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Abstract In this paper, we present a concrete method for constructing a class of compactly

supported nonseparable orthogonal wavelet bases of L2(Rn), n ≥ 2. The orthogonal wavelets

are associated with dilation matrix αIn (α ≥ 2, α ∈ Z), where In is the identity matrix of

order n. In the end, two examples are given to illustrate how to use our method to construct

nonseparable orthogonal wavelet bases.
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1. Introduction

Up to now, the theory and the design of 1-D compactly supported wavelet bases have

been well studied. Recently, the wavelet research has primarily focused on multivariate wavelet

bases. The most commonly used method is the tensor product of univariate wavelets. However,

this construction leads to a separable wavelet which has a disadvantage of giving a particular

importance to the horizontal and vertical directions. Separable wavelets are so special that they

have very little design freedom, and separability imposes an unnecessary product structure on the

plane which is artificial for natural images. Therefore, multivariate nonseparable wavelets have

attracted the attention of many mathematicians and some researches on nonseparable wavelets

have made great progress [1–14].

Unlike the separable wavelets, nonseparable wavelets are capable to detect structures that

are not only horizontal, vertical or diagonal, but arbitrarily oriented. Hence they have a more

isotropic treatment of an image [1]. Nonseparable wavelet bases have enough degrees of freedom

to construct bases which have several properties simultaneously such as orthogonality, symmetry

and compact support which is not possible for tensor-product scalar wavelets except for the Haar

tensor. Although the theory and analysis of multivariate wavelet bases have been extensively

studied, the design of n-D compactly supported nonseparable orthogonal wavelet basis is still a
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challenging problem. So far, the construction of nonseparable wavelets with dilation matrix 2In

has been well studied and demonstrated to be useful there [2–10]. Particularly, in [6], the author

has reviewed several methods for constructing bivariate compactly supported nonseparable or-

thogonal wavelets and shown some numerical experiments with nonseparable wavelets for image

compression. In [7], the author has given a brief description of a fairly general method for con-

structing compactly supported nonseparable orthogonal wavelet bases of L2(Rn). In [9] and [10],

the author has studied the construction of nonseparable orthogonal and biorthogonal wavelets of

L2(Rn), n ≥ 2, respectively. Currently, it also turns out that many researchers proceed to study

the nonseparable wavelets with dilation matrix M especially the matrix M satisfying M2 = 2I

(see [11–14]). Such dilation matrices make the MRA involve a unique wavelet which is easy to

construct from the scaling function.

In this paper, by designing a set of special matrices Di, i = 1, . . . , n − 1, satisfying some

conditions, we give the construction of n-D nonseparable orthogonal wavelets with dilation matrix

αIn, and provide a proof method that the constructed orthogonal wavelets are nonseparable.

Finally, we give two examples.

2. Design of n-D nonseparable orthogonal wavelet filters

2.1. Definitions

In this section we first provide the reader with some definitions which will be used frequently

in this work. In the following, we denote the point (ω1, ω2, . . . , ωk) ∈ R
k, πk = (π, π, . . . , π) ∈ R

k,

and D0 be the identity matrix In. Finally, if D ∈ Z
n×n is a square matrix, then D(ω) will denote

the product D · ωT .

Definition 1 A ladder of closed subspaces {Vj}j∈Z of L2(Rn) is called a multiresolution analysis

(MRA) if the following conditions hold:

(i) Vj ⊂ Vj+1 for j ∈ Z;

(ii)
⋂

j∈Z
Vj = {0}, ⋃j∈Z

Vj = L2(Rn);

(iii) f(x) ∈ Vj ⇐⇒ f(αx) ∈ Vj+1 (α ≥ 2, α ∈ Z);

(iv) There exists a function φ(x) in V0 such that the set {φ(x-k)}k∈Zn is a Riesz basis for

V0.

Definition 2 Define a set En = { 2i
α

π, i = 0, . . . , α − 1}n and let ηj be an element of En; if

η
i
j = 2i

α
πn + ηj , i = 1, . . . , α − 1, then η

i
j are said to be symmetric of ηj in En. A subset A of

En is said to be symmetric if ∀ηj ∈ A, ∃η
i
j ∈ A mod (2πZ

n), where η
i
j , i = 1, . . . , α − 1, are

symmetric of ηj in A.

