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Abstract Let G be a k(k < 3)-edge connected simple graph with minimal degree > 3, girth

g, T = L%j For any independent set {a1,az,...,a6/(a—k)} of G, if

&M (4— k(@) —6(g —2r — | £]) 6

2 del)> e TR

g—2r—1),

then G is up-embeddable.
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1. Introduction

Graphs considered here are all connected, finite and undirected. Terminologies and notations
not defined in this paper will generally conform to [1].

Let G = (V(G), E(G)) be a graph, where V(G), E(G) are the set of vertices and edges. The
cardinality of the vertex set of G is denoted by v(G). A set S C V(G) is called an independent
set of G if all vertices in S are not adjacent in G. The degree dg(v) of a vertex v € V(G) is the
number of edges of G incident with v.

The distance dg(u, v) between two vertices u and v is the length of the shortest (u,v)-path
of G. dg(ry,v) = min{dg(z,v),dc(y,v)} is the distance between the edge zy and vertex v.
Clearly,

de(uwv,u) = dg(uv,v) = dg(u,u) = 0.

For a vertex or an edge x of G, we call Ng) () = {v|dg(x,v) =i,v € V(G)} the i-neighbor set
of z in G. The girth of G is the length of a shortest cycle in G.

The maximum genus, v (G) of a graph G is the largest integer n such that there exists
a cellular embedding of G on the orientable surface with genus n. By Euler Formula, we know
that

(@) < |29,
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where 5(G) = |E(G)| —|V(G)|+1 is the Betti number of G. If v (G) = L@J, then G is called
up-embeddable.

For a spanning tree T of G, (G, T) denotes the number of components of G\ E(T) with odd
number of edges. £(G) = miny (G, T) is the Betti deficiency number of G, where the minimum

is taken over all spanning trees of G.

Theorem 1.1 ([6,10]) Let G be a graph. Then

() (G) = 2O,

(ii)) G is up-embeddable if and only if §(G) < 1.

For an edge set A C E(G), ¢(G \ A) denotes the number of components of G \ A, b(G \ A)
denotes the number of components of G\ A with odd Betti number. In 1981, Nebesky [8] obtained

the following combinatorial expression of £(G).
Theorem 1.2 ([8]) Let G be a graph. Then
€06) = max ((G\A)+ G\A) - |4] - 1}

Let A C E(G), F1,Fs, ..., F, bel different components of G\A. E(Fy, Fs, ..., F;) denotes
the set of edges whose end vertices are in two different components F; and F; (1 <i < j <1I).
For an induced subgraph F of G, E(F, Q) denotes the set of edges with one end vertex in F' and
another not in F. If vertex v € V(F) is the end vertex of ¢ (i > 1) edges of E(F,G), then v is

called an i-touching vertex or touching vertex of F'.

Theorem 1.3 ([3]) Let G be a graph. If G is not up-embeddable, i.e., £(G) > 2, then there
exists an edge set A C E(G) satisfying the following properties:

(i) ¢(G\A) =b(G\A) > 2;

(ii) For any component F of G\ A, F is an induced subgraph of G;

(iii) For any | distinct components F;, ..., F; of G\A, |E(F;,,..., F;)| <2l —3;

(iv) &(G) = 2¢(G\A) — |A] - 1.

The study on maximum genus of graphs was inaugurated by Nordhaus, Stewart and White
[9]. From then on, various classes of graphs have been proved up-embeddable. A formerly
known result [10] stated that every 4-edge connected graph is up-embeddable. But, there exists
k (k < 3)-edge connected graphs [5] which are not up-embeddable. Based on this, what kind of
restrictions, under which a graph is up-embeddable, are studied extensively. In [4], Huang and
Liu first began to consider the up-embeddability of simple graphs via degree-sum of nonadjacent
vertices. Later, Chen and Liu [2] extended Huang and Liu’s results. In this paper, we obtain the

following result which improves the results in paper [2,4].

Theorem 1.4 Let G be a k (k < 3)-edge connected simple graph with minimal degree > 3,
girth g, r = L%lj For any independent set {a1, as, ..., ag/u4—k)} of G, if

6/(4—k) k
(4—kv(G)—6(9g—2r—[35]) 6
Z dg(a;) > (4—1@)(2’“—1)(9—%)3 +(4_k)(g—2r—1),

i=1
then G is up-embeddable.
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To see the lower bound presented in Theorem 1.4 is best possible, let us consider the following
infinite family of graphs. Let H be the complete graphs K4 or complete bipartite graphs Koy o,
t > 2. The graph G is obtained by replacing each vertices of K33 with H, then connecting the
edges of K33 to different vertices of H such that G is 3-edge connected and the girth of G is
equal to the girth of H. It is not difficult to find an independent set {a1,as,...,as} of G such
that E?Zl da(a;) = % +6(g — 2r — 1). On the other hand, it is easy to check that
@) =2

2. Characterizations of given subgraphs

In the following, we will obtain some properties on the given induced subgraphs.

