Eigenvalue Estimates for Complete Submanifolds in the Hyperbolic Spaces

Haiping FU*, Yongqian TAO
Department of Mathematics, Nanchang University, Jiangxi 330031, P. R. China

Abstract

In this paper, we study upper bounds of the first eigenvalue of a complete noncompact submanifold in an $(n+p)$-dimensional hyperbolic space \mathbb{H}^{n+p}. In particular, we prove that the first eigenvalue of a complete submanifold in \mathbb{H}^{n+p} with parallel mean curvature vector H and finite $L^{q}(q \geq n)$ norm of traceless second fundamental form is not more than $\frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}$. We also prove that the first eigenvalue of a complete hypersurfaces which has finite index in $\mathbb{H}^{n+1}(n \leq 5)$ with constant mean curvature vector H and finite $L^{q}\left(2\left(1-\sqrt{\frac{2}{n}}\right)<q<2\left(1+\sqrt{\frac{2}{n}}\right)\right)$ norm of traceless second fundamental form is not more than $\frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}$.

Keywords finite L^{q} norm curvature; first eigenvalue; hyperbolic space; stable hypersurface.
MR(2010) Subject Classification 53C40; 53C21

1. Introduction

Let \mathbb{H}^{n+p} be an $(n+p)$-dimensional hyperbolic space of constant curvature -1 . Let M^{n} be an n-dimensional complete oriented submanifold in \mathbb{H}^{n+p}. Fix a point $x \in M$ and choose a local orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{n+p}\right\}$ such that, restricted to $M,\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ are tangent fields. For each $\alpha, n+1 \leq \alpha \leq n+p$, define a Weingarten transform $A_{\alpha}: T_{x} M \rightarrow T_{x} M$ by

$$
\left\langle A_{\alpha} X, Y\right\rangle=\left\langle\widetilde{\nabla}_{X} Y, e_{\alpha}\right\rangle
$$

where X, Y are tangent fields and $\widetilde{\nabla}$ is the Riemannian connection on \mathbb{H}^{n+p}. We denote by H the mean curvature vector of M, i.e.,

$$
H=\frac{1}{n} \sum_{\alpha=n+1}^{n+p} \operatorname{Tr} A_{\alpha} e_{\alpha}
$$

We say that M has parallel mean curvature vector if $\nabla^{\perp} H=0$. Note that this condition implies $|H|$ is constant on M^{n}, and if $p=1$ then the two conditions are equivalent. It is easy to see that the minimal submanifold has parallel mean curvature vector. For $\alpha, n+1 \leq \alpha \leq n+p$, define a

[^0]bilinear map $\phi_{\alpha}: T_{x} M \rightarrow T_{x} M$ by
$$
\left\langle\phi_{\alpha} X, Y\right\rangle=\langle X, Y\rangle\left\langle H, e_{\alpha}\right\rangle-\left\langle A_{\alpha} X, Y\right\rangle
$$
and define a bilinear map $\phi: T_{x} M \times T_{x} M \rightarrow T_{x} M^{\perp}$ by
$$
\phi(X, Y)=\sum_{\alpha=n+1}^{n+p}\left\langle\phi_{\alpha} X, Y\right\rangle e_{\alpha}
$$

It is easy to see that the tensor ϕ is traceless. We have

$$
|A|^{2}=|\phi|^{2}+n|H|^{2},
$$

where A denotes the second fundamental form of M.
In this paper, we study the upper bounds of the first eigenvalue of the Laplace operator on a complete stable hypersurface in \mathbb{H}^{n+p} with finite L^{q} norm curvature. To state some results, we recall some notations and definitions.

Definition 1 Let $i: M^{n} \rightarrow N^{n+1}$ be an isometric immersion of an orientable manifold M with constant mean curvature vector. The immersion i is called weakly stable if

$$
\begin{equation*}
\int_{M}\left[|\nabla f|^{2}-\left(\operatorname{Ric}(\nu, \nu)+|A|^{2}\right) f^{2}\right] \geq 0 \tag{1}
\end{equation*}
$$

for any $f \in C_{0}^{\infty}(M)$ satisfying $\int_{M} f=0$, where ∇f is the gradient of f in the induced metric of M, Ric is the Ricci tensor of N and ν is the unit normal vector field of M, while i is called strongly stable if (1) holds for any $f \in C_{0}^{\infty}(M)$.

