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Abstract In this paper we show that every g-frame for an infinite dimensional Hilbert space
‘H can be written as a sum of three g-orthonormal bases for H. Also, we prove that every g-
frame can be represented as a linear combination of two g-orthonormal bases if and only if it is
a g-Riesz basis. Further, we show each g-Bessel multiplier is a Bessel multiplier and investigate
the inversion of g-frame multipliers. Finally, we introduce the concept of controlled g-frames
and weighted g-frames and show that the sequence induced by each controlled g-frame (resp.,
weighted g-frame) is a controlled frame (resp., weighted frame).
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1. Introduction

Frames for a separable Hilbert space were first introduced in 1952 by Duffin and Schaeffer
[11]. In [14], a generalization of the frame concept was introduced. Sun introduced g-frames and
g-Riesz bases in a complex Hilbert space and discussed some properties of them. G-frames and
g-Riesz bases in complex Hilbert spaces have some properties similar to those of frames, Riesz
bases, but not all the properties are similar [14]. In this paper we generalize some results in
[5-7], from frame theory to g-frames.

Throughout this paper, H and K are separable Hilbert spaces and {H; };c; C K is a sequence
of separable Hilbert spaces, where J is a subset of Z, L(H,H;) is the collection of all bounded
linear operators from H to ‘H;. For each sequence {H;}ics, we define the space (€D;c; Hi)i, by

(EHi), = {{fi}ics : fi € Hi, i€ Jand Y |Ifill* < oo}
i€J ieJ
With the inner product defined by

{fit{g}) = Z<fi7gi>a

icJ

it is clear that (,.; Hi)i, is a Hilbert space.
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A frame for a complex Hilbert space H is a family of vectors {f;};cs so that there are two

positive constants A and B satisfying

AIFIP <D US P < BIFIP, fen.
icJ
The constants A and B are called lower and upper frame bounds. The frame possesses many
nice properties which makes it very useful in wavelet analysis and many other fields. We refer
to [1,2,8-10,15].

The notion of frames has been generalized to g-frames by Sun [14] in the following way: A
sequence {A; € L(H,H;) : i € J} is called a generalized frame, or simply a g-frame, for H with
respect to {H;}ics if there exist two positive constants A and B such that, for all f € H,

AJFIP < DI < BIIFIP.
icd
The constants A and B are called the lower and upper g-frame bounds, respectively. The supre-
mum of all such A and the infimum of all such B are called the optimal bounds. If A = B we
call this g-frame a tight g-frame and if A = B = 1 it is called a normalized tight g-frame. We
say simply a g-frame for H, and denote it by {A;};cs, whenever the space sequence H; and the
index set J are clear. If we only have the upper bound, we call {A;};c; a g-Bessel sequence
with bound B. We say that {A;}ics is g-complete, if (), ;{f : A;f = 0} = {0} and is called

g-orthonormal basis for H, if
(Ajgi, Njgs) = 6i(9i,95), 4,7 € J, gi € Hi, g5 € Hj,

and

DIAfIP= 1A feH
ieJ
We say that {A;}ics is a g-Riesz basis for H, if it is g-complete and there exist constants
0 < A < B < 00, such that for any finite subset I C J and g; € H;, i € I,
AN lgl® < 1D Afgll> < BY gl
el i€l i€l
In [14], for the g-frame {A;};cs, the g-frame operator S is defined by
S:H—H,Sf= ZAfAz’fa
ieJ

which is a bounded, self-adjoint, positive and invertible operator and
AllfIF<ISFI < BIIfII-

The canonical dual g-frame for {A;};cs is defined by {X;}ie], where E = A;5~!, which is also
a g-frame for H with % and % as its lower and upper g-frame bounds, respectively. Also every
f € H has an expansion

F=Y STUNAf =D AAST

ieJ ieJ
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Let {A;}ies be a sequence in L(H,H;), {e;x : ¥ € K;} be an orthonormal basis for H;,
i € J where K; is a subset of Z and let 1, = Afe; . We have A;f = ZkeKl(f, Vi ke We
call {¢p; 1, : 1 € J, k € K} the sequence induced by {A;},c; with respect to {e; r : k € K;}.