Definition 3 An n-D wavelet filter Hn(ω1, . . . , ωn) is said to be separable if Hn(·) can be written

in the following form:

Hn(ω1, . . . , ωn) =
k∏

i=1

mi(ai1ω1 + · · · + ainωn),
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for some integer 1 ≤ k ≤ n. Here mi(·) are some 1-D wavelet filters and (ai1, . . . , ain) ∈ Z
n.

2.2. Design of n-D Low-pass orthogonal wavelet filters

Let Φ(x),x ∈ R
n, be a compactly supported function satisfying the dilation equation

Φ(x) =
∑

k∈Zn

h(k)Φ(αx-k) (α ≥ 2, α ∈ Z), (2.1)

where
∑

k∈Zn h(k) = αn, and h(k) 6= 0 for only finitely many k ∈ Z
n. By taking the Fourier

transform on both sides of (2.1), we get

Φ̂(ω) =

∞∏

j=1

H0(
ω

αj
), (2.2)

where H0(ω) = α−n
∑

k∈Zn h(k)e−ikT
ω is called the mask symbol of the scaling function Φ. To

construct compactly supported n-D orthogonal scaling functions, we start with the construction

of n-D trigonometric polynomials Hn(ω) satisfying the following condition:

|Hn(ω)|2 + |Hn(ω +
2

α
πn)|2 + · · · + |Hn(ω +

2(α − 1)

α
πn)|2 = 1, ∀ω ∈ R

n. (2.3)

Lemma 2.1 Let H1(ω) and G
(1)
1 (ω), G

(2)
1 (ω), . . . , G

(α−1)
1 (ω) be a 1-D low-pass and α− 1 high-

pass orthogonal filters. Define the n-D filter Hn(ω1, . . . , ωn) by the following iterative process:

∀ 2 ≤ k ≤ n, choose an integer 1 ≤ ℓk ≤ k − 1,

P
(i)
k−1(ω1, . . . , ωk−1) =Hk−1(αω1 +

2i

α
π, . . . , αωk−1 +

2i

α
π), i = 0, . . . , α − 1,

Hk(ω1, . . . , ωk) =P
(0)
k−1(ω1, . . . , ωk−1)Hℓk

(ωk−ℓk+1, . . . , ωk)+

P
(1)
k−1(ω1, . . . , ωk−1)G

(1)
ℓk

(ωk−ℓk+1, . . . , ωk)+

· · · + P
(α−1)
k−1 (ω1, . . . , ωk−1)G

(α−1)
ℓk

(ωk−ℓk+1, . . . , ωk),

where G
(j)
ℓ (ω1, . . . , ωℓ), j = 1, . . . , α − 1, satisfy the following equation:

MℓM
∗
ℓ = Iα, (2.4)

Mℓ =





Hℓ(ω) Hℓ(ω + 2
α
πℓ) · · · Hℓ(ω + 2(α−1)

α
πℓ)

G
(1)
ℓ (ω) G

(1)
ℓ (ω + 2

α
πℓ) · · · G

(1)
ℓ (ω + 2(α−1)

α
πℓ)

...
...

...
...

G
(α−1)
ℓ (ω) G

(α−1)
ℓ (ω + 2

α
πℓ) · · · G

(α−1)
ℓ (ω + 2(α−1)

α
πℓ)




, ∀ω ∈ R

ℓ.

Then Hn(0, . . . , 0) = 1. Moreover, Hn(ω1, . . . , ωn) satisfies the condition (2.3).

Proof The proof is carried out by induction. First, we check that the result of the Lemma

holds for k = 2. In this case, ℓ2 = 1, P
(i)
1 (ω1) = H1(αω1 + 2i

α
π), i = 0, . . . , α − 1. According

to H1(0) = 1 and (2.4), we get G
(j)
1 (0) = 0, j = 1, . . . , α − 1. Hence H2(0, 0) = 1. Since

P
(i)
1 (ω1) = P

(i)
1 (ω1 + 2j

α
π), i = 0, . . . , α − 1, j = 1, . . . , α − 1, we get

α−1∑

i=0

|H2(ω1 +
2i

α
π, ω2 +

2i

α
π)|2
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= |P (0)
1 (ω1)|2

[ α−1∑

i=0

|H1(ω2 +
2i

α
π)|2

]
+ |P (1)