Definition 2 The first eigenvalue of a Riemannian manifold M, is defined to be

$$
\begin{equation*}
\lambda_{1}(M)=\inf _{f} \frac{\int_{M}|\nabla f|^{2}}{f^{2}} \tag{2}
\end{equation*}
$$

where the infimum is taken over all compactly supported Lipschitz functions on M.
If M is a complete noncompact Riemannian manifold, by the Domain Monotonicity Principle, $\lambda_{1}(M)=\lim _{R \rightarrow+\infty} \lambda_{1}\left(B_{p}(R)\right)$, where $B_{p}(R) \subset M$ is some geodesic ball with radius R and center p. It is easy to see that $\lambda_{1}(M) \geq 0$. According to Schoen and Yau [12], it is an important question to find conditions which will imply that $\lambda_{1}(M)>0$. In this direction, Mckean [11] proved that if M is an n dimensional complete simply connected manifold with sectional curvature bounded above by $-k^{2}$ for some non-zero constant k, then $\lambda_{1}(M) \geq \frac{(n-1)^{2} k^{2}}{4}$. It was proved by Cheung and Leung [4] that for an n-dimensional complete submanifold M in \mathbb{H}^{n+p} with bounded mean curvature $|H| \leq \alpha<\frac{n-1}{n}$, then $\lambda_{1}(M) \geq \frac{(n-1-n \alpha)^{2}}{4}$. The result due to Castillon [3] is that the first eigenvalue of a complete hypersurface in \mathbb{H}^{n+1} with constan mean curvature $|H|<1$ and finite L^{n} norm of traceless second fundamental form is not less than $\frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}$. Candel [2] proved that the first eigenvalue of a complete simply connected stable minimal surface in \mathbb{H}^{3} satisfies $\frac{1}{4} \leq \lambda_{1}(M) \leq \frac{4}{3}$. Recently, Seo [13] showed that the first eigenvalue of a complete stable minimal hypersurface in \mathbb{H}^{n+1} with finite L^{2} norm of the second fundamental form is not more than n^{2}.

Throughout this article, we always assume that M is a complete, non-compact, connected Riemannian manifold without boundary. In this case, we will simply say that M is a complete manifold.

Our main results in this paper are stated as follows.
Theorem 1 Let M^{n} be a complete submanifold with parallel mean curvature vector H in \mathbb{H}^{n+p}. For $q \geq n$, if

$$
\int_{M}|\phi|^{q}<+\infty
$$

then $\lambda_{1}(M) \leq \frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}$.
Remark We do not assume $|H| \leq 1$ in Theorem 1, because for a complete submanifold with parallel mean curvature vector H in \mathbb{H}^{n+p} with $\int_{M}|\phi|^{q}<+\infty(q \geq n)$, by Theorem 6.2 of [1] we have $|H| \leq 1$.

Theorem 2 Let $M^{n}(n \leq 5)$ be a complete weakly stable hypersurface in \mathbb{H}^{n+1} with constant mean curvature vector H. For $\left(1-\sqrt{\frac{2}{n}}\right)<d<\left(1+\sqrt{\frac{2}{n}}\right)$, if

$$
\int_{M}|\phi|^{2 d}<+\infty
$$

then $\lambda_{1}(M) \leq \frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}$.
Remark When M is a complete hypersurface in \mathbb{H}^{n+1} with constant mean curvature and finite index, the assertions of Theorem 2 and Proposition 1 still hold for a result of [6].

Corollary 1 Let $M^{n}(n \leq 5)$ be a complete weakly stable hypersurface in \mathbb{H}^{n+1} with constant mean curvature vector H. If

$$
\int_{M}|\phi|^{d}<+\infty, \quad d=1,2,3
$$

then $\lambda_{1}(M) \leq \frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}$.
By Cheung and Leung's result and Theorem 2, we get the following corollary.
Corollary 2 Let $M^{n}(n \leqq 5)$ be a complete weakly stable minimal hypersurface in \mathbb{H}^{n+1}. For $2\left(1-\sqrt{\frac{2}{n}}\right)<d<2\left(1+\sqrt{\frac{2}{n}}\right)$, if

$$
\int_{M}|A|^{d}<+\infty
$$

then $\lambda_{1}(M)=\frac{(n-1)^{2}}{4}$.
Corollary 3 Let M^{2} be a complete weakly stable minimal hypersurface in \mathbb{H}^{3}. For any positive number p, if

$$
\int_{M}|A|^{p}<+\infty
$$

then $\lambda_{1}(M)=\frac{1}{4}$.

