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Abstract In this paper, we deal with the problem of normal families concerning share-values.

The results extend and improve some theorems put forward by Miranda, Pang, Chen, Hua

and Fang. Moreover, we answer one question posed by Gu, Pang, Fang and so on.
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1. Introduction and main results

In this paper, it is assumed that the reader is familiar with the notations of Nevanlinna
theory of meromorphic functions, for instance, T (r, f), N(r, f),m(r, f), N(r, f), . . . . We denote
by S(r, f) any function satisfying S(r, f) = o{T (r, f)}, as r → +∞, possibly outside of a set
with a finite measure in R.

Let f be a non-constant meromorphic function defined in D and let a be a finite complex
number. Set

Ef (a) = f−1(a) = {z : f(z)− a = 0, z ∈ D}.
Let f and g be meromorphic functions in a domain of complex plane. If Ef (a) = Eg(a), then

we say f and g share the value a. If g(z) = b whenever f(z) = a, we write f(z) = a ⇒ g(z) = b.
Moreover, if f(z) = a ⇒ g(z) = b and g(z) = b ⇒ f(z) = a, we write f(z) = a ⇔ g(z) = b, as
the notation Ef (a) = Eg(b). When the case is a 6= b, if Ef (a)∪Ef (b) = Eg(a)∪Eg(b), then we
say f and g share the set S(S = {a, b}).

Let D be a domain in C, and let F be a family of meromorphic functions defined in D. The
family F is said to be normal in D, according to Montel: if each sequence {fn} ⊂ F contains a
subsequence {fnj

} that converges, spherically locally uniformly in D, to a meromorphic function
or ∞ (see [5, 6]).

According to Bloch’s Principle, many normality criteria have been obtained by starting to
use the conditions known from Picrd-Type theorems.

The following result was proposed by Miranda [9].

Theorem Mi Let F be a family of holomorphic functions in a domain D, k be a positive integer,

Received August 29, 2012; Accepted September 11, 2013

Supported by the Foundation of Fu’jian Educational Committee-B Plan (Grant No. JB11268), the Natural Science

Foundation of Fujian Province (Grant No. 2010J05003) and the National Natural Science Foundation of China

(Grant No. 11301076).

E-mail address: linguobin0812@163.com



90 Guobin LIN

and a, b be two finite complex numbers in which b 6= 0. If, for each f ∈ F, f 6= a, f (k) 6= b, then

F is normal in D.

Another approach to normality criteria is to use conditions known from uniqueness theorems.
The first attempt at this was made by Schwick who proved in [7] that if there exist three distinct
finite values a1, a2, a3 ∈ C such that f(z) and f ′(z) share aj (j = 1, 2, 3) for each f(z) ∈ F, then
F is normal in D. The corresponding statement that f(z) and f ′(z) share two distinct finite
values a1, a2 ∈ C remains valid [8].

Afterwards, some normality criteria concerning one shared-value were obtained [1, 10].

Theorem HC Let F be a family of holomorphic functions in a domain D, and a be a nonzero

finite complex number. If, for each f ∈ F, Ef (a) = Ef ′(a) = Ef ′′(a), then F is normal in D.

Theorem PZ Let F be a family of meromorphic functions in a domain D, k be an integer,

b(6= 0) be a complex number, and h be a finite positive number. If, for each f ∈ F, all zeros of

f have multiplicity at least k, and f satisfies the following conditions:

(i) Ef (0) = Ef(k)(b),

(ii) Ef (0) ⇒ 0 < |Ef(k+1)(z)| < h,

then F is normal in D.

Recently, Fang and Zalcman [2] proved the following result, which is the complement of
Theorem HC.

Theorem FZ Let F be a family of holomorphic functions in a domain D, and a, c be two finite

nonzero distinct complex numbers. If each f ∈ F satisfies the following conditions:

(i) Ef (a) = Ef ′(a),

(ii) Ef ′(c) = Ef ′′(c),
then F is normal in D.

Now, we are interested in what will be stated if F is a family of meromorphic functions in
a domain D in Theorem FZ.

Question 1.1 ([11]) Let F be a family of meromorphic functions in a domain D and satisfy the
conditions given by Theorem FZ. Does the conclusion hold?

On the other hand, Fang [12] extended Schwick’s result in the view of shared set. Actually,
he proved the following theorem.

Theorem F Let F be a family of holomorphic functions in a domain D, and let a1, a2, and

a3 be three distinct finite complex numbers. If, for each f(z) ∈ F, f(z) and f ′(z) share the set

S = {a1, a2, a3}, then F is normal in D.

Recently, by generalizing Theorem F from families of holomorphic functions to families of
meromorphic functions, Liu and Pang [3] obtained the following result.

