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A New Class of Finsler Metrics with Scalar Flag
Curvature
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Abstract In this paper, we study a new class of general (o, 3)-metrics F' defined by a
Riemannian metric «, a 1-form 8 and C* function ¢(b2, s). We provide the projective factor
of a class of general (o, 3)-metrics F = a¢(b?, s), and apply these formulae to compute its flag
curvature.
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1. Introduction

The («, 3) metrics were first introduced by Matsumoto [1]. They are Finsler metrics built
from a Riemannian metric o = /a;jy'y7, 1-form 3 = b;(z)y" and C*> function ¢(s) on a manifold
M. A Finsler metric of (a, §)-metrics is given by the form

F = a¢(s), s:="~—.
It is known that F' is positive and strongly convex on TM\{0} if and only if

#(s) >0, ¢(s) —s¢'(s) + (b* — 5%)¢"(s) > 0, |s| < b < by,

where b = || |-
The aim of this paper is to study a new class of Finsler metrics given by [2]
— (B2 _ B
F=a¢(b,s), s:="=, (1.1)
e

where ¢ = ¢(b?, 5) is a C* positive function and b = ||| -

One important example of («, 3)-metric was given by L. Berwald

2Yy|2 & (2. )%+ (x.1))2
o Ol + ) + ()? .

(1- |I|2)2\/(1 = l22)[yl? + (z,y)’
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It is a projectively flat Finsler metrics on B™ C R™ with flag curvature K = 0. Berwald’s metric

can be expressed in the form

F =ap(b? s) = a(v/1+b2+s)?, (1.3)
where \/
(1 = [2[2)[yl? + (2, 9)* (z,y)
S T (e T el )
_ B e |z[?

Then we apply these formulae to discuss a class of general (o, 3)-metrics F' = ap(b?, s).

Let 1 be an arbitrary constant and Q = B™(r,,) where r, =1,/y/—pif p <0 and r, = +00
if 4 >0.Let |-] and {,) be the standard Euclidean norm and inner product in R™, respectively.
Define F' : TQ) — [0,00) by

V@ pla)yl? = (e, y)?
T+ P

a(z,y) = ) (1.6)

Az,y) + (1 + plz]?) (a,y) — pla, z) (z,y)
(1 + pfar|2)3/2 ’

where A is an arbitrary constant and a € R™ is a constant vector. We obtain the following result:

B(z,y) == (1.7)

Theorem 1.1 Let F = a¢(b?,s) : TQ — [0,00) be any function given in (1.6) and (1.7). Define
a function ¢(b%, 2) = (V1 + b2 + £)2. It has the following properties:

(1) The norm of 3 with respect to « is given by
A2 2X

2 2 H 2
z|” + a,z)+ |a|” — —— (a,x)" . 1.8
1+u|x|2| | 1+u|x|2< )+ lal {a, z) (1.8)

b2 = |8, =

(2) F is locally projectively flat, its projective factor P is given by

1
P=0+4ca . 1.9
V1402 (1.9)
(3) F is of scalar flag curvature and its flag curvature is given by
= ! (n+ 6—2) (1.10)
VITRWI 2 +sp 1102 :
where
g Caryt _ plmy)
20 14 pl|z?’

=1+ pla) 7' A = pla, 2))*.

Remark Take A = 1, @ = 0, u = —1 in Theorem 1.1, then F' = a¢(b?,s) is the Berwald’s

metric, its projective factor

o ) VO P+ )

= + ,
1 —faf? (V1= =)
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and its flag curvature K = 0.

2. General (o, §)-metrics

Definition 2.1 Let F be a Finsler metric on a manifold M™. F' is called a general (o, 3)-metric
if it can be expressed as the form F = ap(b?,s) (s := 2), where |||la < by and ¢ = ¢(b?, s) is a

[e3%

positive C*° function.

Proposition 2.2 Let M be an n-dimensional mannifold. A function F = a¢(b?,s) on TM is a
Finsler metric on M for any Riemannian metric « and I-form (3 with ||8|lo < bo if and only if
¢ = ¢(b?, 5) is a positive C*>° function satisfying

¢ >0, ¢—sha+ (b* —s*)par >0, (2.1)
where s and b are arbitrary numbers with |s| < b < by.
Proof It is easy to verify F' is a function with regularity and positive homogeneity. In the

following we will verify strong covexity: The n x n Hessian matrix

1

(935) 1= (5P,

For the general (a, 3)-metric F' = a¢(b?, g), direct computations yield

[F?],: = [0%],:0” + 20°$asy,i, (2.2)

(F2)1y =[0%]y100 8 + 2002),: 850 + 2002, bohasys + 207 dals,,+
2022028, Sy + 20 P2]syiyi - (2.3)
Direct computations yield
97 = Paij + pobibj + p1(bicrys +bjoyi) — sprayiay, (2.4)
where
p= (¢ —sh2), po= P2z + 22, p1 = (¢ — 5¢2)P2 — sPPaa.