Theorem 3 Let $M^{n}(n \geq 6)$ be a complete stable minimal hypersurface in \mathbb{H}^{n+1}. For $2(1-$ $\left.\sqrt{\frac{2}{n}}\right)<d \leq 2\left(1-\frac{2}{n}\right)$, if

$$
\int_{M}|A|^{d}<+\infty
$$

then $\lambda_{1}(M) \leq n(n-2)$.

2. Proofs of main theorems

In $[9,14]$, it was proved that the following estimate holds for Ricci curvature of a submanifold M in \mathbb{H}^{n+p}.

$$
\operatorname{Ric} \geq \frac{n-1}{n}\left(-n+2 n|H|^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}}|H| \sqrt{|A|^{2}-n|H|^{2}}-|A|^{2}\right)
$$

Applying the above inequality to the traceless second fundamental form $|\phi|$ and using the identity $|A|^{2}=|\phi|^{2}+n|H|^{2}$, we get

$$
\begin{equation*}
\operatorname{Ric} \geq-(n-1)+(n-1)|H|^{2}-\frac{(n-2) \sqrt{n(n-1)}|\phi||H|}{n}-\frac{(n-1)|\phi|^{2}}{n} \tag{3}
\end{equation*}
$$

Proof of Theorem 1 By Proposition 6.1 and Theorem 6.2 of $[1],|H| \leq 1$ and for all $\epsilon>0$ there exists a compact set Ω such that $|\phi|<\epsilon$ in $M \backslash \Omega$. By (3), we obtain that $\operatorname{Ric}(x) \geq$ $-(n-1)\left(1-|H|^{2}+\epsilon^{\prime}\right)$ for any $x \in M \backslash B_{p}\left(R_{0}\right)$, where ϵ^{\prime} depends only on $\epsilon,|H|$ and n. Then from the proof of Heintze-Karcher's comparison theorem [8], we have

$$
V(r) \leq C(n) \exp \left[(n-1) \sqrt{1-|H|^{2}+\epsilon^{\prime}} r\right]
$$

If $\lambda_{1}(M)>\frac{(n-1)^{2}\left(1-|H|^{2}+\epsilon^{\prime}\right)}{4}$, then it follows from Theorem 1.4 of [10]

$$
V(r) \geq C \exp \left(2 \sqrt{\lambda_{1}(M)} r\right)>C \exp \left[(n-1) \sqrt{1-|H|^{2}+\epsilon^{\prime}} r\right]
$$

leading to a contradiction. So we have $\lambda_{1}(M) \leq \frac{(n-1)^{2}\left(1-|H|^{2}+\epsilon^{\prime}\right)}{4}$. By the arbitrariness of ϵ, we get $\lambda_{1}(M) \leq \frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}$.

By Castillon's result and Theorem 1, we get the following corollary.
Corollary 4 Let M be a complete hypersurface in \mathbb{H}^{n+1} with constant mean curvature vector H. If

$$
\int_{M}|\phi|^{n}<+\infty
$$

then

$$
\lambda_{1}(M)=\frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}
$$

Remark By Corollary 4, we have $\lambda_{1}\left(\mathbb{H}^{n}\right)=\frac{(n-1)^{2}}{4}$, which has been proved by Mckean in [11].
Before we prove Theorems 2 and 3, we need the following Proposition 1. Although Proposition 1 was proved in [7], for completeness, we still include it.

