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Abstract The signless Laplacian spread of a graph is defined to be the difference between

the largest eigenvalue and the smallest eigenvalue of its signless Laplacian matrix. In this

paper, we determine the first to 11th largest signless Laplacian spectral radii in the class of

bicyclic graphs with n vertices. Moreover, the unique bicyclic graph with the largest or the

second largest signless Laplacian spread among the class of connected bicyclic graphs of order

n is determined, respectively.
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1. Introduction

In this paper, let G = (V, E) be a simple graph with n vertices and m edges. If G is
connected with m = n + c − 1, then G is called a c-cyclic graph. Especially, if c = 0, 1, 2 or
3, then G is called a tree, a unicyclic graph, a bicyclic graph or a tricyclic graph, respectively.
Let Bn be the class of bicyclic graphs with n vertices. Let d(u) = dG(u) denote the degree of
the vertex u of G. Let ∆ = ∆(G) and δ = δ(G) be the maximum degree and minimum degree
of G, respectively. If d(u) = 1, we call u a pendant vertex of G. The neighbor set of a vertex
v is denoted by N(v) = NG(v). The adjacency matrix of G is the n × n matrix A(G) = (aij),
where aij = 1 if and only if vi and vj are adjacent in G and aij = 0 otherwise. Since A(G) is
symmetric, the eigenvalues of A(G) can be arranged as follows: λ1(G) ≥ · · · ≥ λn−1(G) ≥ λn(G).
The adjacency spread of the graph G is defined as [14]: SA(G) = λ1(G) − λn(G). The spread
of a graph has received much attention. In [24], Petrović determined all connected graphs with
adjacency spread at most 4. In [14, 17], Gregory, Liu et al. presented some lower and upper
bounds for the spread of a graph. In [16], Li et al. determined the unique graph with maximal
spread among all unicyclic graphs on n(≥ 18) vertices with a maximum matching of cardinality
k. After then, in [12] and [23], Fan and Petrović et al. determined the maximal spreads among
all unicyclic graphs and all bicyclic graphs of given order n, respectively.
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Let D(G) = diag(d(v1, d(v2), . . . , d(vn))) denote the diagonal matrix of vertex degrees of a
graph G of order n. The Laplacian matrix of G is defined as L(G) = D(G)−A(G). Since L(G)
is positive semidefinite, its eigenvalues can be arranged as follows: µ1(G) ≥ · · · ≥ µn−1(G) ≥
µn(G) = 0. The Laplacian spread of the graph G, denoted by SL(G), is defined to be SL(G) =
µ1(G) − µn−1(G). In [13], Fan et al. identified the maximal and minimal Laplacian spreads
among all trees of given order. Bao et al. [1] and Li et al. [15] determined the maximal Laplacian
spread among all unicyclic graphs of given order by using different methods, respectively. In [26],
You and Liu determined the minimal Laplacian spread among all unicyclic graphs on n vertices.
In [20], by using different methods from [1, 13, 15, 26], Liu determined the four trees (resp., the
three unicyclic graphs), which share the second to fourth (resp., the second to fourth) largest
Laplacian spreads among all the trees (resp., connected unicyclic graphs) of given order. In [11],
Fan et al. proved that there exist exactly two bicyclic graphs with maximal Laplacian spread
among all bicyclic graphs of given order. In [9], Chen and Wang proved that there exist exactly
five types of tricyclic graphs with maximal Laplacian spread among all tricyclic graphs of given
order.