1 (ω1)|2
[ α−1∑

i=0

|G(1)
1 (ω2 +

2i

α
π)|2

]
+ · · ·+

|P (α−1)
1 (ω1)|2

[ α−1∑

i=0

|G(α−1)
1 (ω2 +

2i

α
π)|2

]
+

α−1∑

i=0

α−1∑

j=1

P
(0)
1 (ω1)P

(j)
1 (ω1)H1(ω2 +

2i

α
π)G

(j)
1 (ω2 +

2i

α
π) + · · ·+

P
(α−1)
1 (ω1)P

(0)
1 (ω1)G

(α−1)
1 (ω2 +

2i

α
π)H1(ω2 +

2i

α
π)+

α−1∑

i=0

α−2∑

j=1

P
(α−1)
1 (ω1)P

(j)
1 (ω1)G

(α−1)
1 (ω2 +

2i

α
π)G

(j)
1 (ω2 +

2i

α
π)

=

α−1∑

i=0

|P (i)
1 (ω1)|2 =

α−1∑

i=0

|H1(αω1 +
2i

α
π)|2 = 1.

Next, we assume that the result of the Lemma holds for all 2 ≤ ℓ ≤ k < n. Then we need

to check the result of the Lemma holds for k + 1. For 2 ≤ ℓ ≤ k, we have Hℓ(0, . . . , 0) = 1 and

G
(j)
ℓ (0, . . . , 0) = 0, j = 1, . . . , α − 1. Since ℓk+1 ≤ k,

Hk+1(0, . . . , 0) = P
(0)
k (0, . . . , 0)Hℓk+1

(0, . . . , 0) +

α−1∑

j=1

P
(j)
k (0, . . . , 0)G

(j)
ℓk+1

(0, . . . , 0) = 1.

The induction hypothesis also implies that for 2 ≤ ℓ ≤ k, Hℓ, G
(1)
ℓ , . . . , G

(α−1)
ℓ satisfy the

equation (2.4). For simplicity, we denote P
(i)
k (· + 2i

α
πk) := P

(i)
k (ω1 + 2i

α
π, . . . , ωk + 2i

α
π), i =

0, . . . , α − 1. Similarly, Hk+1 and G
(j)
ℓk+1

, j = 1, . . . , α − 1, can be denoted as above. Since

P
(i)
k (·) = P

(i)
k (· + 2j

α
πk), i = 0, . . . , α − 1, j = 1, . . . , α − 1, by using the induction hypothesis,

we get

α−1∑

i=0

|Hk+1(· +
2i

α
πk+1)|2

= |P (0)
k (·)|2

[ α−1∑

i=0

|Hℓk+1
(· + 2i

α
πℓk+1

)|2
]

+

α−1∑

i=0

α−1∑

j=1

|P (j)
k (·)|2|G(j)

ℓk+1
(· + 2i

α
πℓk+1

)|2+

α−1∑

i=0

α−1∑

j=1

P
(0)
k (·)P (j)

k (·)Hℓk+1
(· + 2i

α
πℓk+1

)G
(j)
ℓk+1

(· + 2i

α
πℓk+1

) + · · ·+

P
(α−1)
k (·)P (0)

k (·)
[ α−1∑

i=0

G
(α−1)
ℓk+1

(· + 2i

α
πℓk+1

)Hℓk+1
(· + 2i

α
πℓk+1

)
]
+

α−1∑

i=0

α−2∑

j=1

P
(α−1)
k (·)P (j)

k (·)G(α−1)
ℓk+1

(· + 2i

α
πℓk+1

)G
(j)
ℓk+1

(· + 2i

α
πℓk+1

)

=

α−1∑

j=0

|P (j)
k (·)|2 =

α−1∑

i=0

|Hk(α · +2i

α
πk)|2 = 1.

Then the induction hypothesis holds for k + 1. Hence we get
∑α−1

i=0 |Hn(· + 2i
α

πn)|2 = 1. �
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It is well known that to design a compactly supported orthogonal wavelet basis of L2(Rn), it

is necessary to construct one low-pass filter H0 and αn−1 high-pass filters Hi, i = 1, . . . , αn −1.

Consequently, a set of special matrices is required in the design of H0.