Proposition 1 ([7]) Let M be a complete weakly stable hypersurface in \mathbb{H}^{n+1} with constant
mean curvature. For $2\left(1-\sqrt{\frac{2}{n}}\right)<d<2\left(1+\sqrt{\frac{2}{n}}\right)$, if

$$
\int_{M}|\phi|^{d}<+\infty
$$

then

$$
\int_{M}|\phi|^{d+2}<+\infty
$$

Proof If M is a hypersurface with constant mean curvature vector H in \mathbb{H}^{n+1}, Cheung and Zhou [5] got the following Simon's inequality:

$$
\begin{equation*}
|\phi| \Delta|\phi| \geq\left.\frac{2}{n}|\nabla| \phi\right|^{2}-|\phi|^{4}-\frac{n(n-2)}{\sqrt{n(n-1)}}|H||\phi|^{3}+n\left(|H|^{2}-1\right)|\phi|^{2} \tag{4}
\end{equation*}
$$

By computation of (4), we obtain that

$$
\begin{aligned}
|\phi|^{\alpha} \Delta|\phi|^{\alpha} & \geq\left.\left.\left(1-\frac{n-2}{n \alpha}\right)|\nabla| \phi\right|^{\alpha}\right|^{2}-\alpha|\phi|^{2 \alpha+2}- \\
& \alpha \frac{n(n-2)}{\sqrt{n(n-1)}} H|\phi|^{2 \alpha+1}+\alpha n\left(H^{2}-1\right)|\phi|^{2 \alpha}
\end{aligned}
$$

where α is a positive constant. Take $a=\frac{n(n-2)}{\sqrt{n(n-1)}} H$ and $b=n\left(H^{2}-1\right)$, then the above inequality can be rewritten as

$$
\begin{equation*}
|\phi|^{\alpha} \Delta|\phi|^{\alpha} \geq\left.\left.\left(1-\frac{n-2}{n \alpha}\right)|\nabla| \phi\right|^{\alpha}\right|^{2}-\alpha|\phi|^{2 \alpha+2}-\alpha a|\phi|^{2 \alpha+1}+\alpha b|\phi|^{2 \alpha} \tag{5}
\end{equation*}
$$

From the definition of weak stability, the index of M is at most 1 . We know from a result of [6] that if M has finite index, then it is strongly stable outside a compact set, i.e., we have a compact set $D \subset M$ such that

$$
\begin{equation*}
\int_{M \backslash D}|\nabla f|^{2} \geq \int_{M \backslash D}\left(|\phi|^{2}+n\left(H^{2}+c\right)\right) f^{2}=\int_{M \backslash D}\left(|\phi|^{2}+b\right) f^{2} \tag{6}
\end{equation*}
$$

for all smooth functions f compactly supported in $M \backslash D$.
Let $q \geq 0$ and $f \in C_{0}^{\infty}(M \backslash D)$. Multiplying (5) by $|\phi|^{2 q \alpha} f^{2}$ and integrating over $M \backslash D$, we obtain

$$
\begin{aligned}
(1- & \left.\frac{n-2}{n \alpha}\right)\left.\left.\int_{M \backslash D}|\nabla| \phi\right|^{\alpha}\right|^{2}|\phi|^{2 q \alpha} f^{2} \\
\leq & \alpha \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}|\phi|^{2}+\alpha a \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}|\phi|- \\
& \alpha b \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}+\int_{M \backslash D}|\phi|^{(2 q+1) \alpha} f^{2} \Delta|\phi|^{\alpha} \\
= & \alpha \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}|\phi|^{2}+\alpha a \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}|\phi|-\alpha b \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}- \\
& \left.\left.\left.(2 q+1) \int_{M \backslash D}|\nabla| \phi\right|^{\alpha}\right|^{2}|\phi|^{2 q \alpha} f^{2}-\left.2 \int_{M \backslash D}|\phi|^{(2 q+1) \alpha} f\langle\nabla f, \nabla| \phi\right|^{\alpha}\right\rangle
\end{aligned}
$$

which gives

$$
\left.\left.\left(2(q+1)-\frac{n-2}{n \alpha}\right) \int_{M \backslash D}|\nabla| \phi\right|^{\alpha}\right|^{2}|\phi|^{2 q \alpha} f^{2}
$$

$$
\begin{align*}
\leq & \alpha \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}|\phi|^{2}+\alpha a \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}|\phi|- \\
& \left.\alpha b \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}-\left.2 \int_{M \backslash D}|\phi|^{(2 q+1) \alpha} f\langle\nabla f, \nabla| \phi\right|^{\alpha}\right\rangle . \tag{7}
\end{align*}
$$