In order to present the main results of this paper, we need the following theorem that
describes the relationship between frames (resp., Bessel sequences, tight frames, Riesz bases, or-

thonormal basis) and g-frame (resp., g-Bessel sequence, tight g-frame, g-Riesz bases, g-orthonormal

bases), which can be found in [14].

Theorem 1.1 Let A; € L(H,H;), and v); ;, be defined as above. Then we have the followings:

(i) {A;}ies Is a g-frame (resp., g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal
basis) for H if and only if {1, : i € J, k € K;} is a frame (resp., Bessel sequence, tight frame,
Riesz basis, orthonormal basis) for H.

(ii) The g-frame operator for {A;};c; coincides with the frame operator for {i; : i €
J ke K;}.

(iii) Moreover, {A;};cy and {Ki}iej are a pair of (canonical) dual g-frames if and only if
the induced sequences are a pair of (canonical) dual frames.

We call {¢; 1, : i € Jk € K;} the sequence induced by {A;};cs with respect to {e; 1 : k €
K;}. If {€} :i € J,k € K;} is an orthonormal basis for H and ©;f = >, i (f, €] ;)€ik, then
{©;}ics is a g-orthonormal basis for H.

Given two Bessel sequences, ¥ = (1;) and & = (¢;), and the weight sequence m = (m;),
the Bessel multiplier for these sequences is an operator defined by

Mo waf =Y mif, i) e;.
ied
We shorten the notation by setting M, ¢ = M, w v (see [3]). Bessel multipliers and, in partic-
ular, frame multipliers have useful applications. For example, in [4], frame multipliers are used
to solve approximation problems.

The concept of Bessel multipliers can be generalized to g-Bessel as follows: For given g-
Bessel sequences A = {A;}ics and © = {©;};cs, and the weight sequence m = (m;), the
g-Bessel multiplier is defined by

M aef =) mihiOf.
ieJ
We shorten the notation by setting M, o = M, o 2. (see [13])

A sequence (m; : i € J) is called semi-normalized if there are bounds b > a > 0, such that
a<|my <bforallielJ.

We define GL(H) as the set of all bounded linear operators with a bounded inverse. A
frame controlled by an operator C € GL(H) is a family of vectors ¥ = (¢); € H : i € J), such
that there exist two constants m¢ey, > 0 and Mgy, < oo satisfying

mer|lfI? <Y (F i) (Cn, £) < MeL||fI?, f € H.

icJ
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We call
Sof =Y (f;)Cis,
=
the controlled frame operator [6].
We also generalize this concept to g-frames. A g-frame controlled by the operator C €
GL(H) or C-controlled g-frame is a family of operators A = {A;};cs, such that there exist two
constants mgyr > 0 and Mg < oo satisfying

mop|fI? <D (NCH f A f) < Mop| £
icJ

The paper is organized as follows. In Section 2 we show that every g-frame for an infinite
dimensional Hilbert space H can be written as a sum of three g-orthonormal bases for H. We
next show that a g-frame can be represented as a linear combination of two g-orthonormal bases
if and only if it is a g-Riesz basis. We further show that every g-frame can be written as a sum
of two tight g-frames with g-frame bounds one or a sum of a g-orthonormal basis and a g-Riesz
basis for H. In Section 3 we show each g-Bessel multiplier is a Bessel multiplier and investigate
the inversion of g-frame multipliers. Also sufficient conditions for invertibility of multipliers are
determined. In Section 4 we introduce controlled g-frames and show that the sequence induced by
each controlled g-frame is a controlled frame and controlled g-frames are equivalent to standard
g-frames. Finally, in the last section, we investigate the concept of weighted g-frames, and show

that the sequence induced by each weighted g-frame is a weighted frame.

2. Some G-frame representations

In [7], the author has shown, using operator theory, that every frame in a Hilbert space H
can be written as the sum of three orthonormal bases. More precisely, if (x;);cs is a frame for
H, then there exist orthonormal bases (f;), (¢;) and (h;) such that x; = a(f; + g; + hi),i € J,
for some constant a. Furthermore, the author provided an example of a tight frame (x;);c; that
cannot be written in the form xz; = a f; + bg;,i € J, for any orthonormal sequences (f;), (g;)
and any choice of constants a and . The author also proved related results, in particular the
following one: a frame in H can be written as a linear combination of two orthonormal bases if
and only if it is a Riesz basis. In this section we generalize some of these results from the frame

case to the g-frame case.

