up = 0 and hence ug € N(MZ"). Then N(MZ'"') = N(M2"), and hence M¢ has
finite ascent.

2) Secondly, we will prove that for any C' € B(K, H), M¢ has finite descent. We will prove
that R(MZ') = R(MZ""), so we need to prove that R(MZ") C R(MZ"t).

For any ug € R(MZ"), there exist x € H and y € K such that ug = MZ"(z,y), that is,

ug = (A*"x + A*" 10y 4+ A*""'CBy + - - - + CB*" 1y, B*y).

By R(B?") = R(B?"*1), there exists yo € K such that B*"y = B2?"Tly, then y — By €
N(B?") = N(B™). Suppose y = Byo + y1, where y; € N(B"). Then
ug =(A%"x + A" 1CByy + A*""1Cyy + - - + A"CB™yo+
AnCBn71y1 4 AnfchnJrlyO 4 An72CBn+2y0 R OBQny(), B2n+1y0)
=([A%"x + A" 1Cyy + -+ APCB" ly; — AP Cyp) + A" Cyo+
AP 1CByg + -+ + CB*™yy, B*"*yp),
AQHI 4 A2n710y1 4 A2n72CBy1 Lt AnCBn71y1 _ A2ncy0
= A"(A"x + A" '1Cyy + AV2CBy, + --- + CB" 1y, — A"Cyp)
€ R(A™) = R(A*™ 1),
Then there exists o € H such that
AP 4 AP 1Cyy + AP T2CBys + - + A"CB™ lyp — AP Cyo = AP,
Thus

UQ :(A2n+1xo +A2n0y0 +A2nfchy0 N CB2nyO,B2n+1y0)
=MZ"*(x0,y0) € R(MZ™),
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So R(MZ') = R(MZ"*") and hence M has finite descent. The proof is completed. O

Lemma 2.2 For a given pair (A, B) of operators, if M¢ is Drazin invertible for some C €
B(K, H), then:

(a) a(A) < oo and B(A*) < oo;

(b) B(B) < oo and a(B*) < 0.

Proof Without loss of generality, we suppose that 0 € o(M¢). Suppose a(M¢g) = S(Me) =
n < oo, then a(My) = (ML) = n. Since N(A") & {0} C N(ME), we get a(A) < co. In
order to prove B(A*) < oo, we only need to prove that R(A*™") = R(A*"*1). So we only need
to prove that R(A*™) C R(A*"*!). For any u € R(A*"), let u = A*"x, then M}"(x,0) €
R(M™) = R(ME™). Thus there exists (zo, yo) € H @ K such that (A*"z, B*" 'C*z + + -
S CFAT T ) = Mé"“(aco, yo) = (A*"Tlay, B*"lyy + B¥"C*xo + +--- + C*A*"xp), then
u= A"z = A" gy € R(A*™). Hence B(A*) < co. By the same way, we can prove that
B(B) < oo and a(B*) < oc. O

Lemma 2.3 For a given pair (A, B) of operators, if M¢ is Drazin invertible for some C €
B(K, H), then A is Drazin invertible if and only if B is Drazin invertible.

Proof Suppose that A is Drazin invertible. Then there exists € > 0 such that A — Al and
Mc — A is invertible if 0 < |A| < e. Thus we get that B — Al is invertible if 0 < |\ < e.
[5, P332, Theorem 10.5] asserts that B is Drazin invertible because 3(B) < co. Conversely, if
B is Drazin invertible, similarly, we know that A* is Drazin invertible and hence A is Drazin

invertible. O

Remark 2.4 In Lemma 2.1, for every C' € B(K, H), we have op(M¢) C op(A) Uop(B).
Sometimes, this inclusion is proper for given A and B. For example, let A, B,C € B({3) be
defined by
A(CUl,CEQ, x3, - ) = (Oa T1,X2,T3, ')7
B($1,$2,$3, o ) = (1’2,.’[]3, Tg, - ')7
C(Ila T2, X3, " ) = (‘Tlv 07 07 o )

Then o(A) = o(B) = op(A) =op(B) ={ A€ C: |\ <1 }. Since M¢ is a unitary operator,
then op(M¢c) C{ A€ C: |\ =1}. Thus op(Mc) is proper subset in op(A4) Uop(B).