Lemma 2.1 Let G be a simple graph with minimal degree > 3, girth g, r = L%lj His a
connected induced subgraph of G, B(H) > 1. If {u,v} C V(H) contains all the touching vertices
of H, then,

(i) When g = 2r +2, there exists an edge ab € E(H) such that min{dg (ab, u),dy(ab,v)} >

(ii) When g = 2r+1, there exists a vertex a € V(H) such that min{dy(a, ), du(a,v)} > r.
Proof See the proof of Proposition 1 in the paper [7]. O

Lemma 2.2 Let G be a simple graph with minimal degree > 3, girth g, r = L%lj His a
connected induced subgraph of G, B3(H) > 1. If H has exactly three 1-touching vertices u, v, w,
then,

(i) When g = 2r + 2, there exists an edge ab € E(H) such that

min{dgy (ab,u),dg(ab,v)} > r — 1, min{max{dy(ab,u),dy (ab,v)}, dg(ab,w)} > r;
(ii) When g = 2r + 1, there exists a vertex a € V(H) such that
min{dgy(a,u),dg(a,v)} > r — 1, min{max{dy(a,u),dg(a,v)}, dg(a,w)} >r.

Proof See the proof of Proposition 2 in the paper [7]. O

Lemma 2.3 Let G be a simple graph with minimal degree > 3, girth g, r = L%lj H is
a connected induced subgraph of G, 3(H) > 1. If |E(H,G)| < 2, then there exists a vertex
a € V(H) such that
H) - 2
doa) = dy(a) < LHZ9%2 0 o),

(27 —=1)(g —2r)
Proof Clearly, H has at most two touching vertices, assume that {u,v} C V(H) contains all
the touching vertices of H.

Case 1 g =2r+ 1. By Lemma 2.1, there exists a vertex a € V(H) such that
min{dgy(a,u),dg(a,v)} > r.

Clearly, a is not the touching vertex of H, so dg(a) = dg(a).
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As the girth of G is g, for any =,y € Ng)(a), x#y, 0<i<r—1, we have
ry ¢ B(H), (N (@) 0Ny (@) 0 (V™ (@) 0 Ny () = 0.
Or else, the girth of H will be less than g. Hence,
N (@) =1, IN (@) = du(a) - 27, 1<i<r.

So, we get
H) > || NP |—Z|N” |>1+ZdH 21 = 1 4 dy(a)(2" — 1).
=0

Combining g = 2r + 1, by simple calculation, we have

v(H)—1  v(H)—g+2r
2r —1 (2r —1)(g — 2r)

Case 2 g = 2r + 2. By Lemma 2.1, there exists an edge ab € E(H) such that

dg(a) =dg(a) < +(g—2r—-1).

min{dgy (ab,u),dg (ab,v)} > r.
As the girth of G is g, for any =,y € Ng)(ab) x#1y,0<i<r—1, we have
zy ¢ B(H), (N (ab) 0N (@) 0 (N (ab) 0 NP () = 0.
Or else, the girth of H will be less than g. Hence,
INO (ab)| =2, IND(ab)| > (dg(a) + da(b) —2) 271, 1<i<r
Without loss of generality, let
i () = min{dy (a), s ()},

So, we obtain
1) 2 37 NG @0)] 2 2+ (din(a) + dur(8) — 2" — 1) > 2 + (2da(a) - 2)(2" — 1)
1=0

As a is not the touching vertex of H, combining g = 2r + 2, we have

de:(a) = dg(a) < %H_ %4—(9—27‘—1). 0

Lemma 2.4 Let G be a simple graph with minimal degree > 3, girth g > 4, r = L%lj H

is a connected induced subgraph of G, f(H) > 1. If |E(H,G)| = 3, then there exists a vertex

a € V(H) such that

v(H)—g+2r+1
(2r = 1)(g —2r)

Proof First, when H has at most two touching vertices, from the proof of Lemma 2.3, this

result holds.

Second, assume that H has exactly three 1-touching vertices u, v, w.

dg(a) = dp(a) <

+(g—2r—1).

