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Abstract In this paper, we study upper bounds of the first eigenvalue of a complete non-

compact submanifold in an (n + p)-dimensional hyperbolic space H
n+p. In particular, we

prove that the first eigenvalue of a complete submanifold in H
n+p with parallel mean cur-

vature vector H and finite Lq(q ≥ n) norm of traceless second fundamental form is not

more than (n−1)2(1−|H|2)
4

. We also prove that the first eigenvalue of a complete hypersurfaces

which has finite index in H
n+1(n ≤ 5) with constant mean curvature vector H and finite

Lq(2(1−
√

2
n
) < q < 2(1+

√
2
n
)) norm of traceless second fundamental form is not more than

(n−1)2(1−|H|2)
4

.
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1. Introduction

Let H
n+p be an (n + p)-dimensional hyperbolic space of constant curvature −1. Let Mn

be an n-dimensional complete oriented submanifold in H
n+p. Fix a point x ∈ M and choose a

local orthonormal frame {e1, e2, . . . , en+p} such that, restricted to M , {e1, e2, . . . , en} are tangent

fields. For each α, n + 1 ≤ α ≤ n + p, define a Weingarten transform Aα : TxM → TxM by

〈AαX, Y 〉 = 〈∇̃XY, eα〉,

where X, Y are tangent fields and ∇̃ is the Riemannian connection on H
n+p. We denote by H

the mean curvature vector of M , i.e.,

H =
1

n

n+p∑

α=n+1

TrAαeα.

We say that M has parallel mean curvature vector if ∇⊥H = 0. Note that this condition implies

|H | is constant on Mn, and if p = 1 then the two conditions are equivalent. It is easy to see that

the minimal submanifold has parallel mean curvature vector. For α, n + 1 ≤ α ≤ n + p, define a
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bilinear map φα : TxM → TxM by

〈φαX, Y 〉 = 〈X, Y 〉〈H, eα〉 − 〈AαX, Y 〉,

and define a bilinear map φ : TxM × TxM → TxM⊥ by

φ(X, Y ) =

n+p∑

α=n+1

〈φαX, Y 〉eα.

It is easy to see that the tensor φ is traceless. We have

|A|2 = |φ|2 + n|H |2,

where A denotes the second fundamental form of M .

In this paper, we study the upper bounds of the first eigenvalue of the Laplace operator on

a complete stable hypersurface in H
n+p with finite Lq norm curvature. To state some results,

we recall some notations and definitions.

Definition 1 Let i : Mn → Nn+1 be an isometric immersion of an orientable manifold M with

constant mean curvature vector. The immersion i is called weakly stable if
∫

M

[
|∇f |2 − (Ric(ν, ν) + |A|2)f2

]
≥ 0 (1)

for any f ∈ C∞
0 (M) satisfying

∫
M

f = 0, where ∇f is the gradient of f in the induced metric

of M , Ric is the Ricci tensor of N and ν is the unit normal vector field of M , while i is called

strongly stable if (1) holds for any f ∈ C∞
0 (M).

Definition 2 The first eigenvalue of a Riemannian manifold M , is defined to be

λ1(M) = inf
f

∫
M

|∇f |2
f2

, (2)

where the infimum is taken over all compactly supported Lipschitz functions on M .

If M is a complete noncompact Riemannian manifold, by the Domain Monotonicity Princi-

ple, λ1(M) = limR→+∞ λ1(Bp(R)), where Bp(R) ⊂ M is some geodesic ball with radius R and

center p. It is easy to see that λ1(M) ≥ 0. According to Schoen and Yau [12], it is an impor-

tant question to find conditions which will imply that λ1(M) > 0. In this direction, Mckean

[11] proved that if M is an n dimensional complete simply connected manifold with sectional

curvature bounded above by −k2 for some non-zero constant k, then λ1(M) ≥ (n−1)2k2

4 . It was

proved by Cheung and Leung [4] that for an n-dimensional complete submanifold M in H
n+p

with bounded mean curvature |H | ≤ α < n−1
n

, then λ1(M) ≥ (n−1−nα)2

4 . The result due to

Castillon [3] is that the first eigenvalue of a complete hypersurface in H
n+1 with constan mean

curvature |H | < 1 and finite Ln norm of traceless second fundamental form is not less than
(n−1)2(1−|H|2)

4 . Candel [2] proved that the first eigenvalue of a complete simply connected sta-

ble minimal surface in H
3 satisfies 1

4 ≤ λ1(M) ≤ 4
3 . Recently, Seo [13] showed that the first

eigenvalue of a complete stable minimal hypersurface in H
n+1 with finite L2 norm of the second

fundamental form is not more than n2.
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Throughout this article, we always assume that M is a complete, non-compact, connected

Riemannian manifold without boundary. In this case, we will simply say that M is a complete

manifold.