The signless Laplacian matrix of G is defined as Q(G) = D(G) + A(G). It is well known
that Q(G) is also positive semidefinite, and its eigenvalues can be arranged as follows: q1(G) ≥
q2(G) ≥ · · · ≥ qn(G). The signless Laplacian spread of the graph G, denoted by SQ(G), is
defined to be SQ(G) = q1(G) − qn(G). Let q(G) be the signless Laplacian spectral radius of
G, namely, q(G) = q1(G). Let Φ(G, x) be the signless Laplacian characteristic polynomial of G,
that is, Φ(G, x) = det(xI − Q(G)), simply Q-polynomial of G. Research on signless Laplacian
matrices has become popular recently. In [2, 3, 5–8], some properties of signless Laplacian spectra
of graphs were studied. In [18], Liu and Liu presented some upper and lower bounds for SQ(G)
and determined the unique unicyclic graph with maximal signless Laplacian spread among the
class of connected unicyclic graphs of order n. In [21], Liu gave the second to fourth largest
signless Laplacian spectral radii and the second to fourth largest signless Laplacian spreads of
unicyclic graphs with n vertices. In this paper, we determine the first to 11th largest signless
Laplacian spectral radii in the class of bicyclic graphs with n vertices. Moreover, the unique
bicyclic graph with the largest or the second largest signless Laplacian spread among the class
of connected bicyclic graphs of order n is determined, respectively.

2. The signless Laplacian spectral radii of bicyclic graphs

In this section, we will determine the first to 11th largest signless Laplacian spectral radii
in the class of bicyclic graphs with n vertices. We first introduce some preliminary results.

Lemma 2.1 ([22, 25]) If G is a graph with at least one edge, then q(G) ≥ µ1(G) ≥ ∆ + 1. If G

is connected, then the first equality holds if and only if G is bipartite, and the second equality

holds if and only if ∆ = n− 1.

Lemma 2.2 ([10]) Let G be a connected graph on n(n ≥ 2) vertices. Then q(G) ≤ max{d(v) +
m(v), v ∈ V (G)}, where m(v) =

∑
u∈N(v) d(u)/d(v).
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Lemma 2.3 ([21]) Suppose c ≥ 1 and G is a c-cyclic graph on n vertices with ∆ ≤ n − 3. If

n ≥ 2c + 5, then q(G) ≤ n− 1.

When c = 2, let G be a bicyclic graph with n vertices and ∆ ≤ n− 3. If n ≥ 9, by Lemma
2.3, then q(G) ≤ n− 1. From Lemma 2.1, we can obtain that if ∆ = n− 2, then q(G) > n− 1.
If ∆ = n− 1, then q(G) ≥ n. Thus all bicyclic graphs on n vertices with ∆ = n− 2 or ∆ = n− 1
are shown in Figure 1. Next we will prove bicyclic graphs with the first to 11th largest signless
Laplacian spectral radii in the class of bicyclic graphs with n vertices only are the graphs shown
in Figure 1.
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Figure 1 The bicyclic graphs with the first to 11th largest signless Laplacian

spectral radii in the class of bicyclic graphs with n vertices

Theorem 2.4 Let B be a bicyclic graph in Bn and n ≥ 9. Then we have the following results.

(1) If B ∈ Bn, then q(B) ≤ q(F 1
n), where the equality holds if and only if B ∼= F 1

n .

(2) If B ∈ Bn\{F 1
n}, then q(B) ≤ q(F 2

n), where the equality holds if and only if B ∼= F 2
n .

(3) If B ∈ Bn\{F 1
n , F 2

n}, then q(B) ≤ q(H5
n), where the equality holds if and only if B ∼= H5

n.

(4) If B ∈ Bn\{F 1
n , F 2

n ,H5
n}, then q(B) ≤ q(H8

n), where the equality holds if and only if

B ∼= H8
n.

(5) If B ∈ Bn\{F 1
n , F 2

n ,H5
n,H8

n}, then q(B) ≤ min{q(H9
n), q(H7

n)} ≤ max{q(H9
n), q(H7

n)},
where

{
q(H7

n) > q(H9
n), if 9 ≤ n ≤ 12,

q(H7
n) < q(H9

n), if n > 12.
(6) If B ∈ Bn\{F 1

n , F 2
n ,H5

n,H8
n,H9

n,H7
n}, then q(B) ≤ q(H1

n), where the equality holds if

and only if B ∼= H1
n.

(7) If B ∈ Bn\{F 1
n , F 2

n ,H5
n,H8

n,H9
n,H7

n,H1
n}, then q(B) ≤ q(H4

n), where the equality holds

if and only if B ∼= H4
n.

(8) If B ∈ Bn\{F 1
n , F 2

n ,H5
n,H8

n,H9
n,H7

n,H1
n,H4

n}, then q(B) ≤ q(H3
n), where the equality

holds if and only if B ∼= H3
n.