For k = 1, . . . , n− 1, we consider a set of matrices Dk ∈ Z
n×n satisfying the following three

conditions:

(c1) ∀ ηj ∈ En, ∃ η
i
j ∈ En such that Dk(ηj) = Dk(ηi

j) mod (2πZ
n), where η

i
j = 2i

α
πn +

ηj , i = 1, . . . , α − 1;

(c2) If ηj
′ 6= ηj, ηj

′ 6= η
i
j , then Dk(ηj) 6= Dk(ηj

′ ) mod (2πZ
n);

(c3) If Fk = DkDk−1 · · ·D1(En) mod (2πZ
n), then Fk is a symmetric subset of En, i.e.,

∀η ∈ Fk, η
i ∈ Fk, i = 1, . . . , α − 1.

By Lemma 2.1, we prove the following theorem that provides us with the n-D low-pass

orthogonal wavelet filters.

Theorem 2.2 Let Hn(ω1, . . . , ωn) be the n-D filter of Lemma 2.1 and D1, D2, . . . , Dn−1 be the

matrices that satisfy the above three conditions (c1), (c2) and (c3). Define an n-D filter H0 by

H0(ω1, . . . , ωn) =
n−1∏

k=0

Hn

(
Dk · · ·D0(ω1, . . . , ωn)

)
, (2.5)

then H0(0, . . . , 0) = 1. Moreover, H0 satisfies the following orthogonality condition

αn−1∑

i=0

|H0(ω + ηi)|2 = 1, ∀ω ∈ R
n, (2.6)

where ηi, i = 0, . . . , αn − 1, are the different points of the set En = {0, 2
α
π, . . . , 2(α−1)

α
π}n.

Proof Since Hn(0, . . . , 0) = 1, we get H0(0, . . . , 0) =
n−1∏
k=0

Hn

(
Dk · · ·D0(0, . . . , 0)

)
= 1. We

first let η
s
i = ηs·αn−1+i, i = 0, . . . , αn−1 − 1, s = 1, . . . , α − 1. Then D1(ηi) = D1(η

s
i ) mod

(2πZ
n), ∀ηi ∈ En, we deduce that

αn−1∑

i=0

|H0(ω + ηi)|2

=

αn−1∑

i=0

|Hn(ω + ηi)|2
n−1∏

k=1

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣
2

=

αn−1−1∑

i=0

[
|Hn(ω + ηi)|2 +

α−1∑

s=1

|Hn(ω + η
s
i )|2
] n−1∏

k=1

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣
2

=

αn−1−1∑

i=0

n−1∏

k=1

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣
2

.

Again we let Ds
1(ηi) = D1(ηs·αn−2+i), where Ds

1(ηi) are symmetric of D1(ηi), i = 0, . . . , αn−2 −
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1, s = 1, . . . , α − 1. Then D2[D1(ηi)] = D2[D
s
1(ηi)] mod (2πZ

n), ∀ηi ∈ En, we conclude that

αn−1−1∑

i=0

n−1∏

k=1

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣
2

=

αn−1−1∑

i=0

∣∣∣Hn

(
D1(ω + ηi)

)∣∣∣
2 n−1∏

k=2

∣∣∣Hn

(
Dk · · ·D2D1(ω + ηi)

)∣∣∣
2

=
αn−2−1∑

i=0

[∣∣∣Hn

(
D1(ω + ηi)

)∣∣∣
2

+
α−1∑

s=1

∣∣∣Hn

(
Ds

1(ω + ηi)
)∣∣∣

2]
×

n−1∏

k=2

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣
2

=

αn−2−1∑

i=0

n−1∏

k=2

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣
2

=
...

=
∣∣∣Hn

(
[Dn−1 · · ·D1](ω + η0)

)∣∣∣
2

+

α−1∑

s=1

∣∣∣Hn

(
[Dn−1 · · ·D1]

s(ω + η0)
)∣∣∣

2

= 1,

where [Dn−1 · · ·D1]
s(ηi), s = 1, . . . , α − 1, are symmetric of [Dn−1 · · ·D1](ηi). Hence (2.6)

holds. �

Theorem 2.3 The wavelet filters H0(ω1, ω2) given by Theorem 2.2 are nonseparable.