Our main results in this paper are stated as follows.

Theorem 1 Let Mn be a complete submanifold with parallel mean curvature vector H in H
n+p.

For q ≥ n, if ∫

M

|φ|q < +∞,

then λ1(M) ≤ (n−1)2(1−|H|2)
4 .

Remark We do not assume |H | ≤ 1 in Theorem 1, because for a complete submanifold with

parallel mean curvature vector H in H
n+p with

∫
M

|φ|q < +∞ (q ≥ n), by Theorem 6.2 of [1]

we have |H | ≤ 1.

Theorem 2 Let Mn (n ≤ 5) be a complete weakly stable hypersurface in H
n+1 with constant

mean curvature vector H . For (1 −
√

2
n
) < d < (1 +

√
2
n
), if

∫

M

|φ|2d < +∞,

then λ1(M) ≤ (n−1)2(1−|H|2)
4 .

Remark When M is a complete hypersurface in H
n+1 with constant mean curvature and finite

index, the assertions of Theorem 2 and Proposition 1 still hold for a result of [6].

Corollary 1 Let Mn (n ≤ 5) be a complete weakly stable hypersurface in H
n+1 with constant

mean curvature vector H . If ∫

M

|φ|d < +∞, d = 1, 2, 3,

then λ1(M) ≤ (n−1)2(1−|H|2)
4 .

By Cheung and Leung’s result and Theorem 2, we get the following corollary.

Corollary 2 Let Mn (n ≤ 5) be a complete weakly stable minimal hypersurface in H
n+1. For

2(1 −
√

2
n
) < d < 2(1 +

√
2
n
), if

∫

M

|A|d < +∞,

then λ1(M) = (n−1)2

4 .

Corollary 3 Let M2 be a complete weakly stable minimal hypersurface in H
3. For any positive

number p, if ∫

M

|A|p < +∞,

then λ1(M) = 1
4 .
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Theorem 3 Let Mn (n ≥ 6) be a complete stable minimal hypersurface in H
n+1. For 2(1 −√

2
n
) < d ≤ 2(1 − 2

n
), if

∫

M

|A|d < +∞,

then λ1(M) ≤ n(n − 2).

2. Proofs of main theorems

In [9, 14], it was proved that the following estimate holds for Ricci curvature of a submanifold

M in H
n+p.

Ric ≥ n − 1

n

(
− n + 2n|H |2 − n(n − 2)√

n(n − 1)
|H |

√
|A|2 − n|H |2 − |A|2

)
.

Applying the above inequality to the traceless second fundamental form |φ| and using the identity

|A|2 = |φ|2 + n|H |2, we get

Ric ≥ −(n − 1) + (n − 1)|H |2 − (n − 2)
√

n(n − 1)|φ||H |
n

− (n − 1)|φ|2
n

. (3)

Proof of Theorem 1 By Proposition 6.1 and Theorem 6.2 of [1], |H | ≤ 1 and for all ǫ > 0

there exists a compact set Ω such that |φ| < ǫ in M \ Ω. By (3), we obtain that Ric(x) ≥
−(n − 1)(1 − |H |2 + ǫ′) for any x ∈ M \ Bp(R0), where ǫ′ depends only on ǫ, |H | and n. Then

from the proof of Heintze-Karcher’s comparison theorem [8], we have

V (r) ≤ C(n) exp[(n − 1)
√

1 − |H |2 + ǫ′r].

If λ1(M) >
(n−1)2(1−|H|2+ǫ′)

4 , then it follows from Theorem 1.4 of [10]

V (r) ≥ C exp(2
√

λ1(M)r) > C exp[(n − 1)
√

1 − |H |2 + ǫ′r],

leading to a contradiction. So we have λ1(M) ≤ (n−1)2(1−|H|2+ǫ′)
4 . By the arbitrariness of ǫ, we

get λ1(M) ≤ (n−1)2(1−|H|2)
4 . �

By Castillon’s result and Theorem 1, we get the following corollary.