Case 1 g=2r+1>5. By Lemma 2.2, there exists a vertex a € V(H) such that

min{dgy(a,u),dg(a,v)} > r — 1, min{max{dy(a,u),dg(a,v)}, dg(a,w)} > r.
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Similarly, we have

ING ()] > du(a)- 27 =1, NG (a)] > di(a) - 2771, 1<i<r—1.
Hence,

>Z|Nl> |>1+ZdH ) 27— 1 =dg(a)(2" —1).

As a is not the touching vertex of H, combining g = 2r + 1, we obtain

B v(H) _v(H)—g+2r+1
dg(a) =dg(a) < 2r —1 (21 —1)(g —2r)

Case 2 g = 2r + 2. By Lemma 2.2, there exists an edge ab € E(H) such that

+(g—2r—1).

min{dg(ab,u),dm(ab,v)} > r — 1, min{max{dg(ab,u),dm(ab,v)},dn(ab,w)} > r.

Subcase 2.1 g = 2r +2 > 6. Clearly, a, b are not the touching vertex of H. Without loss of

generality, let
dg(a) < dg(b).

Similarly, we have
NG (ab)| > (drr(a) + dr(b) —2) - 27 =1 > (2dg(a) —2) - 271 = 1,
INi (ab)] = (du(a) + i (b) = 2) - 27! = (2dg(a) —2)- 271, 1<i<r—1.

Hence,
(H) > Z IND (ab)| > 2+ i@d@(@) —2)- 27— 1 = (2dg(a) — 2)(2" — 1) + 1.

As g = 2r + 2, then
v(H) -1 v(H)—g+2r+1
d =d < 1=
cla)=dula) < 57y T 1= " g —m
Subcase 2.2 g =2r + 2 = 4. Clearly, we can assume that a is not the touching Vertex of H.
First, if dg(a) > dg(b), then dg(a) > 4. Hence, there exists a vertex o’ € N ( )\ {u, v, w}
such that

+(g—2r—1).

min{dy (aa’,u),dy (aa’,v),dg (aa’,w)} > 1.
Now, without loss of generality, assume that dg(a’) = min{dg(a’),dg(a)}. So, we have
INP(aa')| = du(a’) + du(a) — 2 = da(a’) + dg(a) — 2 > 2dg(a’) — 2.
Hence,
v(H) > N} (ad)| + [N} (aa)| > 2da(a)
As g =2r 42 =4, we have

v(H) < v(H)—g+2r+1
2 — (@2r=1)g—2r)

Secondly, if dg(a) < dg(b), as u, v, w are 1-touching vertices of H, we have

dg(a') = du(d’) <

+(g—2r—1).

INT (ab)] = dp(a) + du (b) — 2 > da(a) + d (b) — 3 > 2da(a) — 3.
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Hence, we have

v(H) = [N (ab)| + Ny (ab)| = 2dc(a) — 1.
As g =2r + 2 =4, it follows

vH)+1 v(H)—g+2r+1
2 o (2r=1)(g—2r)

dg(a) =dg(a) < +(g—2r—1). O

3. The proof of Theorem 1.4

Proof of Theorem 1.4 Suppose that graph G is not up-embeddable. There exists an edge set
A C E(QG) satisfying the properties (1)—(4) of Theorem 1.3. Define C(G \ A) to be the set of
components of G \ A4, and

B, ={F||E(F,G)|=14,FeC(G\A)}, i=1,23.
Obviously,
¢(G\ A) = |B1| + |Bz| + | Bs| + | Ba|. (1)

For each edge e € A, the end vertices of e must belong to two distinct components of G\ A4,
because any component F' € C(G\A) is an induced subgraph of G, which means that there exist
just two components Fy, Fr € C(G\A) such that e € E(Fy,G) and e € E(F2,G). On the other
hand, each edge e € E(F, G) must belong to A. Thus

A =Upcc\a)EF,G)|

and

1 3 1
Al == E(F. >2|B —|B B —|B. 2
Al=5 X IB(R.G)| 2 20Bal + S|Bsl + B2l + 511 e)
FEeC(G\A)

Combining Theorem 1.3, Equations (1) and (2), we have
§(G) =2¢(G\ A) - |A] -1
3 1
< 2(|Ba| + |Bs| + |B2| + | Bul) = (2|Bal + 5|Bs| + |Be| + 5| B1]) — 1
1 3
=—-|B B —|By| — 1.
2| 3| +1 2|+2| 1