Proposition 2.1 If {A;};cs is a g-frame for a Hilbert space H, there are g-orthonormal bases
{T:}, {T:}, {¥;} for H and a constant a so that A; = a(Y; +T; + ;) for all i € J.

Proof Let {¢; 1} be the sequence induced by {A;}ics with respect to an orthonormal basis
{eix : k € K;}. Hence A;f = EkEKi<f’wi7k>e7;ak7’ and so, by Corollary 2.2 of [7], there are
constant a and orthonormal bases {fi x},{gix}, {hir} such that ¥; p = a(fik+gir+hik). Since
{fie}:{9ix}, {hix} are orthonormal bases for H, by Theorem 1.1, T;, I';, ¥; are g-orthonormal
bases, where Yif = >y e (f, fik)€iks Dif = D e, (fs Gik)€in, and Wi f =37 o (f, hi)ei k-
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The proof is completed by noting that A; = a(Y; +T; + ;) for alli € J. O

Proposition 2.2 A g-frame {A;};cj can be written as a linear combination of two g-orthonormal

bases for H if and only if {A;};c is a g-Riesz basis for H.

Proof Let {¢; 1} be the sequence induced by {A;};cs with respect to an orthonormal basis
{eir : k € K;}. Then A;f = ZkEKi (f, i k)eir. Suppose that there are g-orthonormal bases
{Y;}, {T';} for H and constants a,b such that A; = a¥; 4+ b'; for all ¢ € J. So, by Theorem
1.1, there are orthonormal bases {fir},{gix} for H such that Y;f =3, p (f, fik)eir, Lif =
ZkeK,;<f7 gik)ei k. Therefore, ¥; = afir + by, and Proposition 2.5 of [7] implies that {t; x}
is a Riesz basis. So {A;};cs is a g-Riesz basis for H by Theorem 1.1. Conversely, if {A;};cs is a
g-Riesz basis, we have A; f = ) e (f, i k)eir, where {1); 1} is a Riesz basis. So by Proposition
2.5 of [7], for some constants a,b, and orthonormal bases {f; x} and {g;r}, ¥ix = afir + bgi k.
Hence A; = aY; + bI';, where T; and I'; are g-orthonormal bases and T, f = ZkeK,; (fs fir)eik,

Lif =2 ker, (s gik)eir. O

Proposition 2.3 If K is a co-isometry on H, and if {©;};cs is a g-orthonormal basis for H,
then {©;K* : i € J} is a normalized tight g-frame for H.

Proof Since K is a co-isometry, K* is an isometry. Hence, for all f € H,
SIOK P = K fI? = £ O
ieJ

By the same argument as above, we obtain the following results.
Proposition 2.4 Every g-frame is the sum of two normalized tight g-frames for ‘H.

Proposition 2.5 Every g-frame for a Hilbert space H is the sum of a g-orthonormal basis for

‘H and a g-Riesz basis for H.

3. Invertibility of multipliers

In this section we show each g-Bessel multiplier is a Bessel multiplier and investigate the
inversion of g-frame multipliers. Also sufficient conditions for invertibility of multipliers are
determined. Equivalent results as proved in [3] for Bessel multiplier can be shown for g-Bessel
multiplier. We prove some of them, the proof of the others follows in the same manner.

The following proposition gives the connection between the g-Bessel sequences and Bessel

sequences.

Proposition 3.1 Fach g-Bessel multiplier is a Bessel multiplier.
Furthermore, if m € £*° and A = {A;}ics, © = {©;}ics are g-Bessel sequences for H with
bounds By, Be, respectively, then the multiplier My, r e is well defined on H and || My, a el <

\/BAB@HTTLHOO.

Proof Let A = {A;}ics and © = {O,},cs be g-Bessel sequences with induced sequences {1;  }
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and {¢; }, respectively. Then
Mmaef = ZmiA?@if = Z Z mi(f, Gik)Vik = My 0,0,
icJ ieJ keK;
where U = {¢);, : i € J k€ K;},®={¢;:i € J k€ K;} and m' = {mgjk =m;:1€ JkE¢€
K;}. For the proof of the second part, since the bounds of {9; 1} and {¢; x} are By and Be,
respectively, the assertion follows by the first part and Theorem 6.1 of [3]. O

Theorem 3.2 Let M, 5.0 be well defined and invertible on 'H.
(i) If © = {O;}ics (resp., A = {A;}ics) is a g-Bessel sequence for H with bound Beg,

then mA = {m;A;};c; (resp., mO) satisfies the lower g-frame condition for H with bound

1
T R TE
B(—)”I\/[m,/\,e”z

(ii) If© (resp., A) and mA (resp., mO) are g-Bessel sequences for H, then they are g-frames
for H.

