A Note on the w-Global Transform of Mori Domains

Fang Gui WANG

Institute of Mathematics and Software Science, Sichuan Normal University, Sichuan 610068, P. R. China

Abstract Let R be a domain and let R^{wg} be the w-global transform of R. In this note it is shown that if R is a Mori domain, then the t-dimension formula t-dim $(R^{wg}) = t$ -dim(R) - 1 holds.

Keywords Mori domain; maximal w-ideal; the w-global transform.

Document code A MR(2000) Subject Classification 13G05 Chinese Library Classification O154

Throughout this paper R denotes a domain with quotient field K. Matijevic in [6] had introduced the notion of the global transform of R, which is defined to be the set

$$R^g = \{x \in K \mid M_1 \cdots M_n x \subseteq R, \text{ where } M_i \in \text{Max}(R)\},\$$

and shown that if R is Noetherian, then any ring T such that $R \subseteq T \subseteq R^g$ is Noetherian. We have known that Mori domains have the ascending chain condition on divisorial ideals and strong Mori domains have the ascending chain condition on w-ideals. Every strong Mori domain is a Mori domain, but a Mori domain is not necessarily a strong Mori domain. Park [7] proved the w-analogue of Matijevic result, that is, if R is a strong Mori domain, then any w-overring T in the w-global transform R^{wg} of R is also a strong Mori domain. In this note we give the relationship of t-dimension of R and R^{wg} for a Mori domain R.

Let A be a fractional ideal of R. Define $A^{-1} = \{x \in K \mid xA \subseteq R\}$ and set $A_v = (A^{-1})^{-1}$. If $A = A_v$, then A is called a v-fractional ideal. We also define $A_t = \bigcup B_v$, where B ranges over finitely generated fractional subideal of A. If $A_t = A$, then A is called a t-fractional ideal. Let J be a finitely generated ideal of R. J is called a GV-ideal, denoted by $J \in GV(R)$, if $J^{-1} = R$. Define

$$A_w = \{x \in K \mid Jx \subseteq A \text{ for some } J \in GV(R)\}.$$

If $A_w = A$, then A is called a w-fractional ideal, equivalently, the condition $x \in K$ and $J \in GV(R)$ with $Jx \subseteq A$ implies $x \in A$. For the discussion on t-ideals and w-ideals, readers can consult the

Received May 11, 2008; Accepted January 5, 2009

Supported by the National Natural Science Foundation of China (Grant No. 10671137) and the Research Foundation for Doctor Programme (Grant No. 20060636001).

E-mail address: wangfg2004@163.com

literature [5] and [10]. Let $R \subseteq T$ be an extension of domains. We say that T is an overring of R if $T \subseteq K$. Let T be an overring of R. Following [11] and [7], we call T a w-overring if T as an R-module is a w-module.

Let P be a prime t-ideal of R. We denote by t-ht P the supremum of the lengths n of all chains $0 \subset P_n \subset P_{n-1} \subset \cdots \subset P_1 = P$, where $P_1, \ldots, P_{n-1}, P_n$ are prime t-ideals of R. Define t-dim $(R) = \sup\{t$ -ht $P\}$, where P ranges over all prime t-ideals of R.

Denote by w-Max(R) the set of maximal w-ideals of R. Following the notation of Park [7], we denote

$$R^{wg} = \{x \in K \mid P_1 \cdots P_n x \subseteq R \text{ for some } P_1, \dots, P_n \in w\text{-Max}(R)\}.$$

Then R^{wg} is an overring of R contained in K and is called w-global transform of R.

Let B be a fractional ideal of R. Define similarly the w-global transform of B to be the set

$$B^{wg} = \{x \in K \mid P_1 \cdots P_n x \subseteq B \text{ for some } P_1, \dots, P_n \in w\text{-Max}(R)\}.$$

Lemma 1 R^{wg} is a w-overring of R.

Proof See [7, Corollary 1.7].

Lemma 2 (1) Let B_1 and B_2 be fractional ideals of R with $B_1 \subseteq B_2$. Then $(B_1)^{wg} \subseteq (B_2)^{wg}$.

- (2) Let B be a fractional ideal of R. Then B^{wg} is a fractional ideal of R^{wg} .
- (3) If B is an ideal of R, then $B^{wg} = R^{wg}$ if and only if there are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n \subseteq B$. Therefore, if Q is a prime ideal of R, then $Q^{wg} = R^{wg}$ if and only if $P \subseteq Q$ for some $P \in w\text{-Max}(R)$.
 - (4) Let A be an ideal of R^{wg} and let $B = A \cap R$. Then $A \subseteq B^{wg}$.