Proof According to Theorem 2.2,

H0(ω1, ω2) = H2(ω1, ω2)H2

(
D1(ω1, ω2)

)
, (2.7)

where H2(ω1, ω2) is defined as Lemma 2.1. To show that H0(ω1, ω2) is nonseparable, it suffices

to check that H2(ω1, ω2) is nonseparable. By Lemma 2.1, we get

H2(ω1, ω2) = H1(αω1)H1(ω2) +

α−1∑

i=1

H1(αω1 +
2i

α
π)G

(i)
1 (ω2), (2.8)

where H1(ω1) is a 1-D orthogonal filter. We assume that H2(ω1, ω2) is separable.

First case: we prove that

H2(ω1, ω2) = m1(a11ω1 + a12ω2)m2(a21ω1 + a22ω2) (2.9)

is not possible, where m1(·), m2(·) are two 1-D orthogonal filters, (a11, a12), (a21, a22) ∈ Z
2. Now

we discuss the following cases:

(i) a11 + a12 = 0 mod (α) and a21 + a22 = 1 mod (α). For simplicity, we denote m1(A):=

m1(a11ω1 + a12ω2), m2(B):= m2(a21ω1 + a22ω2). Since

α−1∑

i=0

|H2(ω1 +
2i

α
π, ω2 +

2i

α
π)|2 = 1, (2.10)

by substituting (2.9) into (2.10), we get

α−1∑

i=0

∣∣∣m1[A +
2i

α
π(a11 + a12)]

∣∣∣
2∣∣∣m2[B +

2i

α
π(a21 + a22)]

∣∣∣
2
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= |m1(A)|2
[ α−1∑

i=0

|m2(B +
2i

α
π)|2

]
= |m1(A)|2 · 1 = 1, ∀(ω1, ω2) ∈ R

2,

which is a contradiction. The same result holds in the following cases which are:

(ii) a11 + a12 = 0 mod (α) and a21 + a22 = j mod (α), j = 2, . . . , α − 1;

(iii) a11 + a12 = i mod (α), i = 0, . . . , α − 1 and a21 + a22 = 0 mod (α).

Next we consider the case:

(iv) a11 + a12 = 1 mod (α) and a21 + a22 = 1 mod (α). Similarly, by substituting (2.9) into

(2.10), we get

α−1∑

i=0

∣∣∣m1[A +
2i

α
π(a11 + a12)]

∣∣∣
2∣∣∣m2[B +

2i

α
π(a21 + a22)]

∣∣∣
2

=
[ α−2∑

i=0

|m1(A +
2i

α
π)|2|m2(B +

2i

α
π)|2

]
+
[
1 −

α−2∑

i=0

|m1(A +
2i

α
π)|2

]
·
[
1 −

α−2∑

i=0

|m2(B +
2i

α
π)|2

]

= |m1(A)|2
[ α−2∑

i=0

|m2(B +
2i

α
π)|2 − 1

]
+ |m2(B)|2

[ α−2∑

i=0

|m1(A +
2i

α
π)|2 − 1

]
+

|m1(A +
2

α
π)|2

[ α−2∑

i=1

|m2(B +
2i

α
π)|2 − 1

]
+ |m2(B +

2

α
π)|2

[ α−2∑

i=1

|m1(A +
2i

α
π)|2 − 1

]
+

· · · + |m1(A +
2(α − 2)

α
π)|2

[
|m2(B +

2(α − 2)

α
π)|2 − 1

]
+

|m2(B +
2(α − 2)

α
π)|2

[
|m1(A +

2(α − 2)

α
π)|2 − 1

]
+ 1 = 1.

Since
∑α−2

i=k |m1(A+ 2i
α

π)|2, ∑α−2
i=k |m1(B+ 2i

α
π)|2 < 1, k = 0, . . . , α−2, which is a contradiction.

The same result holds in the following cases which are:

(v) a11 + a12 = i mod (α) and a21 + a22 = j mod (α), i, j = 1, . . . , α − 1, (i, j) 6= (1, 1).

Hence we have proved that (2.9) is not possible.

Second case: we prove that

H2(ω1, ω2) = m0(a1ω1 + a2ω2) (2.11)

is also not possible, where m0(·) is a 1-D orthogonal wavelet filter. Now we discuss the following

three cases:

(i) a1 + a2 = 0 mod (α), by substituting (2.11) into (2.10), we get |m0|2(a1ω1 + a2ω2) =

1/α, ∀(ω1, ω2) ∈ R
2 , which is a contradiction with m0(0) = 1.