(iii) If © (resp., A) is a g-Bessel sequence for H and m € £>°, then A (resp., ©) satisfies the
lower g-frame condition for H.

(iv) If © and A are g-Bessel sequences for H and m € ¢>°, then © and A are g-frames for

‘H; mA and m© are also g-frames for H.

Proof (i) Since © = {©;}ic; is a g-Bessel sequence, by Theorem 1.1, ©;f =, . (f, @i k) €i ks
where {¢; 1} is a Bessel sequence for H with bound Beg, and M, o, = M,/ .¢,w, where A;f =
Z:keKi<f7 Vigyeir, C={vix:1€ ke K}, ®={pip:i€J ke K}and m = {mLk =m, :
i€ J ke K;}. Also we have

D olmibi FI7 =03 1 matdix)

ied i€ keK;
By Proposition 4.3 of [5], m’U satisfies the lower frame condition for H with bound

1 1

B@”Mr;,/l,@,\l/”z B@HM;}A,(—)HQ.
(ii) and (iii) follow from (i).
(iv) Let © and A be g-Bessel sequences for H and m € £*°. Then mA and m® are also
g-Bessel for H. O

In the following proposition we give a sufficient condition for invertibility of g-multipliers.

Proposition 3.3 Let A = {A;}ic; be a g-frame for H, G : H — H be a bounded bijective
operator and ©; = \;G, Vi € J. Let m be positive (resp., negative) semi-normalized. Then © Is

a g-frame for 'H and the g-frame multiplier M,, e is invertible on 'H with

) G*ls(—\/lWAA), when m; > 0, Vi,
M- _ i\ 1
m,A,© G151 when m; < 0, V. M)

(VImilA:)’
Proof We have A;f = Zkem(f, Vi k)eik, where {¢; .} is a frame for H. Since ©; = A;G,

0:f = > (Gftin)ein= > (f,G*Uir)ein.

kEK; keEK;
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We know G* is a bounded bijective operator, and hence ¢; = G*¥; i, is a frame for H (see
[8]). So © is a g-frame for H. By Proposition 3.1, M,, a0 = M, 0,9 where ¥ = {t); : i €
J ke K}, ={¢;p:1€J ke K} andm' = {m;,~C =m;:i € J k€ K;}. If m is positive
then, by Theorem 1.1, the g-frame operator for {,/m;A;};cs coincides with the frame operator
for { m i i € J k€ K;}. Therefore, by Lemma 4.4 of [6], M, o,0 = M,/ ¢ w is invertible
and equation (1) holds. O

By the same method that we use to prove Proposition 3.3, one can prove the followings.

Proposition 3.4 Let A = {A;},c; be a g-frame for H and let AY = {A%};c; be a dual g-frame
< —1 (< . A< ms < ;
of A. Let 0 < A < \/m(f 1) and let (m;) be such that 1 — A <m; <1+ \, foralli € J.

Then M,, x pa and M,, pa  are invertible on H,

1 1
hl| < h < hl|, Yhe™H, 2
T S IV bl € ] &)
and the same inequalities hold for HM_ adahll. Moreover,
M, yone = Z(Mm”/\vf\d)k and M, ', \ = Z(Mm/-f\d-f\)k’ (3)
k=0 k=0

where m' = (1 —m;).

Corollary 3.5 Let A be a g-frame for H and A be the canonical dual of A. Let 0 < \ < ﬂ(g
1) and (m;)ies be such that 1 — A <m; <1+ A, foralli € J. Then M, , z and M, z , are

invertible on H,

1 1
h h| < ———||h||, YheH,
T S IV S el
and the same inequalities hold for HM;IA 1Dl Moreover,
= (M, ) and MY =D (M, 5 4)",
k=0 k=0

where m' = (1 —m;).