Theorem LP Let F be a family of meromorphic functions in a domain D, and let a1, a2, and

a3 be three distinct finite complex numbers. If, for each f(z) ∈ F, f(z) and f ′(z) share the set
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S = {a1, a2, a3}, then F is normal in D.

Naturally, we will think what can be stated if S = {a1, a2, a3} is replaced by S = {a1, a2}.
However, Example 1 shows that the criterion will not be valid when the set S = {a1, a2, a3} in
Theorem F and Theorem LP is replaced by S = {a1, a2}.

Example 1.1 Let S = {1,−1}. Set

F = {fn(z), n = 2, 3, 4, . . .}, fn(z) =
n + 1
2n

enz +
n− 1
2n

e−nz.

Then, for any fn ∈ F, we have

n2[fn
2(z)− 1] = [fn

′(z)]2 − 1.

Then fn and f ′n share the set S = {1,−1}, but F is not normal in D.

In this paper, we have the following result.

Theorem 1.1 Let F be a family of meromorphic functions in a domain D; let m be a positive

integer; let a, b and c be three finite complex numbers in which c 6= 0,a 6= (m+1)c, b 6= (m+1)c.
If, for each f ∈ F, Ef ′(a) ∪ Ef ′(b) = Ef (a) ∪ Ef (b), and f ′′ = c whenever f ′ = c, then F is

normal in D.

From the direct result of Theorem 1, we have the following precise results.

Corollary 1.1 Let F be a family of meromorphic functions in a domain D; let m be a positive

integer; let a and c 6= 0 be two finite complex numbers in which a 6= (m+1)c. If, for each f ∈ F,

Ef ′(a) = Ef (a) and f ′′ = c whenever f ′ = c, then F is normal in D.

Corollary 1.2 Let F be a family of meromorphic functions in a domain D; let a, b and c(c 6= 0)
be three distinct finite complex numbers. If, for each f ∈ F, f and f ′ share {a, b} and f ′′ = c

whenever f ′ = c, then F is normal in D.

Corollary 1.3 Let F be a family of meromorphic functions in a domain D; let m be a positive

integer; let a, b be two finite distinct complex numbers in which a 6= 0 and b 6= (m + 1)a. If, for

each f ∈ F, f and f ′ share {a, b} and f ′′ = a whenever f ′ = a, then F is normal in D.

Corollary 1.4 Let F be a family of meromorphic functions in a domain D; let 0, c be two finite

distinct complex numbers. If, for each f ∈ F, Ef ′(0) = Ef (0), Ef ′(c) = Ef ′′ (c), then F is normal

in D.

Remarks (1) If a = b = c, Corollary 1 extends Miranda’s criterion and Theorem HX.

(2) If a = b 6= c, then the condition (ii) of Theorem FZ, which requires that Ef ′(b) = Ef ′′(b),
is fairly strong and it is clearly stronger than the boundedness condition on f ′ = c in Theorem 1
and Corollary 1. As mentioned above, the condition Ef ′(a)∪Ef ′(b) = Ef (a)∪Ef (b) is implicit
in Theorem FZ when a = b.

(3) If a 6= b, Example 1 shows that the condition “f ′′ = c whenever f ′ = c” in Theorem 1
is necessary.
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The following examples illustrate that some conditions of Theorem 1 cannot be omitted.
Especially, some conditions are still necessary even if F is a family of holomorphic functions.

Examples (1) Let a, c be two nonzero numbers in which a = (m + 1)c where m is a positive
integer. Set

fn(z) = c(z − 1
n

) + a +
1

m(nz − 1)m
, n = 1, 2, . . . ,

and let F = {fn},D = {z : |z| < 1}. Then f ′n(z) = c − n
(nz−1)m+1 . Thus for each f ∈ F,

Ef ′(a) = Ef (a) and f ′(z) 6= c. But F is not normal in D, which means that “a 6= (1 + m)c” in
Theorem 1 is necessary.

(2) Let F = {fn = enz},D = {z : |z| < 1}, n = 1, 2, . . . . Then the spherical derivative
f ]

n(0) = n
2 →∞. Thus F is not normal in D by Marty’s criterion. However, it is clear that fn, f ′n

and f ′′n share the value 0. It implies that F in Theorem 1 is not normal under the condition
“a = b = c = 0”.

(3) Let F = {fn = enz − a/n + a},D = {z : |z| < 1}. Thus for each f ∈ F, Ef ′(a) = Ef (a),
and f ′ 6= 0. But F is not normal in D. This means that “c 6= 0” in Theorem 1 is necessary.