(ii) a1 + a2 = 1 mod (α). First, we assume that a1 = 1 mod (α) and a2 = 0 mod

(α). According to (2.11) and (2.8), we get H2(
2

α2 π, 0) = m0(
2

α2 πa1) = 0, H2(
2

α2 π, 2i
α

π) =

m0(
2

α2 πa1 + 2i
α

πa2) = G
(α−1)
1 (2i

α
π), i = 1, . . . , α − 1. On the other hand, since a2 = 0 mod (α),

we obtain m0(
2

α2 πa1) = m0(
2

α2 πa1 + 2i
α

πa2) = 0, i = 1, . . . , α − 1. Hence we get G
(α−1)
1 (2i

α
π) =

0, i = 1, . . . , α−1, which is a contradiction with G
(α−1)
1 (0) = 0. Secondly, we assume that a1 = 0

mod (α) and a2 = 1 mod (α). According to (2.11) and (2.8), we get H2(
2i
α

π, 0) = m0(
2i
α

πa1) =

1, i = 1, . . . , α − 1, since a1 = 0 mod (α), we get m0(
2i
α

π) = 1, i = 1, . . . , α − 1, which is a

contradiction with m0(0) = 1.
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(iii) a1 + a2 = j mod (α), j = 1, . . . , α − 1. The proof is similar to (ii).

Collecting everything together, it follows that H0(ω1, ω2) is nonseparable. �

Similarly, the previous proof can be easily extended to the n-D case, then we get the following

Corollary.

Corollary 2.4 The wavelet filters H0(ω1, . . . , ωn) given by Theorem 2.2 are nonseparable.

2.3. Design of n-D High-pass orthogonal wavelet filters

As we have previously mentioned, the construction of the αn − 1 mother wavelets Ψi,

i = 1, . . . , αn − 1, requires the construction of n-D high-pass filters Hi, i = 1, . . . , αn − 1. These

high-pass filters together with the previously defined filters H0 have to satisfy the equations

αn−1∑

j=0

Hi(ω + ηj)Hi
′ (ω + ηj) = δii

′ , ∀ 0 ≤ i, i
′ ≤ αn − 1, ω ∈ R

n, (2.12)

where ηj , j = 0, . . . , αn − 1, are the different points of the set En = {0, 2
α
π, . . . , 2(α−1)

α
π}n.

Theorem 2.5 Let H0(ω) = Hn(ω1, . . . , ωn), ω ∈ R
n, Hn(·) is the wavelet filter of Lemma 2.1.

Let D1, D2, . . . , Dn−1 be the matrices that satisfy the three conditions (c1), (c2) and (c3). If Hi

is the filter defined by:

Hi(ω) =
n−1∏

k=0

[
εi

kH0(Dk · · ·D0ω) +
α−1∑

j=1

1 − εi
k√

α − 1
G

(j)
0 (Dk · · ·D0ω)

]
, (2.13)

where G
(j)
0 , j = 1, . . . , α − 1, together with H0 satisfy the following equation

M0M
∗
0 = Iα,

where M0 =





H0(ω) H0(ω + 2
α
πn) · · · H0(ω + 2(α−1)

α
πn)

G
(1)
0 (ω) G

(1)
0 (ω + 2

α
πn) · · · G

(1)
0 (ω + 2(α−1)

α
πn)

...
...

...
...

G
(α−1)
0 (ω) G

(α−1)
0 (ω + 2

α
πn) · · · G

(α−1)
0 (ω + 2(α−1)

α
πn)




,

(εi
0, ε

i
1, . . . , ε

i
n)i=1,...,αn−1 are the different points of {0, 1}n\(0, . . . , 0). Then Hi, i = 1, . . . , αn−1,

is a solution of (2.12).

Proof First, we consider two integers i, i
′ ∈ {1, . . . , αn − 1} such that i 6= i

′

and we prove that

αn−1∑

j=0

Hi(ω + ηj)Hi
′ (ω + ηj) = 0.