(9) If B ∈ Bn\{F 1
n , F 2

n ,H5
n,H8

n,H9
n,H7

n,H1
n,H4

n,H3
n}, then q(B) ≤ q(H2

n), where the equal-

ity holds if and only if B ∼= H2
n.

(10) If B ∈ Bn\{F 1
n , F 2

n ,H5
n,H8

n,H9
n,H7

n,H1
n,H4

n,H3
n,H2

n}, then q(B) ≤ q(H6
n), where the

equality holds if and only if B ∼= H6
n.
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In order to prove Theorem 2.4, the following Lemma is needed.

Lemma 2.5 ([19, 21]) Let G be a graph on n − k (1 ≤ k ≤ n − 2) vertices with V (G) =
{vn, vn−1, . . . , vk+1}. If G′ is obtained from G by attaching k new pendant vertices, say, v1, v2, . . . , vk

to vk+1, then Φ(Q(G′), x) = (x − 1)k · det(xIn−k − Q(G) − Mn−k), where a11(Q(G)) is corre-

sponding to the vertex vk+1, and Mn−k = diag{k + (k/(x− 1)), 0, . . . , 0}.

Example Let F 1
n be the bicyclic graph as shown in Figure 1. By Lemma 2.5, we have

Φ(Q(F 1
n), x) = (x− 1)n−4det(M),

where M =




x− (n− 1)− n−4
x−1 −1 −1 −1

−1 x− 2 −1 0
−1 −1 x− 3 −1
−1 0 −1 x− 2


 .

By using “Matlab”, it easily follows that Φ(Q(F 1
n), x) = (x− 1)n−4(x− 2)(x3− (n + 4)x2 +

4nx − 8). With the similar method, by Lemma 2.5 and using “Matlab”, we have the following
results.

Φ(Q(F 2
n), x) =(x− 1)n−4(x− 3)(x3 − (n + 3)x2 + 3nx− 8).

Φ(Q(H1
n), x) =(x− 1)n−5(x− 2)(x4 − (n + 5)x3 + 6nx2 − 6nx + 8).

Φ(Q(H2
n), x) =(x− 1)n−6(x− 2)2x(x3 − (n + 4)x2 + (5n− 2)x− 3n).

Φ(Q(H3
n), x) =(x− 1)n−6(x− 2)(x5 − (n + 6)x4 + (7n + 7)x3 − (14n− 2)x2+

(16 + 6n)x− 8).

Φ(Q(H4
n), x) =(x− 1)n−6(x6 − (n + 8)x5 + (9n + 18)x4 − (27n + 10)x3 + (31n+

10)x2 − (11n + 32)x + 16).

Φ(Q(H5
n), x) =(x− 1)n−6(x− 2)(x5 − (n + 6)x4 + (7n + 4)x3 − (11n + 2)x2+

(4n + 16)x− 8).

Φ(Q(H6
n), x) =(x− 1)n−5(x5 − (n + 6)x4 + (7n + 7)x3 − (13n + 3)x2 + (4n+

24)x− 8).

Φ(Q(H7
n), x) =(x− 1)n−4(x− 2)(x3 − (n + 3)x2 + (4n− 4)x− 8).

Φ(Q(H8
n), x) =(x− 1)n−6(x6 − (n + 8)x5 + (9n + 18)x4 − (27n + 12)x3 + (30n+

29)x2 − (9n + 64)x + 24).

Φ(Q(H9
n), x) =(x− 1)n−6(x− 3)(x5 − (n + 5)x4 + (6n + 4)x3 − (10n + 2)x2+

(3n + 24)x− 8).

Because the Q-polynomial of a graph has only real roots, we only deal with the polynomials with
real roots in this paper. If f(x) is a polynomial in the variable x, the degree of f(x) is denoted by
∂(f), and the maximum root of the equation f(x) = 0 by q1(f). The following Lemma provides
an effective method to compare the largest roots of two polynomials.

