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Abstract Let G be a k(k ≤ 3)-edge connected simple graph with minimal degree ≥ 3, girth

g, r = ⌊ g−1
2

⌋. For any independent set {a1, a2, . . . , a6/(4−k)} of G, if

6/(4−k)∑

i=1

dG(ai) >
(4 − k)ν(G) − 6(g − 2r − ⌊ k

3
⌋)

(4 − k)(2r − 1)(g − 2r)
+

6

(4 − k)
(g − 2r − 1),

then G is up-embeddable.
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1. Introduction

Graphs considered here are all connected, finite and undirected. Terminologies and notations

not defined in this paper will generally conform to [1].

Let G = (V (G), E(G)) be a graph, where V (G), E(G) are the set of vertices and edges. The

cardinality of the vertex set of G is denoted by ν(G). A set S ⊆ V (G) is called an independent

set of G if all vertices in S are not adjacent in G. The degree dG(v) of a vertex v ∈ V (G) is the

number of edges of G incident with v.

The distance dG(u, v) between two vertices u and v is the length of the shortest (u, v)-path

of G. dG(xy, v) = min {dG(x, v), dG(y, v)} is the distance between the edge xy and vertex v.

Clearly,

dG(uv, u) = dG(uv, v) = dG(u, u) = 0.

For a vertex or an edge x of G, we call N
(i)
G (x) = {v|dG(x, v) = i, v ∈ V (G)} the i-neighbor set

of x in G. The girth of G is the length of a shortest cycle in G.

The maximum genus, γM (G) of a graph G is the largest integer n such that there exists

a cellular embedding of G on the orientable surface with genus n. By Euler Formula, we know

that

γM (G) ≤ ⌊
β(G)

2
⌋,
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where β(G) = |E(G)|− |V (G)|+1 is the Betti number of G. If γM (G) = ⌊β(G)
2 ⌋, then G is called

up-embeddable.

For a spanning tree T of G, ξ(G, T ) denotes the number of components of G\E(T ) with odd

number of edges. ξ(G) = minT ξ(G, T ) is the Betti deficiency number of G, where the minimum

is taken over all spanning trees of G.

Theorem 1.1 ([6, 10]) Let G be a graph. Then

(i) γM (G) = β(G)−ξ(G)
2 ;

(ii) G is up-embeddable if and only if ξ(G) ≤ 1.

For an edge set A ⊆ E(G), c(G \ A) denotes the number of components of G \ A, b(G \ A)

denotes the number of components of G\A with odd Betti number. In 1981, Nebesky [8] obtained

the following combinatorial expression of ξ(G).

Theorem 1.2 ([8]) Let G be a graph. Then

ξ(G) = max
A⊆E(G)

{c(G\A) + b(G\A) − |A| − 1}.

Let A ⊆ E(G), F1, F2, . . . , Fl be l different components of G\A. E(F1, F2, . . . , Fl) denotes

the set of edges whose end vertices are in two different components Fi and Fj (1 ≤ i < j ≤ l).

For an induced subgraph F of G, E(F, G) denotes the set of edges with one end vertex in F and

another not in F . If vertex v ∈ V (F ) is the end vertex of i (i ≥ 1) edges of E(F, G), then v is

called an i-touching vertex or touching vertex of F .

Theorem 1.3 ([3]) Let G be a graph. If G is not up-embeddable, i.e., ξ(G) ≥ 2, then there

exists an edge set A ⊆ E(G) satisfying the following properties:

(i) c(G\A) = b(G\A) ≥ 2;

(ii) For any component F of G\A, F is an induced subgraph of G;

(iii) For any l distinct components Fi1 , . . . , Fil
of G\A, |E(Fi1 , . . . , Fil

)| ≤ 2l − 3;

(iv) ξ(G) = 2c(G\A) − |A| − 1.

The study on maximum genus of graphs was inaugurated by Nordhaus, Stewart and White

[9]. From then on, various classes of graphs have been proved up-embeddable. A formerly

known result [10] stated that every 4-edge connected graph is up-embeddable. But, there exists

k (k ≤ 3)-edge connected graphs [5] which are not up-embeddable. Based on this, what kind of

restrictions, under which a graph is up-embeddable, are studied extensively. In [4], Huang and

Liu first began to consider the up-embeddability of simple graphs via degree-sum of nonadjacent

vertices. Later, Chen and Liu [2] extended Huang and Liu’s results. In this paper, we obtain the

following result which improves the results in paper [2, 4].