Corollary 4 Let M be a complete hypersurface in H
n+1 with constant mean curvature vector

H . If ∫

M

|φ|n < +∞,

then

λ1(M) =
(n − 1)2(1 − |H |2)

4
.

Remark By Corollary 4, we have λ1(H
n) = (n−1)2

4 , which has been proved by Mckean in [11].

Before we prove Theorems 2 and 3, we need the following Proposition 1. Although Propo-

sition 1 was proved in [7], for completeness, we still include it.

Proposition 1 ([7]) Let M be a complete weakly stable hypersurface in H
n+1 with constant
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mean curvature. For 2(1 −
√

2
n
) < d < 2(1 +

√
2
n
), if

∫

M

|φ|d < +∞,

then ∫

M

|φ|d+2 < +∞.

Proof If M is a hypersurface with constant mean curvature vector H in H
n+1, Cheung and

Zhou [5] got the following Simon’s inequality:

|φ|∆|φ| ≥ 2

n
|∇|φ||2 − |φ|4 − n(n − 2)√

n(n − 1)
|H ||φ|3 + n(|H |2 − 1)|φ|2. (4)

By computation of (4), we obtain that

|φ|α∆|φ|α ≥ (1 − n − 2

nα
)|∇|φ|α|2 − α|φ|2α+2−

α
n(n − 2)√
n(n − 1)

H |φ|2α+1 + αn(H2 − 1)|φ|2α,

where α is a positive constant. Take a = n(n−2)√
n(n−1)

H and b = n(H2−1), then the above inequality

can be rewritten as

|φ|α∆|φ|α ≥ (1 − n − 2

nα
)|∇|φ|α|2 − α|φ|2α+2 − αa|φ|2α+1 + αb|φ|2α. (5)

From the definition of weak stability, the index of M is at most 1. We know from a result

of [6] that if M has finite index, then it is strongly stable outside a compact set, i.e., we have a

compact set D ⊂ M such that
∫

M\D

|∇f |2 ≥
∫

M\D

(|φ|2 + n(H2 + c))f2 =

∫

M\D

(|φ|2 + b)f2 (6)

for all smooth functions f compactly supported in M \ D.

Let q ≥ 0 and f ∈ C∞
0 (M \ D). Multiplying (5) by |φ|2qαf2 and integrating over M \ D,

we obtain

(1 − n − 2

nα
)

∫

M\D

|∇|φ|α|2|φ|2qαf2

≤ α

∫

M\D

|φ|2(q+1)αf2|φ|2 + αa

∫

M\D

|φ|2(q+1)αf2|φ|−

αb

∫

M\D

|φ|2(q+1)αf2 +

∫

M\D

|φ|(2q+1)αf2∆|φ|α

= α

∫

M\D

|φ|2(q+1)αf2|φ|2 + αa

∫

M\D

|φ|2(q+1)αf2|φ| − αb

∫

M\D

|φ|2(q+1)αf2−

(2q + 1)

∫

M\D

|∇|φ|α|2|φ|2qαf2 − 2

∫

M\D

|φ|(2q+1)αf〈∇f,∇|φ|α〉,

which gives

(2(q + 1) − n − 2

nα
)

∫

M\D

|∇|φ|α|2|φ|2qαf2
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≤ α

∫

M\D

|φ|2(q+1)αf2|φ|2 + αa

∫

M\D

|φ|2(q+1)αf2|φ|−

αb

∫

M\D

|φ|2(q+1)αf2 − 2

∫

M\D

|φ|(2q+1)αf〈∇f,∇|φ|α〉. (7)

Using the Cauchy-Schwarz inequality, we can rewrite (7) as

(2(q + 1) − n − 2

nα
− ǫ)

∫

M\D

|∇|φ|α|2|φ|2qαf2

≤ α

∫

M\D

|φ|2(q+1)αf2|φ|2 + αa

∫

M\D

|φ|2(q+1)αf2|φ|−

αb

∫

M\D

|φ|2(q+1)αf2 +
1

ǫ

∫

M\D

|φ|2(q+1)α|∇f |2,

for some positive constant ǫ.