The following is our main theorem in this section. It says that the passage from op(A) U

op(B) to op(Mc¢) is accomplished by removing certain open subsets of op(A4) Nop(B) from the

former.

Theorem 2.5 For a given pair (A, B) of operators there is equality, for every C' € B(K, H),
O'D(A) U O'D(B) e O'D(Mc) ug,

where G is the union of certain holes in o p(M¢) which happen to be subsets of cp(A) Nop(B).
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Proof We first claim that, for every C € B(K, H),

(op(A)Uop(B)\(ep(A) Nop(B)) Cop(Mc) C op(A) Uop(B). (1)

Indeed the second inclusion in (1) follows from Lemma 2.1. For the first inclusion, let A €
(cp(A)Uop(B))\(ep(A)Nop(B)). Then A € op(A)\op(B) or A € op(B)\op(A4). Lemma 2.3
asserts that A\ € op(M¢) for every C € B(K, H).

Next we claim that, for every C € B(K, H),

n(op(Mc)) = n(op(A) Uop(B)), (2)

where nK denote the “ polynomially convex hull 7 of the compact set K C C. Since op(M¢) C
op(A)Uop(B) for every C € B(K, H), we need to prove that d(cp(A) Uop(B)) C d op(Mc).
But since int op(M¢) C int (op(A) Uop(B)), it suffices to show that d(op(A) U op(B)) C
op(Mc).

Let p5(A) ={ A€ C: a(A— ) < oo and B(A* —X]) < oo } and p(B) ={ A€ C:
B(B — \) < oo and a(B* — M) < oo } and let 05(A) = C\pj(A) and o5 (B) = C\p5(B).

Then there are inclusions
d(op(A)Uop(B)) €0 op(A)Udop(B) C JB(A) Uop(B) Cop(Me), (3)

where the last inclusion follows from Lemma 2.2. For the second inclusion, if there exists \g €
(0 op(A)Ud ap(B))\(0}(A) Uap(B)), then there are two cases to consider.

Case 1. Suppose A\g € 0 op(A). Then for any neighborhood of Ay, there exists A such that
A — A is Drazin invertible. Thus for any neighborhood of Ag, there exists A such that A — A\ is
invertible. And hence for any neighborhood of Ao, there exists p such that A* — uf is invertible.
Since B(A* — X\ol) < o0, [5, P332, Theorem 10.5] tells us that A* — Aol is Drazin invertible and
hence A — A\ is Drazin invertible. It is in contradiction to the fact that Ag € op(A).

Case 2. Suppose Ay € d op(B). Similarly as in case 1, we induce a contradiction.

Then the second inclusion is true. Consequently, (2) asserts that the passage from op(M¢)
to op(A) U op(B) is the filling in certain holes in op(M¢). But since, by (1), (op(4) U
op(B))\op(Mc¢) is contained in op(A) Nop(B), it follows that the filling in certain holes in
op(M¢) should oceur in op(A) Nop(B). The proof is completed. |

Corollary 2.6 Ifop(A)Nop(B) has no interior points, then for every C € B(K, H),
O'D(Mc)ZUD(A)UO'D(B). (4)
In particular if either A € B(H) or B € B(K) is a Riesz operator, then (4) holds.

Corollary 2.7 If either A* or B is hyponormal, then for every C € B(K, H), (4) holds.
Let pf(A) = o(A)\oh(A4) and p,,(B) = o(B)\op(B). From Theorem 2.5, we can see
that the holes in op(M¢) should lie in p},,(A) N p,(B). Thus we have:
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Corollary 2.8 If p!(A)Np,p(B) =10, then (4) holds for every C € B(K, H).
Lemma 2.9 Ifo(M¢) =0(A)Uo(B) or oy(M¢e) = 0y(A) Uoy(B), then (4) holds.

Proof Suppose that o, (M¢) = 04 (A) Uow(B). If Mc — Aol is Drazin invertible, then there
exists € > 0 such that Mc — AT is invertible and B — A is surjective if 0 < |A — Ag| < e. Since A
is not in o, (M¢) = 04 (A) Uoyw(B), it follows that B — AI are Weyl. Then B — AI are invertible
if 0 < |A — Xg| < &. Now we have proved that Ay € iso a(B) U p(B). [5, P332, Theorem 10.5]
tells us that B — Ao/ is Drazin invertible and hence A — Aol is Drazin invertible. Then Aq is not
inop(A) Uop(B). If 6(M¢) = o(A) Uo(B), by the same way, we can prove the result. O

Corollary 2.10 If 0, (A) Now(B) (or 0(A) No(B)) has no interior points, then (4) holds for
every C € B(K, H).