Theorem 1.4 Let G be a k (k ≤ 3)-edge connected simple graph with minimal degree ≥ 3,

girth g, r = ⌊ g−1
2 ⌋. For any independent set {a1, a2, . . . , a6/(4−k)} of G, if

6/(4−k)∑

i=1

dG(ai) >
(4 − k)ν(G) − 6(g − 2r − ⌊k

3 ⌋)

(4 − k)(2r − 1)(g − 2r)
+

6

(4 − k)
(g − 2r − 1),

then G is up-embeddable.



Up-embeddability of graphs with new degree-sum of independent vertices 401

To see the lower bound presented in Theorem 1.4 is best possible, let us consider the following

infinite family of graphs. Let H be the complete graphs K4t or complete bipartite graphs K2t,2t,

t ≥ 2. The graph G is obtained by replacing each vertices of K3,3 with H , then connecting the

edges of K3,3 to different vertices of H such that G is 3-edge connected and the girth of G is

equal to the girth of H . It is not difficult to find an independent set {a1, a2, . . . , a6} of G such

that
∑6

i=1 dG(ai) = ν(G)−6(g−2r−1)
(2r−1)(g−2r) + 6(g − 2r − 1). On the other hand, it is easy to check that

ξ(G) = 2.

2. Characterizations of given subgraphs

In the following, we will obtain some properties on the given induced subgraphs.

Lemma 2.1 Let G be a simple graph with minimal degree ≥ 3, girth g, r = ⌊ g−1
2 ⌋. H is a

connected induced subgraph of G, β(H) ≥ 1. If {u, v} ⊆ V (H) contains all the touching vertices

of H , then,

(i) When g = 2r+2, there exists an edge ab ∈ E(H) such that min{dH(ab, u), dH(ab, v)} ≥

r;

(ii) When g = 2r+1, there exists a vertex a ∈ V (H) such that min{dH(a, u), dH(a, v)} ≥ r.

Proof See the proof of Proposition 1 in the paper [7]. �

Lemma 2.2 Let G be a simple graph with minimal degree ≥ 3, girth g, r = ⌊ g−1
2 ⌋. H is a

connected induced subgraph of G, β(H) ≥ 1. If H has exactly three 1-touching vertices u, v, w,

then,

(i) When g = 2r + 2, there exists an edge ab ∈ E(H) such that

min{dH(ab, u), dH(ab, v)} ≥ r − 1, min{max{dH(ab, u), dH(ab, v)}, dH(ab, w)} ≥ r;

(ii) When g = 2r + 1, there exists a vertex a ∈ V (H) such that

min{dH(a, u), dH(a, v)} ≥ r − 1, min{max{dH(a, u), dH(a, v)}, dH(a, w)} ≥ r.

Proof See the proof of Proposition 2 in the paper [7]. �

Lemma 2.3 Let G be a simple graph with minimal degree ≥ 3, girth g, r = ⌊ g−1
2 ⌋. H is

a connected induced subgraph of G, β(H) ≥ 1. If |E(H, G)| ≤ 2, then there exists a vertex

a ∈ V (H) such that

dG(a) = dH(a) ≤
ν(H) − g + 2r

(2r − 1)(g − 2r)
+ (g − 2r − 1).

Proof Clearly, H has at most two touching vertices, assume that {u, v} ⊆ V (H) contains all

the touching vertices of H .

Case 1 g = 2r + 1. By Lemma 2.1, there exists a vertex a ∈ V (H) such that

min{dH(a, u), dH(a, v)} ≥ r.

Clearly, a is not the touching vertex of H , so dG(a) = dH(a).
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As the girth of G is g, for any x, y ∈ N
(i)
H (a), x 6= y, 0 ≤ i ≤ r − 1, we have

xy /∈ E(H), (N
(i+1)
H (a) ∩ N

(1)
H (x)) ∩ (N

(i+1)
H (a) ∩ N

(1)
H (y)) = ∅.

Or else, the girth of H will be less than g. Hence,

|N
(0)
H (a)| = 1, |N

(i)
H (a)| ≥ dH(a) · 2i−1, 1 ≤ i ≤ r.

So, we get

ν(H) ≥ |
r⋃

i=0

N
(i)
H (a)| =

r∑

i=0

|N
(i)
H (a)| ≥ 1 +

r∑

i=1

dH(a) · 2i−1 = 1 + dH(a)(2r − 1).