Using the Cauchy-Schwarz inequality, we can rewrite (7) as

$$
\begin{aligned}
& \left.\left.\left(2(q+1)-\frac{n-2}{n \alpha}-\epsilon\right) \int_{M \backslash D}|\nabla| \phi\right|^{\alpha}\right|^{2}|\phi|^{2 q \alpha} f^{2} \\
& \quad \leq \alpha \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}|\phi|^{2}+\alpha a \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}|\phi|- \\
& \quad \alpha b \int_{M \backslash D}|\phi|^{2(q+1) \alpha} f^{2}+\frac{1}{\epsilon} \int_{M \backslash D}|\phi|^{2(q+1) \alpha}|\nabla f|^{2}
\end{aligned}
$$

for some positive constant ϵ.
On the other hand, replacing f by $|\phi|^{(1+q) \alpha} f$ in the inequality (6) and using the CauchySchwarz inequality, we have

$$
\begin{align*}
\int_{M \backslash D}\left(|\phi|^{2}+b\right) f^{2}|\phi|^{2(1+q) \alpha} \leq & \int_{M \backslash D}\left|\nabla\left(|\phi|^{(1+q) \alpha} f\right)\right|^{2} \\
\leq & \left.\left.(1+q)(1+q+\epsilon) \int_{M \backslash D}|\nabla| \phi\right|^{\alpha}\right|^{2}|\phi|^{2 q \alpha} f^{2}+ \\
& \left(1+\frac{1+q}{\epsilon}\right) \int_{M \backslash D}|\phi|^{2(q+1) \alpha}|\nabla f|^{2} . \tag{9}
\end{align*}
$$

If $\left(2(q+1)-\frac{n-2}{n \alpha}-\epsilon\right)>0$, subtracting $(9) \times\left(2(q+1)-\frac{n-2}{n \alpha}-\epsilon\right)$ from $(8) \times(1+q)(1+q+\epsilon)$ and using the Cauchy-Schwarz inequality yields

$$
\begin{equation*}
E \int_{M}|\phi|^{2} f^{2}|\phi|^{2(1+q) \alpha} \leq F \int_{M} f^{2}|\phi|^{2(1+q) \alpha}+G \int_{M}|\phi|^{2(q+1) \alpha}|\nabla f|^{2}, \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& E=2(q+1)-\frac{n-2}{n \alpha}-\epsilon-(1+q)(1+q+\epsilon) \alpha-\frac{\epsilon}{2}|a|(1+q)(1+q+\epsilon) \alpha, \\
& F=\frac{1}{2 \epsilon}|a|(1+q)(1+q+\epsilon) \alpha-b(1+q)(1+q+\epsilon) \alpha-b\left[2(q+1)-\frac{n-2}{n \alpha}-\epsilon\right] .
\end{aligned}
$$

Let $(1+q) \alpha=\frac{d}{2}$. Thus $\left(1-\sqrt{\frac{2}{n}}\right)<(1+q) \alpha<\left(1+\sqrt{\frac{2}{n}}\right)$. It is easy to see that $\left(2(q+1)-\frac{n-2}{n \alpha}\right)>0$ and $2(q+1)-\frac{n-2}{n \alpha}-(1+q)^{2} \alpha>0$, and then we can choose $\epsilon>0$ sufficiently small so that $\left(2(q+1)-\frac{n-2}{n \alpha}-\epsilon\right)>0$ and $E>0$. So from (10) we have a positive constant C_{1} such that

$$
\begin{equation*}
\int_{M \backslash D}|\phi|^{d+2} f^{2} \leq C_{1}\left(\int_{M \backslash D}|\phi|^{d} f^{2}+\int_{M \backslash D}|\phi|^{d}|\nabla f|^{2}\right) . \tag{11}
\end{equation*}
$$

We can choose R_{0} such that D is contained in some geodesic ball $B_{p}\left(R_{0}\right)$. For $R>R_{0}+1$, let us choose f satisfying the properties that