Proof By Lemma 2.9 and Corollary 8 in [6] and Corollary 7 in [7], we get the result. O

3. Weyl’s theorem for 2 x 2 upper triangular operator matrices

H.Weyll® has shown that every hermitian operator A € B(H) satisfies the equality
o(A)\ow(A) = moo(A) (5)

where moo(A) = { A €iso 0(A) : 0 <dimN(A— M) < oo }. Now we say Weyl’s theorem holds
for A € B(H) if A satisfies the equality (5). If 0,,(A4) = 0p(A4), we say that Browder’s theorem
holds for A. Clearly, Weyl’s theorem implies Browder’s theorem.

Let ® (H) be the class of all A € & (H) with ind(A) <0, and for any A € B(H), and let

oea(A)={ A€ C:A— X isnot in ®, (H) }

and og(A) = { A€ C: A— Al is not an upper semi-Fredholm operator with finite ascent}.
We call 0.,(A) and 045(A) the essential approximate point spectrum and Browder essential
approximate point spectrum respectively.

Let 7§y (A) = { A € is0 04(A), 0 < dimN(A — A]) < oo }. Similarly, we say that a-Weyl’s
theorem holds for A if there is equality 04(A)\0eq(A) = 75, (A), and that a-Browder’s theorem
holds for A if there is equality o.,(A) = o4p(A).

Weyl’s theorem may or may not hold for a direct sum of operators for which Weyl’s theorem
holds. Thus Weyl’s theorem may fail for upper triangular operator matrices. So does a-Weyl’s
theorem. Weyl’s theorem for upper triangular operator matrices is more delicate in comparison

with the diagonal matrices. In this section, we consider this question: If Weyl’s (a-Weyl’s )

theorem holds for < ‘61 g >, when does it hold for ( 61 g )? We begin with

Theorem 3.1 If op(A) Nop(B) (or o(A) No(B) ) has no interior points, then for every
C e B(K,H),

(a) Browder’s theorem holds for < 40

0 B > —> Browder’s theorem holds for ( 4C >;

0 B



No.3 CAO Xiao-hong, et al: Drazin Spectrum and Weyl’s’ theorem for operator matrices 419

(b) a-Browder’s theorem holds for ( 40

0 B ) — a-Browder’s theorem holds for( A C )

0 B
Proof (a) Suppose Mo — Aol is Weyl. Then there exists ¢ > 0 such that Mo — Al is Weyl

and hence A — Al is upper semi-Fredholm operator and B — A is lower semi-Fredholm operator,
and A — Al is Weyl if and only if B — Al is Weyl if [A — )| < e.

Case 1. Suppose that A\g € dop(A) or Ao is not in op(A). Then in any neighborhood of Ay,
there exists A such that A — [ is Drazin invertible and hence in any neighborhood of Ay, there
exists p such that A — pl is invertible. Since A — A\gl is upper semi-Fredholm operator, by
perturbation theory of upper semi-Fredholm, it follows that A — Aol is Browder. Then B — Ao/

is Weyl and hence < 61 g ) — Aol is Weyl. Browder’s theorem holds for < 61 g ), then
61 g — Mol is Browder. Thus A — Aol and B — Aol are Drazin invertible. Lemma 2.1

tells us that Mo — Aol is Drazin invertible. Since Mo — Aol is Weyl, we get that Mo — A\o! is

Browder.

Case 2. Suppose that \g € int op(A). Since op(A) Nop(B) has no interior points, we know
that Ao € dop(B) or Ao is not in op(B). The following proof is the same as the proof in Case 1.

Now we have proved that o, (M¢c) = op(Mc) for every C € B(K, H), which means that
Browder’s theorem holds for M¢ for every C € B(K, H).

(b) Suppose that Mg — Al € @ (H ® K). Then A — X\l € &, (H).