Combining g = 2r + 1, by simple calculation, we have

dG(a) = dH(a) ≤
ν(H) − 1

2r − 1
=

ν(H) − g + 2r

(2r − 1)(g − 2r)
+ (g − 2r − 1).

Case 2 g = 2r + 2. By Lemma 2.1, there exists an edge ab ∈ E(H) such that

min{dH(ab, u), dH(ab, v)} ≥ r.

As the girth of G is g, for any x, y ∈ N
(i)
H (ab), x 6= y, 0 ≤ i ≤ r − 1, we have

xy /∈ E(H), (N
(i+1)
H (ab) ∩ N

(1)
H (x)) ∩ (N

(i+1)
H (ab) ∩ N

(1)
H (y)) = ∅.

Or else, the girth of H will be less than g. Hence,

|N
(0)
H (ab)| = 2, |N

(i)
H (ab)| ≥ (dH(a) + dH(b) − 2) · 2i−1, 1 ≤ i ≤ r.

Without loss of generality, let

dH(a) = min{dH(a), dH(b)}.

So, we obtain

ν(H) ≥
r∑

i=0

|N
(i)
H (ab)| ≥ 2 + (dH(a) + dH(b) − 2)(2r − 1) ≥ 2 + (2dH(a) − 2)(2r − 1).

As a is not the touching vertex of H , combining g = 2r + 2, we have

dG(a) = dH(a) ≤
ν(H) − 2

2(2r − 1)
+ 1 =

ν(H) − g + 2r

(2r − 1)(g − 2r)
+ (g − 2r − 1). �

Lemma 2.4 Let G be a simple graph with minimal degree ≥ 3, girth g ≥ 4, r = ⌊ g−1
2 ⌋. H

is a connected induced subgraph of G, β(H) ≥ 1. If |E(H, G)| = 3, then there exists a vertex

a ∈ V (H) such that

dG(a) = dH(a) ≤
ν(H) − g + 2r + 1

(2r − 1)(g − 2r)
+ (g − 2r − 1).

Proof First, when H has at most two touching vertices, from the proof of Lemma 2.3, this

result holds.

Second, assume that H has exactly three 1-touching vertices u, v, w.

Case 1 g = 2r + 1 ≥ 5. By Lemma 2.2, there exists a vertex a ∈ V (H) such that

min{dH(a, u), dH(a, v)} ≥ r − 1, min{max{dH(a, u), dH(a, v)}, dH(a, w)} ≥ r.
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Similarly, we have

|N
(r)
H (a)| ≥ dH(a) · 2r−1 − 1, |N

(i)
H (a)| ≥ dH(a) · 2i−1, 1 ≤ i ≤ r − 1.

Hence,

ν(H) ≥
r∑

i=0

|N
(i)
H (a)| ≥ 1 +

r∑

i=1

dH(a) · 2i−1 − 1 = dH(a)(2r − 1).

As a is not the touching vertex of H , combining g = 2r + 1, we obtain

dG(a) = dH(a) ≤
ν(H)

2r − 1
=

ν(H) − g + 2r + 1

(2r − 1)(g − 2r)
+ (g − 2r − 1).

Case 2 g = 2r + 2. By Lemma 2.2, there exists an edge ab ∈ E(H) such that

min{dH(ab, u), dH(ab, v)} ≥ r − 1, min{max{dH(ab, u), dH(ab, v)}, dH(ab, w)} ≥ r.

Subcase 2.1 g = 2r + 2 ≥ 6. Clearly, a, b are not the touching vertex of H . Without loss of

generality, let

dG(a) ≤ dG(b).

Similarly, we have

|N
(r)
H (ab)| ≥ (dH(a) + dH(b) − 2) · 2r−1 − 1 ≥ (2dG(a) − 2) · 2r−1 − 1,

|N
(i)
H (ab)| ≥ (dH(a) + dH(b) − 2) · 2i−1 ≥ (2dG(a) − 2) · 2i−1, 1 ≤ i ≤ r − 1.

Hence,

ν(H) ≥
r∑

i=0

|N
(i)
H (ab)| ≥ 2 +

r∑

i=1

(2dG(a) − 2) · 2i−1 − 1 = (2dG(a) − 2)(2r − 1) + 1.

As g = 2r + 2, then

dG(a) = dH(a) ≤
ν(H) − 1

2(2r − 1)
+ 1 =

ν(H) − g + 2r + 1

(2r − 1)(g − 2r)
+ (g − 2r − 1).