By Lemma 1.1.1 in [3], we find a formula for det(g;;)

det(gij) = " (¢ — 502)" (¢ — 52 + (b* — 57)P22)det(asj). (2.5)

Assume that (2.1) is satisfied. Then by taking b = s in (2.1), we see that the following inequality
holds for any s with

¢ — spa >0, |S| < bo. (26)

Using (2.1), (2.5) and (2.6), we get det(g;;) > 0, namely (g;;) is positive-definite. The converse
is obvious, so the proof is omitted here.

By Lemma 1.1.1 in [3], we find a formula for (¢g%/)

g7 = p~H{a + 't + oo (b + by') + may'y' ) (2.7)
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where (9Y) = (gi5) ™", (9i5) = 5[F?]yiys, (@) = (aig) ™", b = a¥by,
— P22 o = — (¢ — s¢2)¢2 — sPPa2
(¢ —sbo+ (02— s2)d2)” " B¢ — 52 + (% — 52)haa)
(5¢ + (b* = 5*)p2) (¢ — 5¢2) P2 — 5Pa2)
% (¢ — sd2 + (b* — 52)¢22) '
Lemma 2.3 ([2]) Let F = a¢(b?,s)) be a general (o, 3)-metric on a manifold M with dimension
n > 2. Then F is locally projectively flat if the following conditions hold:

m =

1) The function ¢(b?, s) satisfies the following partial differential equation

P22 = 2(¢1 — s¢12). (2.8)

2) « is locally projectively flat, (3 is closed and conformal with respect to a.

Remark Note that ¢; means the derivation of ¢ with respect to the first variable 2. In this
paper, a 1-form is called conformal with respect to a Riemannian metric if its dual vector field

with respect to the Riemannian metric is conformal.

Proposition 2.4 Suppose general (o, §)-metric F' = ap(b?, g) is a projectively flat Finsler

metric, then its projectively factor P is given by

207 — 8¢2) Gy + d2(2b, G + 1o0) + 201 (10 + S0)
2F ’

where G, denotes the spray coefficients of «, rog = ri;y'y?, 10 = bIri;y°, so = b 545"

P= (2.9)

Proof Recall that the spray coefficients of a Finsler metric F are given by G* = Py’ 4+ Q?, where
P = P(z,y) is given by

P= Fz’}fk (2.10)

For the general («, 3)-metric F = a¢(b2§). Direct computations yield
For = aged + ady [b%]r + apasys, (2.11)
Foy® = auey®o + agi[b?],0y" + agas,ny”. (2.12)

We have .

agey® = %Gg’fym, Spk = ébmkym + %{bma - sym}%, (2.13)
spryt = % + %{bma — SYmYGL™, [0k y® = 2(ro + s0). (2.14)

Substituting them into (2.10), by a direct computation we can obtain
p_ 200 (¢ — 5¢2) GRym + $2(20m G + 700) + 2061 (1o + 50) ' (2.15)

2F
Example 2.4 Consider the Funk metric F' = a¢(b?, s) on the unit ball B* C R",

o VP (PP~ @) )

1= |af? 1= 2>
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Funk metric can be expressed in the form

T— 2= 52
F:a¢(b278):as+ 1—(1)2 S)’

where
a=lyl, B=(zy), b*=]z*

By a direct computation, one obtains

¢22 = 2(¢p1 — 5¢12).

« has constant sectional curvature K = 0, 3 is closed and conformal with respect to a. So Funk
metric satisfies two conditions of Lemma 2.3. Namely, it is a projectively flat Finsler metrics
with G* = Py’ , where

P %{\/Iylz’ — (l2[yl? — (z,)°) L () }

1= [af? 1= |z?

and its flag curvature K = —

PN

3. Proof of Theorem 1.1

A Finsler metric F = F(z,y) on an open domain & C R" is said to be projectively flat in
U if all geodesics are straight lines. This is equivalent to G* = P(z,y)y’, where G* = G*(z,y)

are the spray coefficients of F', which are given by

G = 29 ()™ — ()} (3.1)
In this case the flag curvature K is a scalar function on TU given by
PR (3.2)
Set
w=1+uplzf’, o =ayy'y’, B="by" (3.3)
then §ij  patad Azt + (1 + plz]?)a’ — p{a, x) 2
ay =20 BT e . (3.4)
By a simple calculation, we get
oyt = -2, (3.5)
w
and
oty — o1 = (a)y, — 200 = 0. (3.6)