Since i 6= i
′

, there exists 0 ≤ ℓ ≤ n − 1 such that εi
k = εi′

k , ∀ 0 ≤ k ≤ ℓ − 1 and εi
ℓ 6= εi′

ℓ . We

assume that εi
ℓ = 1 and εi′

ℓ = 0.

First case: 0 ≤ ℓ < n− 1. By using the factorization technique of the proof of Theorem 2.2,
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we get

αn−1∑

j=0

Hi(ω + ηj)Hi
′ (ω + ηj)

=

αn−1∑

j=0

[
εi
0H0(ω + ηj) +

α−1∑

j=1

1 − εi
0√

α − 1
G

(j)
0 (ω + ηj)

]
×

[
εi′

0 H0(ω + ηj) +
α−1∑

j=1

1 − εi′

0√
α − 1

G
(j)
0 (ω + ηj)

]
×

n−1∏

k=1

[
εi

kH0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi
k√

α − 1
G

(j)
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′

k H0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi′

k√
α − 1

G
(j)
0

(
Dk · · ·D0(ω + ηj)

)]

=
αn−1−1∑

j=0

{[
εi
0H0(ω + ηj) +

α−1∑

j=1

1 − εi
0√

α − 1
G

(j)
0 (ω + ηj)

]
×

[
εi′

0 H0(ω + ηj) +

α−1∑

j=1

1 − εi′

0√
α − 1

G
(j)
0 (ω + ηj)

]
+

α−1∑

s=1

[
εi
0H0(ω + η

s
j ) +

α−1∑

j=1

1 − εi
0√

α − 1
G

(j)
0 (ω + η

s
j )
]
×

[
εi′

0 H0(ω + η
s
j ) +

α−1∑

j=1

1 − εi′

0√
α − 1

G
(j)
0 (ω + η

s
j )
]}

×

n−1∏

k=1

[
εi

kH0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi
k√

α − 1
G

(j)
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′

k H0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi′

k√
α − 1

G
(j)
0

(
Dk · · ·D0(ω + ηj)

)]

=

αn−1−1∑

j=0

n−1∏

k=1

[
εi

kH0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi
k√

α − 1
G

(j)
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′

k H0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi′

k√
α − 1

G
(j)
0

(
Dk · · ·D0(ω + ηj)

)]

=
...

=

αn−ℓ−1∑

j=0

n−1∏

k=ℓ

[
εi

kH0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi
k√

α − 1
G

(j)
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′

k H0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi′

k√
α − 1

G
(j)
0

(
Dk · · ·D0(ω + ηj)

)]
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=
αn−ℓ−1−1∑

j=0

{
H0

(
[Dℓ · · ·D0](ω + ηj)

)[ α−1∑

j=1

1√
α − 1

G
(j)
0

(
[Dℓ · · ·D0](ω + ηj)

)]
+

α−1∑

s=1

H0

(
[Dℓ · · ·D0]

s(ω + ηj)
)
×
[ α−1∑

j=1

1√
α − 1

G
(j)
0

(
[Dℓ · · ·D0]

s(ω + ηj)
)]}

×

n−1∏

k=ℓ+1

[
εi

kH0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi
k√

α − 1
G

(j)
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′

k H0

(
Dk · · ·D0(ω + ηj)

)
+

α−1∑

j=1

1 − εi′

k√
α − 1

G
(j)
0

(
Dk · · ·D0(ω + ηj)

)]

= 0,

where [Dℓ · · ·D0]
s(ηj) are symmetric of [Dℓ · · ·D0](ηj), s = 1, . . . , α − 1, ℓ = 0, . . . , n − 2.

Second case: ℓ = n − 1. It can be easily proved that

αn−1∑

j=0

Hi(ω + ηj)Hi
′ (ω + ηj)

= H0

(
[Dn−1 · · ·D0](ω + η0)

)[ α−1∑

j=1

1√
α − 1

G
(j)
0

(
[Dn−1 · · ·D0](ω + η0)

)]
+

α−1∑

s=1

H0

(
[Dn−1 · · ·D0]

s(ω + η0)
)
×
[ α−1∑

j=1

1√
α − 1

G
(j)
0

(
[Dn−1 · · ·D0]

s(ω + η0)
)]

= 0.