Subcase 2.2 g = 2r + 2 = 4. Clearly, we can assume that a is not the touching vertex of H .

First, if dG(a) > dG(b), then dG(a) ≥ 4. Hence, there exists a vertex a′ ∈ N
(1)
H (a) \ {u, v, w}

such that

min{dH(aa′, u), dH(aa′, v), dH(aa′, w)} ≥ 1.

Now, without loss of generality, assume that dG(a′) = min{dG(a′), dG(a)}. So, we have

|N
(1)
H (aa′)| = dH(a′) + dH(a) − 2 = dG(a′) + dG(a) − 2 ≥ 2dG(a′) − 2.

Hence,

ν(H) ≥ |N
(0)
H (aa′)| + |N

(1)
H (aa′)| ≥ 2dG(a′).

As g = 2r + 2 = 4, we have

dG(a′) = dH(a′) ≤
ν(H)

2
≤

ν(H) − g + 2r + 1

(2r − 1)(g − 2r)
+ (g − 2r − 1).

Secondly, if dG(a) ≤ dG(b), as u, v, w are 1-touching vertices of H , we have

|N
(1)
H (ab)| = dH(a) + dH(b) − 2 ≥ dG(a) + dG(b) − 3 ≥ 2dG(a) − 3.
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Hence, we have

ν(H) ≥ |N
(0)
H (ab)| + |N

(1)
H (ab)| ≥ 2dG(a) − 1.

As g = 2r + 2 = 4, it follows

dG(a) = dH(a) ≤
ν(H) + 1

2
=

ν(H) − g + 2r + 1

(2r − 1)(g − 2r)
+ (g − 2r − 1). �

3. The proof of Theorem 1.4

Proof of Theorem 1.4 Suppose that graph G is not up-embeddable. There exists an edge set

A ⊆ E(G) satisfying the properties (1)–(4) of Theorem 1.3. Define C(G \ A) to be the set of

components of G \ A, and

B4 = {F | |E(F, G)| ≥ 4, F ∈ C(G \ A)},

Bi = {F | |E(F, G)| = i, F ∈ C(G \ A)}, i = 1, 2, 3.

Obviously,

c(G \ A) = |B1| + |B2| + |B3| + |B4|. (1)

For each edge e ∈ A, the end vertices of e must belong to two distinct components of G \A,

because any component F ∈ C(G\A) is an induced subgraph of G, which means that there exist

just two components F1, F2 ∈ C(G\A) such that e ∈ E(F1, G) and e ∈ E(F2, G). On the other

hand, each edge e ∈ E(F, G) must belong to A. Thus

A = ∪F∈C(G\A)|E(F, G)|

and

|A| =
1

2

∑

F∈C(G\A)

|E(F, G)| ≥ 2|B4| +
3

2
|B3| + |B2| +

1

2
|B1|. (2)

Combining Theorem 1.3, Equations (1) and (2), we have

ξ(G) = 2c(G \ A) − |A| − 1

≤ 2(|B4| + |B3| + |B2| + |B1|) − (2|B4| +
3

2
|B3| + |B2| +

1

2
|B1|) − 1

=
1

2
|B3| + |B2| +

3

2
|B1| − 1.

As G is not up-embeddable, i.e., ξ(G) ≥ 2, we have

1

2
|B3| + |B2| +

3

2
|B1| ≥ 3. (3)

Since |Bi| = 0 for i < k, simple calculation gives

|B3| + |B2| + |B1| ≥
6

4 − k
. (4)

Without loss of generality, let

|E(Fi, G)| ≤ 3, Fi ∈ C(G \ A), 1 ≤ i ≤ 6/(4 − k).
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When g = 3 and k = 3, 6/(4 − k) = 6. First, assume that each vertex in Fi (1 ≤ i ≤ 6) is

a touching vertex of Fi. Since |E(Fi, G)| = 3, V (Fi) contains exactly three 1-touching vertices,

denoted by {xi, yi, zi}. Furthermore, suppose {x6z5, y6z4, z6x3} = E(F6, G). As the vertex z3

connects at most one vertex in V (F1)∪V (F2), there are at least 2 vertices in F1 and F2, denoted

by {z1, y1} and {z2, y2}, respectively, which are not adjacent with z3. But, as |E(F1, F2)| ≤ 1,

we can assume that z1 and z2 are not adjacent. Now, the vertices set {z1, z2, . . . , z6} is clearly an

independent set of G. Secondly, if there exists one vertex ui in some Fi (1 ≤ i ≤ 6) which is not

the touching vertex of Fi, then by replacing zi with ui, we also obtain an independent set of G with

6 vertices. For k = 1, 2, by similar discussions, there exist vertices ai ∈ V (Fi) (1 ≤ i ≤ 6/(4−k)),

where ai is at most a 1-touching vertex of Fi, such that {a1, a2, . . . , a6/(4−k)} is an independent

set of G.