Case 1. A\gisnotin op(A) or A\g € dop(A). Similarly to the proof in case 1 in (a), we know that
A — X\l is Browder. By perturbation theory of semi-Fredholm operator, there exists € > 0 such
that Mo — M € & (H @ K) with N(Mc — M) € Ny R[(Mc — AI)"] and A — M is invertible if

0 <|A=Xo| <e. Then B— A\ € &, (K) and hence ( A0

0 B
theorem holds for < gl g >, then a(A — AI) < oo and a(B — AI) < oo hence a(M¢ — M) <
00. [9, Lemma 3.4] asserts that N(Mc — M) = N(Mc — M) N NS, R[(M¢c — MXI)™] = {0} if
0 < |A— Xo| < e. Now we have that A\g € iso 0,(M¢). Then M¢ has single valued extension

property in A\g. [10, Theorem 15] tells us that a(M¢c — Aol) < o0.

) — M € & (H®K). a-Browder’s

Case 2. If \¢ € intop(A), then Ao is not in op(B) or Ag € dop(B). By perturbation theory of
upper semi-Fredholm, there exists € > 0 such that M¢c — Al € &, (H & K) with N(M¢c — A\I) C
Ny R{(Mc—XM)"], n(Mc—XI) is constant, and A=\ € @, (H)if 0 < [A—Xg| < e. There exists
A1 € C such that B—A; 1 is invertible and 0 < [A\;—Xg| < . Then 61 g )—/\1] € ¢ (HOK).
Similarly to the case 1 in (b), M — A1 is bounded below. Therefore M — Al is bounded below
because n(M¢c — M) is constant if 0 < |A — Ag| < . It follows that a(M¢ — Aol) < o0.

Then 0.4 (M¢c) = o4 (M), which means that a-Browder’s theorem holds for M¢ for every
C € B(K,H). 0

We call A is isoloid if iso 0(A4) C o,,(A), where o,,(A) is the set of all point spectrums. And
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we call A approximate isoloid (abbrev. a-isoloid) if iso 04(A) C 0,(A). Clearly, a-isoloid implies

isoloid.

Remark 3.2 If 0,,(A)Noy, (B) had no interior points, then (a) in Theorem 3.1 is also true. But
Theorem 3.1 may fail for “ a-Weyl’s theorem ” even with the additional assumption that a-Weyl’s
theorem holds for A and B and both A and B are a-isoloid. To see this, let A, B, C' € B({3)
are defined by

A(xlu T2, T3, ) = (Oa X, 07 x2, 07 T3, ')7

B(‘Tla Z2,T3, " ) = (Ov T2, 07 T4, 07 Ze, - ')7

1 1
C(Ila Z2,T3, " ) = (Ov 07()’ 07 §I3a 07 3I55 o )

Then 04(A) = 0ea(A) =T, op(A) = D, 7§y(A) = 0 and 0,(B) = 0eo(B) = {0,1}, op(B) =
78y (B) = 0, which says that a-Weyl’s theorem holds for A and B, both A and B are a-isoloid,
and op(A)Nop(B) ( ow(A)Noyw(B) ) has no interior points. Also a straightforward calculation

shows that
A 0 A 0 o A 0
U“(O B>:06“<0 B)ZTU{O}7 7T00<0 B)z(?),

0a(Mc) = 0ea(Mc) =T U{0},  m5(Mc) = {0}-

) A 0 o A C
Then a-Weyl’s theorem holds for ( 0 B ), but fails for ( 0 B )

But for Weyl’s theorem, we have:

Theorem 3.3 If op(A) Nop(B) (or o (A) N ow(B)) has no interior points and if A is an
isoloid operator for which Weyl’s theorem holds, then for every C € B(K, H),

Weyl’s theorem holds for ( 61 g

) = Weyl’s theorem holds for ( 61 g ) .