Proof It is straightforward.

Lemma 3 (1) Let Q be a prime ideal of R such that $P \nsubseteq Q$ for any $P \in w\text{-Max}(R)$. Then Q^{wg} is a prime ideal of R^{wg} and $Q^{wg} \cap R = Q$.

- (2) Let Q_1 and Q_2 be prime ideals of R with $P \not\subseteq Q_1, Q_2$ for any $P \in w\text{-Max}(R)$. Then $(Q_1)^{wg} = (Q_2)^{wg}$ if and only if $Q_1 = Q_2$.
- (3) Let A be a prime ideal of R^{wg} and let $Q = A \cap R$. If $P \nsubseteq Q$ for any $P \in w\text{-Max}(R)$, then $A = Q^{wg}$.
 - (4) Let Q be a prime ideal of R such that $P \not\subseteq Q$ for any $P \in w\text{-Max}(R)$. Then ht $Q^{wg} = \text{ht } Q$.

Proof (1) By Lemma 2, $Q^{wg} \neq R^{wg}$. Let $x, y \in R^{wg}$ with $xy \in Q^{wg}$. Then there are $P_1, \ldots, P_n, P_{n+1}, \ldots, P_m \in w$ -Max(R) such that $P_1 \cdots P_n x \subseteq R$, $P_{n+1} \cdots P_m y \subseteq R$ and $P_1 \cdots P_n P_{n+1} \cdots P_m xy \subseteq Q$. Hence $P_1 \cdots P_n x \subseteq Q$ or $P_{n+1}, \ldots, P_m y \subseteq Q$, that is, $x \in Q^{wg}$ or $y \in Q^{wg}$. Then Q^{wg} is a prime ideal of R^{wg} .

It is clear that $Q \subseteq Q^{wg} \cap R$. Conversely, let $a \in Q^{wg} \cap R$. Then $P_1 \cdots P_n a \subseteq Q$ for $P_1, \ldots, P_n \in w\text{-Max}(R)$. Since $P_i \not\subseteq Q$, we have $a \in Q$. Hence $Q = Q^{wg} \cap R$.

(2) If
$$(Q_1)^{wg} = (Q_2)^{wg}$$
, then $Q_1 = (Q_1)^{wg} \cap R = (Q_2)^{wg} \cap R = Q_2$.

554 F. G. WANG

(3) By Lemma 2, $A \subseteq Q^{wg}$. Let $x \in Q^{wg}$. Then $P_1 \cdots P_n x \subseteq Q \subseteq A$ for some $P_1, \ldots, P_n \in w\text{-Max}(R)$. Because $P_i \not\subseteq A$ and A is prime, we have $x \in A$. Hence $A = Q^{wg}$.