Finally for the case i = i′, it is similar to the proof of Theorem 2.2 and we conclude that
∑αn−1

j=0 Hi(ω + ηj)Hi(ω + ηj) = 1. �

Remark It is well known that condition (2.12) does not ensure that Hi, i = 1, . . . , αn − 1,

generate an orthogonal wavelet basis of L2(Rn). In fact, we need to study the stability of the

wavelet functions Ψi
j,k generated by Hi. The stability of Ψi

j,k can be similarly done as [9].

3. Example

Example 3.1 For the case α = 2. Let D1 =

(
a x

b y

)
, a, b, x, y be odd integers. Then it is easy

to check that D1 satisfies the three conditions (c1), (c2) and (c3). We choose D1 =

(
1 1

1 −1

)
.

Let H1(ω) = 1
2 (1 + z) and G

(1)
1 (ω) = 1

2 (z − 1), z = e−iω, ω ∈ R, be a 1-D low-pass and a high-

pass orthogonal filters (see [15]). By Lemma 2.1, we get the 2-D filter H2(ω1, ω2) = 1
2 (z2

1 + z2),

z1 = e−iω1 , z2 = e−iω2 , satisfying the condition (2.3). Applying Theorem 2.2, we conclude that

the 2-D nonseparable wavelet filter H0 satisfying the orthogonality condition (2.6) by

H0(ω1, ω2) = H2(ω1, ω2)H2

(
D1(ω1, ω2)

)
=

1

4
(z2

1 + z2)(z
2
1z2

2 + z1z
−1
2 ).
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Furthermore, let G
(1)
2 (ω1, ω2) = e−iω1H2(ω1 +π, ω2 +π) be the corresponding high-pass filters of

H2(ω1, ω2). Then it is easy to see that H2(ω1, ω2), G
(1)
2 (ω1, ω2) satisfy the Eq. (2.4). According

to Theorem 2.5, the corresponding high-pass filter Hi, i = 1, 2, 3, can be obtained via (2.13).

Since the scaling function φ generated by H1(ω) satisfies
∑

k∈Z
|φ̂(ω + 2πk)|2 = 1, it can be

seen that the translates of φ are stable. It follows from [9] that the translates of Φ generated by

H0 are stable and H0 generates a stable orthogonal wavelet basis of L2(R2).

Example 3.2 For the case α = 3. Let D1 =

(
a x

b y

)
, a+x = 0 mod (3), and b+y = 0 mod (3).

Then D1 satisfies the condition (c1). Furthermore, let a = b 6= 0 mod (3) or x = y 6= 0 mod (3),

it is easy to check that D1 satisfies (c2) and (c3). Choose D1 =

(
2 1

2 4

)
, then D1 satisfies the

conditions (c1), (c2) and (c3). Let H1(ω) = 1
3 (1+z+z2), G

(1)
1 (ω) = −

√
2

6 +
√

2
3 z−

√
2

6 z2, G
(2)
1 (ω) =

−
√

6
6 +

√
6

6 z2, z = e−iω, ω ∈ R be a 1-D low-pass filter and two high-pass orthogonal filters,

respectively [16]. By Lemma 2.1, we get the 2-D filter

H2(ω1, ω2) =
1

9

[
1 −

√
2 +

√
6

2
+ (1 +

√
2)z2 + (1 +

√
6 −

√
2

2
)z2

2+

(1 +

√
2 +

√
6

4
+

√
6 − 3

√
2

4
i)z3

1 + (1 −
√

2

2
−

√
6

2
i)z3

1z2+

(1 +

√
2 −

√
6

4
+

√
6 + 3

√
2

4
i)z3

1z
2
2 + (1 +

√
2 −

√
6

4
−

√
6 + 3

√
2

4
i)z6

1+

(1 −
√

2

2
+

√
6

2
i)z6

1z2 + (1 +

√
2 +

√
6

4
+

3
√

2 −
√

6

4
i)z6

1z2
2

]

satisfying the condition (2.3), where z1 = e−iω1 , z2 = e−iω2 . Applying Theorem 2.2, we conclude

that the 2-D nonseparable wavelet filter H0 given by

H0(ω1, ω2) = H2(ω1, ω2)H2(2ω1 + ω2, 2ω1 + 4ω2)

satisfies the orthogonality condition (2.6). According to [9], H0 generates a stable orthogonal

wavelet basis of L2(R2).
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