As @ is not up-embeddable, i.e., £(G) > 2, we have

1 3
5|Bsl + |Bz| + 5|Bi| = 3. (3)
Since |B;| = 0 for ¢ < k, simple calculation gives
6
B B Bi| > ——. 4
|3|+|2|+|1|_4—k (4)

Without loss of generality, let
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When g =3 and k = 3, 6/(4 — k) = 6. First, assume that each vertex in F; (1 <7 < 6) is
a touching vertex of F;. Since |E(F;,G)| = 3, V(F;) contains exactly three 1-touching vertices,
denoted by {z;,yi, z;}. Furthermore, suppose {x¢zs5, Y624, 2623} = E(Fg,G). As the vertex z3
connects at most one vertex in V(F;) UV (Fy), there are at least 2 vertices in F; and F, denoted
by {z1,y1} and {z2,y2}, respectively, which are not adjacent with z3. But, as |E(Fy, F»)| < 1,
we can assume that z; and z5 are not adjacent. Now, the vertices set {z1, 22, ..., 26} is clearly an
independent set of G. Secondly, if there exists one vertex w; in some F; (1 < i < 6) which is not
the touching vertex of F;, then by replacing z; with u;, we also obtain an independent set of G with
6 vertices. For k = 1,2, by similar discussions, there exist vertices a; € V(F;) (1 <i < 6/(4—k)),

where a; is at most a 1-touching vertex of [, such that {a1,az,...,as/u—k)} is an independent
set of G.

Hence, for k < 3 and g = 2r + 1 = 3, there exists vertex a; € F; (1 <14 < 6/(4 — k)) such
that {a1,az,...,a6/(4—r)} is an independent set of G, and

v(F;)—g+2r+1

(27 = 1)(g — 2r)
Case 1 ¢(G\ A) =6/(4 — k). First, when k <2, 6/(4 — k) =k + 1. By Theorem 1.3, it is easy
to know that

dg(ai) < dFi (ai) +1< I/(Fl) =

+(g—-2r—1), 1<i<6/(4—k). (5)

|E(F;,Q)| <2, 1<i<k+1.

So, by Lemma 2.3, there exist vertices a; € F; (1 < i < k+ 1) such that {aj,...,ar4+1} is an
independent set of GG, and

o vF) — (g —2r)

de(a;) < 2 —T)(g—21) +g—-2r—1), 1<i<k+1.

Hence, we have

k+1 k1
>oimq V(Fi) = (k+1)(g —2r)
da(ai)
; e

N

+(k+1)(g—2r—1)

B (2" —1)(g —2r)
_ v(G)—(k+1)(g—2r)
(2 —1)(g —2r)

But, this contradicts the condition.

+(k+1)(g—2r—1).

Secondly, when k = 3, 6/(4 — k) = 6. Combining equation (5) and Lemma 2.4, there exist
vertices a; € F; (1 < i < 6) such that {a1,as,...,as} is an independent set of G, and
v(F) —(g—2r—1)

talw) = T -

+(g—2r—1), 1<i<6.

Hence, we have

6 6
) i v(F) —6(g—2r—1)
2 el < =G -
v(G)—6(g—2r—1)

= AT +6(g—2r —1).

But, this also contradicts the condition.

+6(g—2r—1)
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Case 2 ¢(G\ A) > 6/(4 — k). Combining equation (5) and Lemma 2.4, there exist vertices
a; € F; (1 <i<6/(4—k)) such that {a1,as,...,a6/4—k)} is an independent set of G, and
v(F) —(g=2r—1)
@ —1)(g—2)
As ¢(G\ A) > 6/(4 — k) and the order of each component of G \ A is at least 3, we have

dg(a;) <

+(g-2r—1), 1<i<6/(4—k).

6/(4—k)
Z v(F;) <v(G) -3
Thus,
6/(4—k) 6/(4—k)
v(F;))—(g—2r—1) 6(g—2r—1)
; da(a;) < ; @ 1) _27 i
7 SV () — 15 (g —2r — 1) N 6(g—2r —1)
(2r = 1)(g —2r) 4—k
_ WG -3) -5 -2r—1)  6lg-2r—1)
- (2r —1)(g — 2r) 4—k

But, this also contradicts the condition. Hence, G is up-embeddable. This completes the proof. [

Corollary 3.1 Let G be a k (k < 3)-edge connected simple graph with girth g, r = Lg—;lj If
minimal degree §(G) > 3 and
(4-K)v(G) —6(g—2r - [§])

2G) > 6(2 —1)(g — 2r)

+(g—2r—-1),
then G is up-embeddable.
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