Proof Theorem 3.1 gives that o(M¢)\ow(Mc) C moo(Mc). For the reverse inclusion, suppose
that A\g € moo(Mc). Then there exists € > 0 such that Mo — Al is invertible and hence A — AT is
bounded below and B— I is surjective if 0 < [A=Xg| < e. op(A)Nop(B) (or oy (A)Noyw(B)) has
no interior points, then op(M¢) = op(A)Uop(B). Since A is not in op(M¢) = op(A)Uop(B),
it follows that A — AI and B — AI are Drazin invertible. Thus A — Al and B — AI are invertible,

. . A 0
which means that Ay € iso o ( 0 B

2.4 in [11]. O

). The following proof is same as the proof in Theorem

Remark 3.4 Theorem 3.3 in this paper is not compatible with Theorem 2.4 in [11]. For
example:

(a) Let A € B(¢2) be defined by

A(I17x27x37 o ) = (z23I43I67 o ')7
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and let B = A — 2[. Then

(I) op(A)=D, op(B)={ A€ C: |A+2|<1}. Then op(A)Nop(B) has no interior
points;

(II) 0e(A)=D, o (A)=Tandoe(B)={AeC: |A+2|/<1}, o.(B)={reC:
[A+2| =1}, where o, (A) ={ A€ C: A— Al is not lower semi-Fredholm operator }. Then
both SP(A) and SP(B) have pseudoholes;

(IT1)  o(A) = 0y (A) = D and mpp(A) = 0, then A is isoloid and Weyl’s theorem holds for

(IV) 0(61 g ) —aw<61 g) —Dandwoo(g1 g > = (), then Weyl’s theorem
A 0
holds for ( 0 B )

By Theorem 3.3 in this note, Weyl’s theorem holds for M¢ for every C' € B({3,¢3). But
using Theorem 2.4 in [11], we do not know whether Weyl’s theorem holds for M¢ for every
C e B(K,H).

(b) Let Th1,T5, B € B({3) are defined by

A;

Tl(fEl,fEQ,(E?,, o ) = (0,1’1,0,‘@2,0,‘@3,0, o ')a

T2($17x27x35 o ) = ($2,I4,$6, o ')7

and
B(II,IQ,Ig, o ') = (07 "1:15:1727'1:37 o .)'

([ Ty 0
Let A= 0 )

Then (I) op(A) =D, op(B)=D. Then op(A) Nop(B) has interior points;

(II) 0c(A) = 05r, (A) = 0sr_(A) = D, 0c(B) = 0sr, (B) = osp_(B) = T, then both
SP(A) and SP(B) have no pseudoholes;

(Il) o(A) =0y,(A) =D, me(A) = 0. Then A is isoloid and Weyl’s theorem holds for A;

(IV) U(é g):Uw<gl g>=D7 7T00(61 g):(b, Then Weyl’s theorem

A 0
holds for( 0o B |

Using Theorem 2.4 in [11], we know that for every C € B({3, {5 @ {3), Weyl’s theorem holds
for Mc. But using Theorem 3.3 in this paper, we do not know whether Weyl’s theorem holds
for M¢ for every C € B({la, {2 @ £s).

For a-Weyl’s theorem, similarly to the prove of Theorem 3.3, we have that:

Theorem 3.5 Ifop(A) (oro(A) ) has no interior points, and if A is an a-isoloid operator for
which a-Weyl’s theorem holds, then for every C € B(K, H),

a-Weyl’s theorem holds for ( 61 g

) = a-Weyl’s theorem holds for ( ‘61 g > .
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Drazin JEFIE F4EREHY Weyl EIE

BN 2 BAIE Y, A
(1. JEETRE R B B R IR 5200, LT 100871,
2. BEPIITE KR S EARESEE, BEPT PG4 710062)

BE: Ac B(H) FRAZ—A Drazin AlHMET, & A BHERMFARHER. H op(4) ={) e
C: A— X ANJ& Drazin A[3¥f) } 378 Drazin &8, ARGE T XF Hilbert Z5[0]_EH—4

22 EAAFIN Mo = () 5 ) B onl)Uon(B) 5 ap(Mc) EBFEANTT

Eh¥3) op(A) Nop(B) F—EMHFFHE, HIFEFEA
op(A)Uop(B) =op(Mc)UG,
Hrh G K op(Me) h—E =M, FHHN op(A)Nop(B) MFHE. 2 x 2 HFREBEA—EH

JE Weyl 3, FIF] Drazin 3%, AT 2 x 2 E=MARFHER Weyl €3, Browder &
H, a-Weyl EHH a-Browder FH.

X$EE: Weyl EF; a-Weyl E#; Browder E¥; a-Browder FF; Drazin i,