Lemma 2.6 ([4]) Let f(x), g(x) be two monic polynomials with real roots, and ∂(f) ≥ ∂(g). If



The signless Laplacian spectral radii and spread of bicyclic graphs 131

f(x) = q(x)g(x) + r(x), where q(x) is also a monic polynomial, and ∂(r) ≤ ∂(g), q1(g) > q1(q),
then

(1) When r(x) = 0, then q1(f) = q1(g);
(2) When r(x) > 0 for any x satisfying x ≥ q1(g), then q1(f) < q1(g);
(3) When r(q1(g)) < 0, then q1(f) > q1(g).

Proof of Theorem 2.4 Note that F 1
n and F 2

n are the only two bicyclic graphs with ∆ = n− 1,
and H1

n,H2
n,H3

n,H4
n,H5

n,H6
n,H7

n,H8
n,H9

n are all the bicyclic graphs with ∆ = n − 2. Assume
that B ∈ Bn\{F 1

n , F 2
n ,H1

n,H2
n,H3

n,H4
n,H5

n,H6
n,H7

n,H8
n,H9

n}. By Lemmas 2.1 and 2.3, we have
max{q(F 1

n), q(F 2
n)} ≥ n > n− 1 ≥ q(B), because ∆(B) ≤ n− 3.

In order to finish the proof of Theorem 2.4, we only need to prove that

q(F 1
n) > q(F 2

n) > q(H5
n) > q(H8

n) > max{q(H7
n), q(H9

n)} > min{q(H7
n), q(H9

n)}
> q(H1

n) > q(H4
n) > q(H3

n) > q(H2
n) > q(H6

n),

where {
q(H7

n) > q(H9
n), if 9 ≤ n ≤ 12,

q(H7
n) < q(H9

n), if n > 12.

Claim 1 q(F 1
n) > q(F 2

n).
For the Q-polynomials of F 1

n and F 2
n , by Lemma 2.1, we have q1(F 1

n) ≥ n, q1(F 2
n) ≥ n. Let

g(x) = x3 − (n + 4)x2 + 4nx− 8 and f(x) = x3 − (n + 3)x2 + 3nx− 8. It is easy to see that

f(x) = g(x) + x(x− n).

Let r(x) = x−n. We can obtain q1(F 1
n) 6= n and q1(F 2

n) 6= n. So when x ≥ q1(g) > n and n ≥ 9,
r(x) > 0. By Lemma 2.6, we obtain q1(F 2

n) < q1(F 1
n).

Claim 2 q(F 2
n) > q(H5

n) > q(H8
n).

For the Q-polynomials of F 2
n and H5

n, let g(x) = x3 − (n + 3)x2 + 3nx − 8 and f(x) =
x5 − (n + 6)x4 + (7n + 4)x3 − (11n + 2)x2 + (4n + 16)x− 8. It is easy to see that

f(x) = g(x)(x− 1)(x− 2) + (n− 7)x3 + 12x2 − (2n + 8)x + 8.

Let r(x) = (n − 7)x3 + 12x2 − (2n + 8)x + 8. If x ≥ q1(g) > n − 1, n ≥ 9, then r′(x) =
3(n − 7)x2 + 24x − (2n + 8) > 0. Since r(n − 1) > 0, r(x) > 0. By Lemma 2.6, we obtain
q1(H5

n) < q1(F 2
n).

For the Q-polynomials of F 2
n and H8

n, let g(x) = x3 − (n + 3)x2 + 3nx − 8 and f(x) =
x6 − (n + 8)x5 + (9n + 18)x4 − (27n + 12)x3 + (30n + 29)x2 − (9n + 64)x + 24. It is easy to see
that

f(x) = g(x)(x− 1)2(x− 3) + x((n− 4)x3 − (5n− 20)x2 + (6n− 20)x− 8).

Let r(x) = (n − 4)x3 − (5n − 20)x2 + (6n − 20)x − 8. If x ≥ q1(g) > n − 1 and n ≥ 9, then
r(x) > 0. By Lemma 2.6, we deduce that q1(H8

n) < q1(F 2
n).