2. Some lemmas

Lemma 2.1 ([1]) Let k be a positive integer and let F be a family of meromorphic functions on

the unit disc, all of whose zeros have multiplicity at least k, and suppose that there exists A ≥ 1
such that |f (k)(z)| ≤ A whenever f(z) = 0, f ∈ F. Then if F is not normal, there exist, for each

0 ≤ α ≤ k,

(a) a number 0 < r < 1,

(b) points zn, |zn| < r,

(c) functions fn ∈ F, and

(d) positive numbers ρn → 0
such that

fn(zn + ρnξ)
ρα

n

= gn(ξ) → g(ξ)

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic

function on C, all of whose zeros have multiplicity at least k, such that g](ξ) ≤ g](0) = kA + 1.

Moreover, g has order at most two. In particular, if F is a family of holomorphic functions, then

g has order at most one.

Here, usually, g](z) = |g′(z)|/(1 + |g(z)|2) is the spherical derivative.

Lemma 2.2 ([15]) Let f(z) = anzn+an−1z
n−1+· · ·+a0+ p(z)

q(z) , where a0, a1, . . . , an(6= 0), c(6= 0)
are constants, and p(z) and q(z) are two coprime polynomials with deg p(z) < deg q(z), and let

k be a positive integer. If f (k) 6= c, then

f(z) =
c

k!
zk + · · ·+ a0 +

1
(az + b)m

,

where a(6= 0), b are constants, m ∈ N.
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Lemma 2.3 ([16]) Let f be a transcendental meromorphic function with finite order, all of

whose zeros are of multiplicity at least k. Let K be a positive number and c be a nonzero finite

complex number. If |f (k)(z)| ≤ K whenever f(z) = 0, then for each l (1 ≤ l ≤ k), f (l)(z) assumes

any finite nonzero value infinitely often.

Lemma 2.4 ([13]) Let f be a finite order meromorphic function on C and b, d be two nonzero

complex constants. If f = 0 ⇒ f ′ = b, and f ′ 6= d, then f(z) = b(z − C), or f(z) = d(z − C) +
A

m(z−C)m , where b = (m + 1)d and C,A(6= 0) ∈ C.

3. Proof of Theorem 1.1

We may assume that D = ∆, the unit disc. Suppose that F is not normal on ∆, then by
Lemma 2.1 we can find fn ∈ F, zn ∈ ∆, and ρn → 0+ such that

gn(ζ) =
fn(zn + ρnζ)− a

ρn
⇒ g(ζ),

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic
function on C, such that g](ζ) ≤ g](0) = (max{|a|, |b|}) + 1.

We claim that
(i) g(ζ) = 0 ⇔ g′(ζ) ∈ S, and
(ii) g′(ζ) 6= c.
Suppose that there exists ζ0 such that g(ζ0) = 0, then by Hurwitz’s Theorem there exists a

sequence ζn, ζn → ζ0, for sufficiently large n, such that

0 = gn(ζn) =
fn(zn + ρnζn)− a

ρn
,

which implies that fn(zn + ρnζn) = a, thus f ′(zn + ρnζn) ∈ S. Then without loss of generality,
we can assume that there exists a or b, such that f ′(zn + ρnζn) = a, so

g′(ζ0) = lim
n→∞

g′n(ζn) = lim
n→∞

f ′(zn + ρnζn) ∈ S,

proving g(ζ) = 0 ⇒ g′(ζ) ∈ S.
On the other hand, suppose that there exists ζ0 such that g′(ζ0) = a. We obtain g′ 6≡ a.

Indeed, if g′(ζ) ≡ a 6= 0, then g will be a polynomial of exact degree 1, so g = a(ζ − ζ0). Then a
simple calculation shows that

|g](0)| ≤
{

1, |ζ1| ≥ 1, (1a)

|a|, |ζ1| < 1. (1b)

So we have g](0) < (max{|a|, |b|}) + 1, which contradicts g](0) = (max{|a|, |b|}) + 1. Since
g′(ζ0) = a and g′(ζ) 6≡ a, by Hurwitz’s Theorem there exists a sequence ζn, ζn → ζ0, for
sufficiently large n, such that g′n(ζn) = f ′(zn + ρnζn) = a. This leads to f(zn + ρnζn) ∈ S . If
there exists a positive number N , for any n > N , fn(zn + ρnζn) 6= a, then

g(ζ0) = lim
n→∞

fn(zn + ρnζn)− a

ρn
= ∞,
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which is a contradiction by our hypotheses. Then there exists a subsequence of fn, which we
also denote by fn, such that fn(zn + ρnζn) = a, and, so

g(ζ0) = lim
n→∞

fn(zn + ρnζn)− a

ρn
= 0,

proving g(ζ) = 0 ⇐ g′(ζ) = a. Similarly, we can obtain g(ζ) = 0 ⇐ g′(ζ) = b.
Suppose that there exists a ζ0 such that g′(ζ0) = c, then by claim(i) we have g′(ζ) 6≡ c.