- (4) It is clear by (2) that ht $Q \leq \operatorname{ht} Q^{wg}$. Let $A_1 \subset A_2 \subset \cdots \subset A_n \subset Q^{wg}$ be a chain of prime ideals of R^{wg} . For each i, set $Q_i = A_i \cap R$. Then $Q_1 \subset Q_2 \subset \cdots \subset Q_n \subset Q$ is a chain of prime ideals of R by (3). Hence $\operatorname{ht} Q^{wg} = \operatorname{ht} Q$. \square
- **Lemma 4** (1) Let B be a fractional ideal of R. Then, as fractional ideals of R^{wg} , $(B^{-1})^{wg} \subseteq (B^{wg})^{-1} \subset (BR^{wg})^{-1}$.
 - (2) Let B be a t-finite type fractional ideal of R. Then $(B^{-1})^{wg} = (B^{wg})^{-1} = (BR^{wg})^{-1}$.
- (3) Let R be a Mori domain and let B be a fractional ideal of R. Then, as fractional ideals of R^{wg} , $(B^{wg})_v = (BR^{wg})_v = (B_v)^{wg}$. Therefore, if B is a v-ideal of R, then B^{wg} is a v-ideal of R^{wg} .
- (4) Let R be a Mori domain and let A be an ideal of R^{wg} . Then $A_v = (B_v)^{wg}$, where $B = A \cap R$. Therefore, if A is a v-ideal of R^{wg} , then $B = A \cap R$ is a v-ideal of R and $A = B^{wg} = (BR^{wg})_v$.
- (5) Let R be a Mori domain and let B be an ideal of R. Then $(B^{wg})^{-1} = R^{wg}$ if and only if there are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n \subseteq B_v$. Therefore, $(PR^{wg})^{-1} = R^{wg}$ for any $P \in w\text{-Max}(R)$.
- (6) Let R be a Mori domain and let A be an ideal of R^{wg} . Then $A_v = R^{wg}$ if and only if there are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n \subseteq B_v$, where $B = A \cap R$.
- **Proof** (1) Let $x \in (B^{-1})_S$. There are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n x \subseteq B^{-1}$. For any $y \in B^{wg}$, take $P_{n+1}, \ldots, P_m \in w\text{-Max}(R)$ such that $P_{n+1} \cdots P_m y \subseteq B$. Thus $P_1 \cdots P_m x y \subseteq B^{-1}B \subseteq R$. Hence $xy \in R^{wg}$. Thus $x \in (B^{wg})^{-1}$, whence, $(B^{-1})^{wg} \subseteq (B^{wg})^{-1}$. From $BR^{wg} \subseteq B^{wg}$, we have $(B^{wg})^{-1} \subseteq (BR^{wg})^{-1}$.
- (2) It suffices by (1) to show that $(BR^{wg})^{-1} \subseteq (B^{-1})^{wg}$. Let $x \in (BR^{wg})^{-1}$. Since B is of t-finite type, there is a finitely generated fractional subideal J of B such that $B_v = J_v$, therefore, $J^{-1} = B^{-1}$. Because $xJ \subseteq xB \subseteq R^{wg}$ and J is finitely generated, there are $P_1, \ldots, P_n \in w$ -Max(R) such that $P_1 \cdots P_n Jx \subseteq R$. Then $P_1 \cdots P_n x \in J^{-1} = B^{-1}$. Hence $x \in (B^{-1})^{wg}$. Thus we have $(BR^{wg})^{-1} \subseteq (B^{-1})^{wg}$.
 - (3) This follows from (2) since B^{-1} is also of t-finite type in a Mori domain.
- (4) Since $BR^{wg} \subseteq A \subseteq B^{wg}$ by Lemma 2 (4), we have $(BR^{wg})_v \subseteq A_v \subseteq (B^{wg})_v$. Hence $A = (B_v)^{wg}$ by (3).

Suppose A is a v-ideal of R^{wg} . Since $BR^{wg} \subseteq A \subseteq B^{wg}$, we have $(BR^{wg})_v \subseteq A \subseteq (B_v)^{wg}$. Hence $A = (BR^{wg})_v = (B_v)^{wg}$. Then $B_v \subseteq A \cap R = B$, that is, $B = B_v$. Hence $A = B^{wg} = (BR^{wg})_v$.

- (5) From (3), $(B^{wg})^{-1} = R^{wg}$ if and only if $(B_v)^{wg} = R^{wg}$, if and only if there are $P_1, \ldots, P_n \in w\text{-Max}(R)$ such that $P_1 \cdots P_n \subseteq B_v$ by Lemma 2.
 - (6) It is direct from (4) and (5). \square

Proposition 5 Let R be a Mori domain and let A be a w-ideal of R^{wg} . Then $B = A \cap R$ is a

w-ideal of R and $A = B^{wg} = (BR^{wg})_w$.

Proof By [11, Lemma 3.1], B is a w-ideal of R. Since $B \subseteq A$, we have $BR^{wg} \subseteq A \subseteq B^{wg}$. Hence $(BR^{wg})_w \subseteq A \subseteq B^{wg}$. Let $x \in B^{wg}$. Then there are $P_1, \ldots, P_n \in w$ -Max(R) such that $P_1 \cdots P_n x \subseteq B$. Let I_i be a finitely generated subideal of P_i such that $P_i = (I_i)_v$ for $i = 1, \ldots, n$. Thus $I_1 \cdots I_n x \subseteq B$. By Lemma 4, $I_i R^{wg} \in GV(R^{wg})$. Then $x \in (BR^{wg})_w$, and hence $A = (BR^{wg})_w = B^{wg}$. \square

Proposition 6 (1) Let R be a Mori domain. Then R^{wg} is also a Mori domain.

(2) Let R be a strong Mori domain. Then R^{wg} is also a strong Mori domain.

Proof (1) It follows from Lemma 4. Also see [8, Théorème 2].