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { on } & B_{p}\left(R_{0}\right) \\
1 & \text { on } & B_{p}(R) \backslash B_{p}\left(R_{0}\right) \\
0 & \text { on } & M \backslash B_{p}(2 R)
\end{array}\right.
$$

and $|\nabla f| \leq C_{2}$, where C_{2} is a constant. Since $\int_{M \backslash D}|\phi|^{d}<+\infty$ and R can be arbitrarily large, from (11) we conclude that $\int_{M \backslash D}|\phi|^{d+2}<+\infty$. Hence we obtain that

$$
\begin{equation*}
\int_{M}|\phi|^{d}<+\infty \Rightarrow \int_{M}|\phi|^{d+2}<+\infty \tag{12}
\end{equation*}
$$

Proof of Theorem 2 First, we prove that $\int_{M}|\phi|^{5}<+\infty$. It is easy to see that $3 \in(2(1-$ $\left.\left.\sqrt{\frac{2}{n}}\right), 2\left(1+\sqrt{\frac{2}{n}}\right)\right)$ for $n \leq 7$.

1) When $d=3$, by Proposition 1 we get $\int_{M}|\phi|^{5}<+\infty$ since $\int_{M}|\phi|^{3}<+\infty$.
2) When $2-2 \sqrt{\frac{2}{n}}<d<3$, there exist two numbers $p=\frac{2}{d-1}>1$ and $q=\frac{2}{3-d}>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Since $\int_{M}|\phi|^{d}<+\infty$, by Proposition 1 we get $\int_{M}|\phi|^{d+2}<+\infty$. By the Hölder inequality, we obtain

$$
\int_{M}|\phi|^{3} \leq\left(\int_{M}\left(|\phi|^{\frac{d}{p}}\right)^{p}\right)^{\frac{1}{p}}\left(\int_{M}\left(|\phi|^{\frac{d+2}{q}}\right)^{q}\right)^{\frac{1}{q}}<+\infty
$$

By 1), we get $\int_{M}|\phi|^{5}<+\infty$.
3) When $3<d<2+2 \sqrt{\frac{2}{n}}$, there exist two numbers $p=\frac{2}{d-3}>1, q=\frac{2}{5-d}>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Since $\int_{M}|\phi|^{d}<+\infty$, by Proposition 1 we get $\int_{M}|\phi|^{d+2}<+\infty$. By the Hölder inequality, we obtain

$$
\int_{M}|\phi|^{5} \leq\left(\int_{M}\left(|\phi|^{\frac{d}{p}}\right)^{p}\right)^{\frac{1}{p}}\left(\int_{M}\left(|\phi|^{\frac{d+2}{q}}\right)^{q}\right)^{\frac{1}{q}}<+\infty .
$$

By Theorem 1 and $\int_{M}|\phi|^{5}<+\infty$, we obtain $\lambda_{1}(M) \leq \frac{(n-1)^{2}\left(1-|H|^{2}\right)}{4}$.
Theorem 4 Let M^{n} be a complete stable minimal hypersurface in \mathbb{H}^{n+1}. For $\left(1-\sqrt{\frac{2}{n}}\right)<d<$ $\left(1+\sqrt{\frac{2}{n}}\right)$, if

$$
\int_{M}|A|^{2 d}<+\infty
$$

then
$\lambda_{1}(M) \leq I \triangleq \frac{4 n^{2} d^{2}}{\sqrt{\left[2 n d^{2}-2 n d+(n-2)\right]^{2}+4 n d^{2}\left[2 n d-n d^{2}-(n-2)\right]}-\left[2 n d^{2}-2 n d+(n-2)\right]}$.

Remark When $d=1$, Theorem 4 is reduced to Theorem 2.2 in [13]. It is easy to see that $d=\frac{n-2}{n}$ can minimize I.

Proof Now, $\phi=A$ for $H=0$ in (5). Let $q \geq 0$ and $f \in C_{0}^{\infty}(M)$. Multiplying (5) by $|A|^{2 q \alpha} f^{2}$ and integrating over M, we obtain as (8)
$\left.\left.\left(2(q+1)-\frac{n-2}{n \alpha}-\epsilon\right) \int_{M}|\nabla| A\right|^{\alpha}\right|^{2}|A|^{2 q \alpha} f^{2} \leq \alpha \int_{M}|A|^{2(q+1) \alpha} f^{2}\left(|A|^{2}+n\right)+\frac{1}{\epsilon} \int_{M}|A|^{2(q+1) \alpha}|\nabla f|^{2}$.
On the other hand, replacing f by $|A|^{(1+q) \alpha} f$ in the stability inequality (1) and using the