By Hurwitz’s Theorem there exists a sequence ζn, ζn → ζ0, for sufficiently large n, such that
g′n(ζn) = f ′(zn + ρnζn) = c, then f ′′(zn + ρnζn) = c. Thus we obtain

g′′(ζ0) = lim
n→∞

|g′′n(ζn)| = lim
n→∞

ρn|f ′′(zn + ρnζn)| = 0,

which implies g′(ζ) = c ⇒ g′′(ζ) = 0.
Next, we will prove that g′(ζ) 6= c. Suppose that there exists a ζ0 such that g′(ζ0) = c. Thus

ζ0 is a zero point of g′(ζ0) − c with multiplicity k(≥ 2), then g(k+1)(ζ0) 6= 0, and there exists a
δ(> 0) such that

g(ζ) 6= 0, g′(ζ) 6= 0, g(k)(ζ) 6= 0 in 0 < |ζ − ζ0| < δ.

The Argument Principle shows the existence of k(≥ 2) sequences {ζ(j)
n } (j = 1, 2, . . . , k) each

tending to ζ0, such that, for n sufficiently large,

g′n(ζ(1)
n ) = · · · = g′n(ζ(j)

n ) = c,

which implies
f ′(zn + ρnζ(1)

n ) = · · · = f ′(zn + ρnζ(j)
n ) = c. (*)

Now (∗) means that

g′′(ζ0) = 0, g′′n(ζ(j)
n ) = ρnf ′′(zn + ρnζ(j)

n ) 6= 0, for j = 1, 2, . . . , k,

so each zero of g′n−c is simple. This rules out the possibility that any two sequences of {ζ(j)
n } (j =

1, 2, . . . , k) might coincide.
When n is sufficiently large, {ζ(i)

n } 6= {ζ(j)
n } (i 6= j ∈ {1, 2, . . . , k}), so it shows that ζ0, as a

zero of g′ − c, is a zero of g′′(ζ) with multiplicity k. But this contradicts the statement that ζ0

is a zero of g′(ζ0)− c with multiplicity k. Therefore, g′(ζ) 6= c for all ζ ∈ C.

Case 1 a 6= b. We will discuss it based on the following two subcases.

Subcase 1.1 If c 6∈ {a, b}, then by Lemmas 2.2 and 2.3, we have g(ζ) = cζ + t + n
(ζ−m)l or

g(ζ) = αζ + β, where α(6= 0, c), β, t,m are finite complex numbers, and l is a positive integer.
Then we will discuss the two cases, respectively.

Subcase 1.1.1 If g(ζ) = cζ + t + n
(ζ−m)l , then by Claim (i), (ii) and Nevanlinna-Second-

Fundamental-Theorem we get

2T (r, g′) ≤ N(r, g′) + N(r,
1

g′ − a
) + N(r,

1
g′ − b

) + N(r,
1

g′ − c
) + S(r, g′)

≤ N(r, g) + N(r,
1
g
) + S(r, g′).
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Note that g(ζ) is a rational function, so S(r, g′) = S(r, g) = O(1), and

N(r, g) = ln r + O(1),

N(r,
1
g
) ≤ (l + 1) ln r + O(1),

T (r, g′) = (l + 1) ln r + O(1).

Thus we get

2(l + 1) ln r ≤ ln r + (l + 1) ln r + O(1),

which implies l = 0, but this contradicts the fact that l is a positive integer.

Subcase 1.1.2 If g(ζ) = αζ + β, then g(−β
α ) = 0, g′(ζ) = α, and particularly note that

g′(0) = g′(−β
α ) = α, |α| ≤ max{|a|, |b|}. Thus

|α| = |g′(0)| ≥ g](0) = max{|a|, |b|}+ 1 > |α|

is a contradiction.

Subcase 1.2 If c ∈ {a, b}, we will discuss it based on the following two subcases.

Subcase 1.2.1 If c = a, then by Claim (i), (ii), we obtain g = 0 ⇔ g′ = b, and g′ 6= c. Thus by
Lemma 2.4 and b 6= (1 + m)c, we obtain g(ζ) = b(ζ − ζ0), which is a contradiction by the above
proof.

Subcase 1.2.2 If c = b, then the process of proof is the same as that of subcase 1.2.1.

Case 2 If a = b, then by Claims (i) and (ii), we obtain g = 0 ⇔ g′ = a, and g′ 6= c. Thus by
Lemma 2.4 and a 6= (1 + m)c, we obtain g(ζ) = a(ζ − ζ0), which is a contradiction by the above
proof.

The proof of Theorem 1.1 is completed.
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