By G. Hamel Theorem [4], we get « is a projectively flat Finsler metric, and its projectively
factor is given by
apy®  play)

0= =—
20 14 p|z[?’
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and sectional curvature of «

a? a2 M
Write
(a') = (ay)™"!
By Lemma 1.1.1 in [3] we have
a = w(6" + pa'a?). (3.7)

Using (3.4) and (3.7), we get

b* =18]1%, = a”bib;

i 2y i i
:w(aij+uxixj))‘x + (A + plz*)a’ — pla,z) "

(14 plef?)?
Ard + (14 plz?)a? — pla, z) 27
(1+ plef?)?
A2 2 2) 2 H 2
= z|” + a,z)+ |a|” — ——= (a,xz)" . 3.8
1+M|$|2| | 1+M|$|2< > | | 1+M|$|2< > ( )
By approximate evaluation, if u > 0,

A2 22X

2 < 2 2, 3.9

Using 1+ plz|> > 1, < a,z ><|al|z|, we obtain
\ 2
b < (u + |a|> :

Vi

A 2
b < <\/|%u + |a|> + lal*v/=p.

So b2 has upper bound. We get F' = a¢(b?, s) satisfies two conditions of Proposition 2.2 by the

If 4 <0, then

above equalities, therefore F' is Finsler metric.

Let b;; denote the coefficients of the covariant derivative of 3 with respect to a. Let
1 1 T ik
rij = 5 iy +bj1a), sij = 50ty = bjia)s To0 = rigy'y’, sty = asy,

P o o o
s'o =s"y!, ri=Vri, si=bsi, o =1,
so =s3y", " =a"r;, s'=a"s;, r=>0b"r. (3.10)

It is easy to see that (3 is closed if and only if s;; = 0. We have
0b;

5= Gas

From (3.3), we get 2% = 22, Together with (3.7) we have

b — b5 (3.11)

daij 1% 4
6,%3 = —E((Silxi + 51'1:17j + 251'3'.@1) + F:Z?i:tjxk. (312)
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By (3.7) and (3.12), we get the Christoffel symbols of «.

1 8&'1 8& il 8&"
Tk, — =kt 2%! gl 9dij
17 3¢ (8903 + Ozt ox!

Note that b; satisfies (3.7), we have

)= L@l +alaun).

2uxixd pw
k. _ L o
BTty = 2T 0~ i) — (s + ),
ob; (N —pla,x))0; — plax; + ajx;) P A= (a,x)
By (3.11) and (3.13) we get
0i uxts
by; = ngQ (A —ufa,z)) - W()‘_N<a7x>)' (3.14)
The last equality implies
si5 =0, rij = w*%(/\ — pia,x))ai;.

So 3 is closed and conformal with respect to o with conformal factor ¢(z) = w™2 (A — p (a, ).
By a direct calculation, differentiating F' = a(v/1 + b2 + s)? with respect to b?, s yields

¢1 — 8¢12 = P22. (3.15)

We know ¢ satisfies two conditions of Lemma 2.3 by the above equalities. So F' is locally
projectively flat. It is obvious that

roo = ca?, ro=cB, r=ch?

rt = cb's'y, so=0, s'=0. (3.16)
Substituting (3.16) into projective factor P in Proposition 2.4 gives
207 — 5¢2) G Y + P2(20,G™ + 100) + 21 (o + S0)

P =
2F
_ 200(p — s¢2) + 2(208 + ca?) + 2cad 8
B 2F
_20a¢ + ca®(2415 + ¢2)
B 2F
=0+ ca , 3.17
V1402 (3.17)
where . o)
Ak Y HAT, Y
20 1+ plz|? (3.18)
By a direct computation, we get
1 1 calb?]ry"
Poy® = 0,00F + cpry*o——— + ageyte — T 3.19
T O e O e T TR T o1 2)8 (3:19)
1 2.2 b2] ok
P% — Pyt = (02 — 0,9") + (208c — oy — cpeya) ca calbrry (3.20)

+ + :
VIHR 1402 2(1+02)%
eyt = —pp. (3.21)
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By (3.2), (3.20) and (3.21), we get

P? — Py 1 Q c2a?
F2 Oé2¢2 \/H—b2 (1 +b2)3/2
= ! (n+ “ )0 (3.22)
VIt BRIt R +s)p 102 :
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