On the other hand, replacing f by |φ|(1+q)αf in the inequality (6) and using the Cauchy-

Schwarz inequality, we have
∫

M\D

(|φ|2 + b)f2|φ|2(1+q)α ≤
∫

M\D

|∇(|φ|(1+q)αf)|2

≤(1 + q)(1 + q + ǫ)

∫

M\D

|∇|φ|α|2|φ|2qαf2+

(1 +
1 + q

ǫ
)

∫

M\D

|φ|2(q+1)α|∇f |2. (9)

If (2(q + 1) − n−2
nα

− ǫ) > 0, subtracting (9) × (2(q + 1) − n−2
nα

− ǫ) from (8) × (1 + q)(1 + q + ǫ)

and using the Cauchy-Schwarz inequality yields

E

∫

M

|φ|2f2|φ|2(1+q)α ≤ F

∫

M

f2|φ|2(1+q)α + G

∫

M

|φ|2(q+1)α|∇f |2, (10)

where

E = 2(q + 1) − n − 2

nα
− ǫ − (1 + q)(1 + q + ǫ)α − ǫ

2
|a|(1 + q)(1 + q + ǫ)α,

F =
1

2ǫ
|a|(1 + q)(1 + q + ǫ)α − b(1 + q)(1 + q + ǫ)α − b[2(q + 1) − n − 2

nα
− ǫ].

Let (1 + q)α = d
2 . Thus (1 −

√
2
n
) < (1 + q)α < (1 +

√
2
n
). It is easy to see that(

2(q + 1) − n−2
nα

)
> 0 and 2(q + 1) − n−2

nα
− (1 + q)2α > 0, and then we can choose ǫ > 0

sufficiently small so that (2(q + 1) − n−2
nα

− ǫ) > 0 and E > 0. So from (10) we have a positive

constant C1 such that
∫

M\D

|φ|d+2f2 ≤ C1

(∫

M\D

|φ|df2 +

∫

M\D

|φ|d|∇f |2
)
. (11)

We can choose R0 such that D is contained in some geodesic ball Bp(R0). For R > R0 + 1, let

us choose f satisfying the properties that

f(x) =





0 on Bp(R0),

1 on Bp(R) \ Bp(R0),

0 on M \ Bp(2R),
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and |∇f | ≤ C2, where C2 is a constant. Since
∫

M\D
|φ|d < +∞ and R can be arbitrarily large,

from (11) we conclude that
∫

M\D
|φ|d+2 < +∞. Hence we obtain that

∫

M

|φ|d < +∞ ⇒
∫

M

|φ|d+2 < +∞. (12)

�

Proof of Theorem 2 First, we prove that
∫

M
|φ|5 < +∞. It is easy to see that 3 ∈ (2(1 −√

2
n
), 2(1 +

√
2
n
)) for n ≤ 7.

1) When d = 3, by Proposition 1 we get
∫

M
|φ|5 < +∞ since

∫
M

|φ|3 < +∞.

2) When 2 − 2
√

2
n

< d < 3, there exist two numbers p = 2
d−1 > 1 and q = 2

3−d
> 1 such

that 1
p

+ 1
q

= 1. Since
∫

M
|φ|d < +∞, by Proposition 1 we get

∫
M

|φ|d+2 < +∞. By the Hölder

inequality, we obtain

∫

M

|φ|3 ≤
(∫

M

(|φ| d
p )p

) 1
p
( ∫

M

(|φ|
d+2

q )q
) 1

q

< +∞.

By 1), we get
∫

M
|φ|5 < +∞.

3) When 3 < d < 2 + 2
√

2
n
, there exist two numbers p = 2

d−3 > 1, q = 2
5−d

> 1 such that
1
p

+ 1
q

= 1. Since
∫

M
|φ|d < +∞, by Proposition 1 we get

∫
M

|φ|d+2 < +∞. By the Hölder

inequality, we obtain

∫

M

|φ|5 ≤
(∫

M

(|φ| d
p )p

) 1
p
( ∫

M

(|φ|
d+2

q )q
) 1

q

< +∞.

By Theorem 1 and
∫

M
|φ|5 < +∞, we obtain λ1(M) ≤ (n−1)2(1−|H|2)

4 . �

Theorem 4 Let Mn be a complete stable minimal hypersurface in H
n+1. For (1−

√
2
n
) < d <

(1 +
√

2
n
), if

∫

M

|A|2d < +∞,

then

λ1(M) ≤ I ,
4n2d2

√
[2nd2 − 2nd + (n − 2)]2 + 4nd2[2nd − nd2 − (n − 2)] − [2nd2 − 2nd + (n − 2)]

.