For the graphs H5
n and H8

n. If x ≥ n− 1 and n ≥ 9, then

Φ(Q(H8
n), x)− Φ(Q(H5

n), x) =(x− 1)n−6(2x4 − (2n− 2)x3 + (4n + 9)x2−
(24 + n)x + 8) > 0.
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We obtain q1(H5
n) > q1(H8

n).

Claim 3 q(H8
n) > max{q(H7

n), q(H9
n)} > min{q(H7

n), q(H9
n)} > q(H1

n), where
{

q(H7
n) > q(H9

n), 9 ≤ n ≤ 12,

q(H7
n) < q(H9

n), n > 12.

For the graphs H8
n and H7

n, if x ≥ n− 1 and n ≥ 9, then

Φ(Q(H7
n), x)− Φ(Q(H8

n), x) =(x− 1)n−6(x4 − (n + 4)x3 + (6n− 9)x2−
(7n− 16)x + 8) > 0.

We obtain q1(H8
n) > q1(H7

n).

For the Q-polynomials of H9
n and H8

n, let g(x) = x5− (n+5)x4 +(6n+4)x3− (10n+2)x2 +
(3n+24)x−8 and f(x) = x6−(n+8)x5+(9n+18)x4−(27n+12)x3+(30n+29)x2−(9n+64)x+24.
It is easy to see that

f(x) = g(x)(x− 3) + x(−x3 + (n + 2)x2 − (3n + 1)x + 16).

Let r(x) = −x3 + (n + 2)x2 − (3n + 1)x + 16. If x ≥ q1(g) > n− 1 and n ≥ 9, then r(q1(g)) < 0.
By Lemma 2.6, we obtain q1(H9

n) < q1(H8
n).

For the Q-polynomials of H1
n and H9

n, let g(x) = x4 − (n + 5)x3 + 6nx2 − 6nx + 8 and
f(x) = x5 − (n + 5)x4 + (6n + 4)x3 − (10n + 2)x2 + (3n + 24)x− 8. It is easy to see that

f(x) = g(x)(x− 1) + x(x3 − (n + 1)x2 + (2n− 2)x− 3n + 16).

Let r(x) = x3 − (n + 1)x2 + (2n− 2)x− 3n + 16. If x ≥ q1(g) > n− 1 and n ≥ 9, then r(x) > 0.
By Lemma 2.6, we obtain q1(H9

n) > q1(H1
n).

For the graphs H1
n and H7

n. If x ≥ n− 1 and n ≥ 9, then

Φ(Q(H7
n), x)− Φ(Q(H1

n), x) = (x− 1)n−5(x− 1)x((n + 1)x2 + (n + 1)x + 2n− 4) > 0.

We obtain q1(H7
n) > q1(H1

n).

For the Q-polynomials of H7
n and H9

n, let g(x) = x3 − (n + 3)x2 + (4n − 4)x − 8 and
f(x) = x5 − (n + 5)x4 + (6n + 4)x3 − (10n + 2)x2 + (3n + 24)x− 8. It is easy to see that

f(x) = g(x)(x− 1)2 + x(x2 − (n− 1)x− (n− 12)).

Let r(x) = x2 − (n − 1)x − (n − 12). If x > q1(g) > n − 1 and 9 ≤ n ≤ 12, then r(x) > 0. By
Lemma 2.6, we obtain q1(H7

n) > q1(H9
n). If n > 12, then r(n − 1) < 0. We can calculate the

largest root of g(x) between n− 1 and the largest root of r(x), then r(q1(g(x))) < 0. By Lemma
2.6, q1(H9

n) ≥ q1(H7
n).

Claim 4 q(H1
n) > q(H4

n) > q(H3
n).

For the Q-polynomials of H1
n and H4

n, let g(x) = x4 − (n + 5)x3 + 6nx2 − 6nx + 8 and
f(x) = x6− (n + 8)x5 + (9n + 18)x4− (27n + 10)x3 + (31n + 10)x2− (11n + 32)x + 16. It is easy
to see that

f(x) = g(x)(x− 2)(x− 1) + x(x3 − nx2 + (n + 2)x + n− 8).
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Let r(x) = x3 − nx2 + (n + 2)x + n − 8. If x ≥ q1(g) > n − 1 and n ≥ 9, then r(x) > 0. By
Lemma 2.6, we obtain q1(H1

n) > q1(H4
n).