(2) It follows from Proposition 5. Also see [7, Theorem 1.5 & Corollary 1.7]. □

Theorem 7 Let R be a Mori domain. Let A be a maximal v-ideal of R^{wg} and set $B = A \cap R$. Then, for any $P \in w$ -Max(R), $P \nsubseteq B$, and B is a maximal prime v-subideal of P for any maximal v-ideal P of R with $B \subseteq P$.

Proof For any $P \in w\text{-Max}(R)$, then P is a v-ideal because R is a H-domain by [5]. Write $P = J_v$, where J is a finitely generated subideal of P. By Lemma 4(6), $JR^{wg} \in GV(R^{wg})$. Hence $P \not\subseteq B$.

By Lemma 4, B is a prime v-ideal of R and $A = B^{wg}$. Let P be a maximal w-ideal of R with $B \subseteq P$ and let Q be a prime v-ideal of R with $B \subseteq Q \subseteq P$. If $Q \neq P$, then Q^{wg} is a prime v-ideal of R^{wg} by Lemma 3 and Lemma 4. Hence $A = Q^{wg}$ by the maximality of A. Then B = Q by Lemma 3 again. \square

Theorem 8 Let R be a Mori domain (but not a field). Then t-dim $(R^{wg}) = t$ -dim(R) - 1.

Proof Let $A_n \subset A_{n-1} \subset \cdots \subset A_1 \subset A_0$ be a chain of prime v-ideals of R^{wg} . Set $B_i = A_i \cap R$ for $i = 0, 1, \ldots, n$. Then B_i is a prime v-ideal of R by Lemmas 3 and 4, and $B_n \subset B_{n-1} \subset \cdots \subset B_1 \subset B_0$ be a chain of prime v-ideals of R. By Theorem 7, B_0 is not a maximal t-ideal of R. Hence t-dim $(R^{wg}) \leq t$ -dim(R) - 1. Conversely, let $B_n \subset B_{n-1} \subset \cdots \subset B_1 \subset B_0$ be a chain of prime v-ideals of R such that B_0 is not maximal v-ideal of R. By Lemma 3, $B_n^{wg} \subset B_{n-1}^{wg} \subset \cdots \subset B_1^{wg} \subset B_0^{wg}$ is a chain of prime v-ideals of R^{wg} . Hence t-dim $(R^{wg}) \geqslant t$ -dim(R) - 1. \square

Corollary 9 Let R be a Mori domain. If t-dim(R) = 1, then $R^{wg} = K$.

Proof Since t-dim(R) = 1, we have t-dim $(R^{wg}) = 0$ by Theorem 8. Hence R^{wg} is a field, that is, $R^{wg} = K$. \square

References

- [1] ANDERSON D D, COOK S J. Two star-operations and their induced lattices [J]. Comm. Algebra, 2000, 28(5): 2461–2475.
- [2] BARUCCI V, GABELLI S, ROITMAN M. On semi-Krull domains [J]. J. Algebra, 1992, 145(2): 306–328.
- [3] GLAZ S, VASCONCELOS W V. Flat ideals (II) [J]. Manuscripta Math., 1977, 22(4): 325-341.

556 F. G. WANG

[4] HEINZER W, LANTZ D. When is an N-ring Noetherian? [J]. J. Pure Appl. Algebra, 1986, 39(1-2): 125-139.

- [5] HOUSTON E, ZAFRULLAH M. Integral domains in which each t-ideal is divisorial [J]. Michigan Math. J., 1988, 35(2): 291–300.
- [6] MATIJEVIC J R. Maximal ideal transforms of Noetherian rings [J]. Proc. Amer. Math. Soc., 1976, 54: 49–52.
- [7] PARK M H. On overrings of strong Mori domains [J]. J. Pure Appl. Algebra, 2002, 172(1): 79-85.
- [8] QUERRÉ J. Intersections d'anneaux intègres [J]. J. Algebra, 1976, 43(1): 55-60.
- [9] WANG Fanggui. On induced operations and UMT-domains [J]. Sichuan Shifan Daxue Xuebao Ziran Kexue Ban, 2004, **27**(1): 1–9.
- [10] WANG Fanggui, MCCASLAND R L. On w-modules over strong Mori domains [J]. Comm. Algebra, 1997, 25(4): 1285–1306.
- [11] WANG Fanggui, MCCASLAND R L. On strong Mori domains [J]. J. Pure Appl. Algebra, 1999, 135(2): 155–165.