Cauchy-Schwarz inequality, we have

$$
\begin{align*}
\int_{M}\left(|A|^{2}-n\right) f^{2}|A|^{2(1+q) \alpha} \leq & \int_{M}\left|\nabla\left(|A|^{(1+q) \alpha} f\right)\right|^{2} \\
= & \left.\left.(1+q)^{2} \int_{M}|\nabla| A\right|^{\alpha}\right|^{2}|A|^{2 q \alpha} f^{2}+\int_{M}|A|^{2(q+1) \alpha}|\nabla f|^{2}+ \\
& \left.\left.2(1+q) \int_{M}|A|^{(2 q+1) \alpha} f\langle\nabla f, \nabla| A\right|^{\alpha}\right\rangle \\
\leq & \left.\left.(1+q)(1+q+\epsilon) \int_{M}|\nabla| A\right|^{\alpha}\right|^{2}|A|^{2 q \alpha} f^{2}+ \\
& \left(1+\frac{1+q}{\epsilon}\right) \int_{M}|A|^{2(q+1) \alpha}|\nabla f|^{2} \tag{14}
\end{align*}
$$

Replacing f by $|A|^{(1+q) \alpha} f$ in (2) and using the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
\lambda_{1}(M) \int_{M} f^{2}|A|^{2(1+q) \alpha} \leq & \int_{M}\left|\nabla\left(|A|^{(1+q) \alpha} f\right)\right|^{2} \\
\leq & \left.\left.(1+q)(1+q+\epsilon) \int_{M}|\nabla| A\right|^{\alpha}\right|^{2}|A|^{2 q \alpha} f^{2}+ \\
& \left(1+\frac{1+q}{\epsilon}\right) \int_{M}|A|^{2(q+1) \alpha}|\nabla f|^{2} . \tag{15}
\end{align*}
$$

From (14) and (15), we obtain

$$
\begin{aligned}
\int_{M}\left(|A|^{2}+n\right) f^{2}|A|^{2(1+q) \alpha} \leq & \left.\left.(1+q)(1+q+\epsilon)\left(1+\frac{2 n}{\lambda_{1}(M)}\right) \int_{M}|\nabla| A\right|^{\alpha}\right|^{2}|A|^{2 q \alpha} f^{2}+ \\
& \left(1+\frac{1+q}{\epsilon}\right)\left(1+\frac{2 n}{\lambda_{1}(M)}\right) \int_{M}|A|^{2(q+1) \alpha}|\nabla f|^{2}
\end{aligned}
$$

Combining with (13), we have

$$
\begin{equation*}
a \int_{M}\left(|A|^{2}+n\right) f^{2}|A|^{2(1+q) \alpha} \leq b \int_{M}|A|^{2(q+1) \alpha}|\nabla f|^{2} \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=2(q+1)-\frac{n-2}{n \alpha}-\epsilon-\left(1+\frac{2 n}{\lambda_{1}(M)}\right)(1+q)(1+q+\epsilon) \alpha \\
& b=\frac{(2+q)(1+q+\epsilon)}{\epsilon}\left(1+\frac{2 n}{\lambda_{1}(M)}\right)
\end{aligned}
$$

Take $(1+q) \alpha=d$. If $\lambda_{1}(M)>I$, then $2(q+1)-\frac{n-2}{n \alpha}-\left(1+\frac{2 n}{\lambda_{1}(M)}\right)(1+q)^{2} \alpha>0$. So we can choose $\epsilon>0$ sufficiently small so that $a>0$. It follows from (16) that the following inequality holds:

$$
\begin{equation*}
\int_{M}\left(|A|^{2}+n\right) f^{2}|A|^{2(1+q) \alpha} \leq C_{3} \int_{M}|A|^{2 d}|\nabla f|^{2} \tag{17}
\end{equation*}
$$

where C_{3} is a constant that depends on n, ϵ and q. Let f be a smooth function on $[0, \infty)$ such that $f \geq 0, f=1$ on $[0, R]$ and $f=0$ in $[2 R, \infty)$ with $\left|f^{\prime}\right| \leq \frac{2}{R}$. Then considering $f \circ r$, where r is the function in the definition of $B(R)$, we have from (17)

$$
\begin{equation*}
\int_{B(R)}\left(|A|^{2}+n\right) f^{2}|A|^{2(1+q) \alpha} \leq \frac{4 C_{1}}{R^{2}} \int_{B(2 R) \backslash B(R)}|A|^{2 d} \tag{18}
\end{equation*}
$$