Remark When d = 1, Theorem 4 is reduced to Theorem 2.2 in [13]. It is easy to see that

d = n−2
n

can minimize I.

Proof Now, φ = A for H = 0 in (5). Let q ≥ 0 and f ∈ C∞
0 (M). Multiplying (5) by |A|2qαf2

and integrating over M , we obtain as (8)

(
2(q+1)−n − 2

nα
−ǫ

)∫

M

|∇|A|α|2|A|2qαf2 ≤ α

∫

M

|A|2(q+1)αf2(|A|2+n)+
1

ǫ

∫

M

|A|2(q+1)α|∇f |2.
(13)

On the other hand, replacing f by |A|(1+q)αf in the stability inequality (1) and using the
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Cauchy-Schwarz inequality, we have
∫

M

(|A|2 − n)f2|A|2(1+q)α ≤
∫

M

|∇(|A|(1+q)αf)|2

=(1 + q)2
∫

M

|∇|A|α|2|A|2qαf2 +

∫

M

|A|2(q+1)α|∇f |2+

2(1 + q)

∫

M

|A|(2q+1)αf〈∇f,∇|A|α〉

≤(1 + q)(1 + q + ǫ)

∫

M

|∇|A|α|2|A|2qαf2+

(1 +
1 + q

ǫ
)

∫

M

|A|2(q+1)α|∇f |2. (14)

Replacing f by |A|(1+q)αf in (2) and using the Cauchy-Schwarz inequality, we have

λ1(M)

∫

M

f2|A|2(1+q)α ≤
∫

M

|∇(|A|(1+q)αf)|2

≤(1 + q)(1 + q + ǫ)

∫

M

|∇|A|α|2|A|2qαf2+

(1 +
1 + q

ǫ
)

∫

M

|A|2(q+1)α|∇f |2. (15)

From (14) and (15), we obtain
∫

M

(|A|2 + n)f2|A|2(1+q)α ≤(1 + q)(1 + q + ǫ)(1 +
2n

λ1(M)
)

∫

M

|∇|A|α|2|A|2qαf2+

(1 +
1 + q

ǫ
)(1 +

2n

λ1(M)
)

∫

M

|A|2(q+1)α|∇f |2.

Combining with (13), we have

a

∫

M

(|A|2 + n)f2|A|2(1+q)α ≤ b

∫

M

|A|2(q+1)α|∇f |2, (16)

where

a =2(q + 1) − n − 2

nα
− ǫ − (1 +

2n

λ1(M)
)(1 + q)(1 + q + ǫ)α,

b =
(2 + q)(1 + q + ǫ)

ǫ
(1 +

2n

λ1(M)
).

Take (1+ q)α = d. If λ1(M) > I, then 2(q +1)− n−2
nα

− (1+ 2n
λ1(M) )(1+ q)2α > 0. So we can

choose ǫ > 0 sufficiently small so that a > 0. It follows from (16) that the following inequality

holds: ∫

M

(|A|2 + n)f2|A|2(1+q)α ≤ C3

∫

M

|A|2d|∇f |2, (17)

where C3 is a constant that depends on n, ǫ and q. Let f be a smooth function on [0,∞) such

that f ≥ 0, f = 1 on [0, R] and f = 0 in [2R,∞) with |f ′| ≤ 2
R

. Then considering f ◦ r, where r

is the function in the definition of B(R), we have from (17)
∫

B(R)

(|A|2 + n)f2|A|2(1+q)α ≤ 4C1

R2

∫

B(2R)\B(R)

|A|2d. (18)
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Let R → +∞. By assumption that
∫

M
|A|2d < +∞, from (18), we conclude |A| = 0, i.e.,∫

M
|A|n = 0 < +∞. By Corollary 4, λ1(M) = (n−1)2

4 . Contradiction. We obtain λ1(M) ≤ I.�

Proof of Theorem 3 Taking d = n−2
n

, we have G = n(n−2). By Theorem 4, λ1(M) ≤ n(n−2).

When (1 −
√

2
n
) < d < (1 − 2

n
), by Proposition 1, we know that

∫
M

|φ|d+2 < +∞. Since
∫

M
|φ|d < +∞ and

∫
M

|φ|d+2 < +∞, using the Hölder inequality, we have
∫

M
|φ|2 n−2

n < +∞.

Hence we complete the proof of Theorem 3. �

References
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