Proposition 3. 6 Let A be a g-frame for H. Assume that © — A is a g-Bessel sequence for H with

bound Bg_p < B . For every positive (or negative) semi-normalized sequence m, satisfying
An

vV Be-rBa’

it follows that © is a g-frame for ‘H, the multipliers My, o, and My, o s are invertible on 'H,
1

b
0<a<|m <bVi, and - <
a

1
h|| < [IM-L oh| < AR
bBA—‘rb\/mH ||—|| m,\,© H—aAA_b\/mH ||
and the same inequalities hold for HM;L}Q Ahll. Moreover,
Zzo O[ FA)(S(WA)*Mm,A,G)] S_\/mTA)’ if m; > 0,Vi,

1 o
Mm,A,@ -

Ek 0[ (\/7/\ ( (mAi)'i_Mm,A,@)] S(_ \mi|/\i)’ if m; <0,VZ'7
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ZZC):O[S(_\}WA,i)(S(WAi) - Mm,@,A)]kS(_\}ﬁAiV it m; >0, Vi,

. 00 -1 ka—1 . ] .
Zk:O[S( %lmi‘Ai)(S( ian T Mp.0.A)] S( A if m; <0,Vi.

Proposition 3.7 Let A be a g-frame for H. Assume that Ju € [0, %i) such that 3 ||(m;©; —

A FI? < pllfII’, Yf € H. Then m® is a g-frame for ‘H, the multipliers M, » o and M, o A
are invertible on H,

1 -
Mm,@,A -

1
M, ohl < ) Vh € H,

1
—F—||h]| £ —|||l,
Il < |
and the same inequalities hold for HM;lg AR|l. Moreover,

oo

Myl o= I3 (Sn — My a0)F S5
k=0
and
Mo x=> [ (Sa = Mmon)lF Sy
k=0

As a consequence, if m is semi-normalized, then © is also a g-frame for H.

Proposition 3.8 Let A be a g-frame for H. Assume that there exists p € [0, B%\) such that
S(mi©; — AD fI1? < ul| £, for all f € H, for some dual g-frame A% = (A%) of A. Then m®© is

a g-frame for H, the bounded multipliers M,, Ao and My, e A are invertible on H,

1 1
——— ||l < MY ohl £ ———=]||h|l, VheEH,
1_‘_@” H = H m,\,© || = 1_m|| ||
and the same inequalities hold for HM;}Q ARl. Moreover,
oo oo
MY o= (In—Mnro) and M, g, => (I —Mnen).
k=0 k=0

As a consequence, if m is semi-normalized, then © is also a g-frame for 'H.

4. Controlled G-frames

In this section we introduce the concept of controlled g-frames and we show that the sequence
induced by each controlled g-frame is a controlled frame. We also show that controlled g-frames

are equivalent to standard g-frames.

Definition 4.1 A g-frame controlled by an operator C' € GL(H) or C-controlled g-frame is a
family of vectors A = {A;};cs, such that there exist two constants mcy > 0 and Moy < oo
satisfying
merllfI? <Y (AC* £, Aif) < Mewl|fI1%,
ic
for all f € H. The controlled g-frame operator is defined by
Sof => MAC*f, feH.

ieJ
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Proposition 4.2 The sequence induced by each controlled g-frame is a controlled frame.

Proof Let A; € L(H,H;) and A;f = ZkeK,3<fvwi7k>ei,kv where {1 : i € J k € K;} is
the sequence induced by {A; : ¢ € J} with respect to {e; : k € K;}. Hence A,C*f =
ZkeK1<f7 Cwi7k>ei7;€. Then
D ANCT AL =3 Cip) (Wi ),
= ieJ kekK;
and
Sef =Y NAC =Y (f,C¢ix)is O
= icJ keK;
Proposition 4.3 Let C € GL(H) and A = {A;};c; be a C-controlled g-frame in H. Then A is
a classical g-frame. Furthermore if S is a g-frame operator, we have SC* = C'S and so
Z AFACHf = (JZ AFAf.
icJ icJ
Proof Since A = {A;};cs is a C-controlled g-frame, by Proposition 4.2, we have A;f =
> ker, \fsik)eir, where {1; 1} is a C-controlled frame. By Proposition 3.2 of [6], {¢ix} is
a classical frame and so A = {A;};cs is a classical g-frame. By Theorem 1.1, the g-frame op-
erator for {A;};c; coincides with the frame operator for {¢; : ¢ € J,k € K;} and the proof is
completed by using Proposition 3.2 of [6] and Proposition 4.2. [J