Let $R \rightarrow+\infty$. By assumption that $\int_{M}|A|^{2 d}<+\infty$, from (18), we conclude $|A|=0$, i.e., $\int_{M}|A|^{n}=0<+\infty$. By Corollary $4, \lambda_{1}(M)=\frac{(n-1)^{2}}{4}$. Contradiction. We obtain $\lambda_{1}(M) \leq I . \square$

Proof of Theorem 3 Taking $d=\frac{n-2}{n}$, we have $G=n(n-2)$. By Theorem 4, $\lambda_{1}(M) \leq n(n-2)$. When $\left(1-\sqrt{\frac{2}{n}}\right)<d<\left(1-\frac{2}{n}\right)$, by Proposition 1, we know that $\int_{M}|\phi|^{d+2}<+\infty$. Since $\int_{M}|\phi|^{d}<+\infty$ and $\int_{M}|\phi|^{d+2}<+\infty$, using the Hölder inequality, we have $\int_{M}|\phi|^{2 \frac{n-2}{n}}<+\infty$. Hence we complete the proof of Theorem 3.

References

[1] P. BÉRARD, W. SANTOS. Curvature estimates and stability properties of CMC-submanifolds in space forms. Mat. Contemp., 1999, 17: 77-97.
[2] A. CANDEL. Eigenvalue estimates for minimal surfaces in hyperbolic space. Trans. Amer. Math. Soc., 2007, 359(8): 3567-3575.
[3] P. CASTILLON. Spectral properties of constant mean curvature submanifolds in hyperbolic space. Ann. Global Anal. Geom., 1999, 17(6): 563-580.
[4] L. F. CHEUNG, P. F. LEUNG. Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space. Math. Z., 2001, 236(3): 525-530.
[5] L. F. CHEUNG, Detang ZHOU. Stable constant mean curvature hypersurfaces in \mathbb{R}^{n+1} and \mathbb{H}^{n+1}. Bull. Braz. Math. Soc. (N.S.), 2005, 36(1): 99-114.
[6] D. FISCHER-COLBRIE. On complete minimal surfaces with finite Morse index in three manifolds. Invent. Math., 1985, 82(1): 121-132.
[7] Haiping FU. Bernstein type theorems for complete submanifolds in space forms. Math. Nachr., 2012, 285(23): 236-244.
[8] E. HEINTZE, H. KARCHER. A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. École Norm. Sup. (4), 1978, 11(4): 451-470.
[9] P. F. LEUNG. An estimate on the ricci curvature of a submanifolds and some applications. Proc. Amer. Math. Soc., 1992, 114(4): 1051-1061.
[10] P. LI, Jiaping WANG. Complete manifolds with positive spectrum. J. Differential Geom., 2001, 58(3): 501-534.
[11] H. P. MCKEAN. An upper bound to the spectrum of Δ on a manifold of negative curvature. J. Differential Geometry, 1970, 4: 359-366.
[12] R. SCHOEN, S. T. YAU. Lectures On Differential Geometry. International Press, Cambridge, MA, 1994.
[13] K. SEO. Stable minimal hypersurfaces in the hyperbolic space. J. Korean Math. Soc., 2011, 48(2): 253-266.
[14] K. SHIOHAMA, Hongwei XU. The topological sphere theorem for complete submanifolds. Compositio Math., 1997, 107(2): 221-232.

[^0]: Received May 29, 2012; Accepted February 19, 2013
 Supported by the National Natural Science Foundation of China (Grant No. 11261038), the Natural Science Foundation of Jiangxi Province (Grant Nos. 2010GZS0149; 20132BAB201005) and Youth Science Foundation of Eduction Department of Jiangxi Province (Grant No. GJJ11044).

 * Corresponding author

 E-mail address: mathfu@126.com (Haiping FU); lztyq@sina.com (Yongqian TAO)