Hence, for k ≤ 3 and g = 2r + 1 = 3, there exists vertex ai ∈ Fi (1 ≤ i ≤ 6/(4 − k)) such

that {a1, a2, . . . , a6/(4−k)} is an independent set of G, and

dG(ai) ≤ dFi
(ai) + 1 ≤ ν(Fi) =

ν(Fi) − g + 2r + 1

(2r − 1)(g − 2r)
+ (g − 2r − 1), 1 ≤ i ≤ 6/(4 − k). (5)

Case 1 c(G \ A) = 6/(4 − k). First, when k ≤ 2, 6/(4 − k) = k + 1. By Theorem 1.3, it is easy

to know that

|E(Fi, G)| ≤ 2, 1 ≤ i ≤ k + 1.

So, by Lemma 2.3, there exist vertices ai ∈ Fi (1 ≤ i ≤ k + 1) such that {a1, . . . , ak+1} is an

independent set of G, and

dG(ai) ≤
ν(Fi) − (g − 2r)

(2r − 1)(g − 2r)
+ (g − 2r − 1), 1 ≤ i ≤ k + 1.

Hence, we have

k+1∑

i=1

dG(ai) ≤

∑k+1
i=1 ν(Fi) − (k + 1)(g − 2r)

(2r − 1)(g − 2r)
+ (k + 1)(g − 2r − 1)

=
ν(G) − (k + 1)(g − 2r)

(2r − 1)(g − 2r)
+ (k + 1)(g − 2r − 1).

But, this contradicts the condition.

Secondly, when k = 3, 6/(4 − k) = 6. Combining equation (5) and Lemma 2.4, there exist

vertices ai ∈ Fi (1 ≤ i ≤ 6) such that {a1, a2, . . . , a6} is an independent set of G, and

dG(ai) ≤
ν(Fi) − (g − 2r − 1)

(2r − 1)(g − 2r)
+ (g − 2r − 1), 1 ≤ i ≤ 6.

Hence, we have

6∑

i=1

dG(ai) ≤

∑6
i=1 ν(Fi) − 6(g − 2r − 1)

(2r − 1)(g − 2r)
+ 6(g − 2r − 1)

=
ν(G) − 6(g − 2r − 1)

(2r − 1)(g − 2r)
+ 6(g − 2r − 1).

But, this also contradicts the condition.
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Case 2 c(G \ A) > 6/(4 − k). Combining equation (5) and Lemma 2.4, there exist vertices

ai ∈ Fi (1 ≤ i ≤ 6/(4 − k)) such that {a1, a2, . . . , a6/(4−k)} is an independent set of G, and

dG(ai) ≤
ν(Fi) − (g − 2r − 1)

(2r − 1)(g − 2r)
+ (g − 2r − 1), 1 ≤ i ≤ 6/(4 − k).

As c(G \ A) > 6/(4 − k) and the order of each component of G \ A is at least 3, we have

6/(4−k)∑

i=1

ν(Fi) ≤ ν(G) − 3.

Thus,

6/(4−k)∑

i=1

dG(ai) ≤

6/(4−k)∑

i=1

ν(Fi) − (g − 2r − 1)

(2r − 1)(g − 2r)
+

6(g − 2r − 1)

4 − k

=

∑6/(4−k)
i=1 ν(Fi) −

6
4−k (g − 2r − 1)

(2r − 1)(g − 2r)
+

6(g − 2r − 1)

4 − k

≤
(ν(G) − 3) − 6

4−k (g − 2r − 1)

(2r − 1)(g − 2r)
+

6(g − 2r − 1)

4 − k
.

But, this also contradicts the condition. Hence, G is up-embeddable. This completes the proof. �

Corollary 3.1 Let G be a k (k ≤ 3)-edge connected simple graph with girth g, r = ⌊ g−1
2 ⌋. If

minimal degree δ(G) ≥ 3 and

δ(G) >
(4 − k)ν(G) − 6(g − 2r − ⌊k

3 ⌋)

6(2r − 1)(g − 2r)
+ (g − 2r − 1),

then G is up-embeddable.
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