Proposition 4.4 Let C € GL(H) be self-adjoint. The family A is a g-frame for H controlled
by C if and only if it is a (classical) g-frame for H, C' is positive and commutes with the g-frame

operator S.
Proof The assertion follows from Proposition 3.3 of [6] and Propositions 4.2, 4.3. O

Corollary 4.5 Let C be a self-adjoint operator and A be a C-controlled g-frame. Denote by
(mes, Mcs), (m, M) and (mc, Mc) any bounds for the controlled g-frame operator Sc, the
g-frame operator S, and the operator C, respectively. Then,

(i) m'=753gL M = % are bounds for S;

(i) mg = mer  M{, = ML are bounds for C;

(iii) mg; = mme, M{;, = MMc are bounds for Sc.

5. Weighted G-frames

In this section we investigate the concept of weighted g-frames, and show that the sequence

induced by each weighted g-frame is a weighted frame.

Definition 5.1 Let {A;}ics and (w; : @ € J) be a sequence of positive weights. This pair is
called a weighted g-frame or a w-g-frame of ‘H if there exist constants m > 0, M < oo such that

ml[fI* <Y wilAf|P < MIFIP, fen.

icJ
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Assume now that the restriction on the weights is lifted, i.e., (w;) C C. Then we call (w;A;) a

weighted g-frame if this sequence forms a g-frame, i.e.,

mllfI? <Yl PIAfIP < MIIFIP f € He
i€J

Proposition 5.2 The sequence induced by each weighted g-frame is a weighted frame.

Proof If {w;A;};cs is a weighted g-frame, then we have

wili f =Y (fywitdik)ein

keK;
and
S wilPIAHIP =D wi I i) .
ieJ ieJ keK;

So {w; ¥k i € J,k € K;} is a weighted frame with w; , = w; fori € J,k € K;. O

Proposition 5.3 Let C € GL(H) be self-adjoint and {A;};c; be a controlled g-frame and
assume CAY = w;A}. Then the sequence (w;) is semi-normalized and positive. Furthermore

C= Mw,A,jN\'

Proof We have A;f = ) (f,¥in)eir and so AT fi = > e (fisein)in for all fi € H,.
Since CAY = w; A}, it is easy to show that Ct; ,, = w;1); . The conclusions follow from Propo-
sition 4.2 of [6] and Propositions 3.1, 5.2. O

The following Lemma can be proved by the same manner.

Lemma 5.4 Let (w; : i € J) be a semi-normalized real sequence with bounds a,b. Then if
{A;}iey is a g-frame with bounds m and M, then {w;\;};c is also a g-frame with bounds a®*m

and b>M. The sequence {w;lj\\;}iej is a dual g-frame of {w;A;}ic 7.

Lemma 5.5 Let A = {A;};cs be a g-frame and w = (w; : i € J) be a positive semi-normalized
sequence. Then the multiplier M, 5 is the g-frame operator of the g-frame {\/w;A\;};c; and

therefore it is positive, self-adjoint and invertible.

Proof By using Lemma 5.4, {\/w;A;}ics is a g-frame and if S is the g-frame operator of it,
then
Sf = (Vwiki)* Vwiif = wihjAif
ieJ ieJ
and
Muyaf =Y wihiAf.
ic
Therefore, M, o = S is positive, self-adjoint and invertible. [
We end this section with the following theorem, which can be proved in exactly the same

fashion as above.

Theorem 5.6 Let A = {A;}ics be a sequence and w = (w; : i € J) be a positive, semi-

normalized sequence. Then the following properties are equivalent:
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(i) A={Ai}ics is a g-frame;
(ii)) M, A is positive, self-adjoint and invertible operator;
(iii) There are constants m > 0, M < oo such that

ml|fI* <D will AP < MR,

icJ
for all f € H;
(iv) {wil;}ics is a g-frame;
(v) M, A Is a positive and invertible operator, for any positive, semi-normalized sequence
w' = (w1 e J);
(vi) {w;\; € L(H, H;) 24 € J} is a g-frame.
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