For the Q-polynomials of H4
n and H3

n, let g(x) = x6 − (n + 8)x5 + (9n + 18)x4 − (27n +
10)x3 +(31n+10)x2− (11n+32)x+16 and f(x) = (x− 2)(x5− (n+6)x4 +(7n+7)x3− (14n−
2)x2 + (6n + 16)x− 8). It is easy to see that

f(x) = g(x) + x(x3 + (n + 2)x2 − (6n + 4)x + n + 8).

Let r(x) = x3 + (n + 2)x2 − (6n + 4)x + n + 8. If x ≥ q1(g) > n− 1 and n ≥ 9, then r(x) > 0.
By Lemma 2.6, we obtain q1(H4

n) > q1(H3
n).

Claim 5 q(H3
n) > q(H2

n) > q(H6
n).

For the Q-polynomials of H3
n and H6

n, let g(x) = x5− (n+6)x4 +(7n+7)x3− (14n−2)x2 +
(6n + 16)x − 8 and f(x) = x5 − (n + 6)x4 + (7n + 7)x3 − (13n + 3)x2 + (4n + 24)x − 8). It is
easy to see that

f(x) = g(x) + x((n− 5)x− 2n + 8).

Let r(x) = (n− 5)x− 2n + 8. If x ≥ q1(g) > n− 1 and n ≥ 9, then r(x) > 0. By Lemma 2.6, we
obtain q1(H3

n) > q1(H6
n).

For the Q-polynomials of H2
n and H3

n, let g(x) = x3 − (n + 4)x2 + (5n − 2)x − 3n and
f(x) = x5 − (n + 6)x4 + (7n + 7)x3 − (14n− 2)x2 + (6n + 16)x− 8. It is easy to see that

f(x) = g(x)x(x− 2) + x3 − (n + 2)x2 + 16x− 8.

Let r(x) = x3 − (n + 2)x2 + 16x − 8. For the graph H2
n, if n > q1(g) > n − 1 and n ≥ 9, then

r(q1(g)) < 0. By Lemma 2.6, we obtain q1(H3
n) > q1(H2

n).
For the Q-polynomials of H6

n and H2
n, let g(x) = x5− (n+6)x4 +(7n+7)x3− (13n+3)x2 +

(4n + 24)x− 8) and f(x) = (x− 2)x(x3 − (n + 4)x2 + (5n− 2)x− 3n). It is easy to see that

f(x) = g(x)− x3 + 7x2 + (2n− 24)x + 8.

Let r(x) = −x3 + 7x2 + (2n− 24)x + 8. If x ≥ q1(g) > n− 1 and n ≥ 9, then r(q1(g)) < 0. By
Lemma 2.6, we obtain q1(H2

n) > q1(H6
n).

Hence, by Claims 1–5, Theorem 2.4 is proved. ¤

3. The (second) largest signless Laplacian spreads of bicyclic graphs

In this section, we determine the unique bicyclic graph with the largest or the second largest
signless Laplacian spreads among the class of connected bicyclic graphs of order n, respectively.

Theorem 3.1 If n ≥ 9 and B ∈ Bn\{F 1
n , F 2

n}, then SQ(F 1
n) > SQ(F 2

n) > SQ(B).
To prove Theorem 3.1, we need to introduce a lemma as follows.

Lemma 3.2 Suppose B is a bicyclic graph on n vertices with ∆ ≤ n − 3. If n ≥ 9, then

SQ(B) ≤ n− 1.

Proof Note that qn(B) ≥ 0 and SQ(B) = q1(B) − qn(B) ≤ q1(B). We only need to prove
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q1(B) ≤ max{d(v) + m(v) : v ∈ V } ≤ n− 1. By Lemma 2.2, suppose d(u) + m(u) = max{d(v) +
m(v) : v ∈ V }. We consider the following three cases.

Case 1 If d(u) = 1, suppose v ∈ N(u). Then, d(u) + m(u) = 1 + d(v) ≤ 1 + ∆ ≤ n− 2 < n− 1.

Case 2 If d(u) = 2, suppose N(u) = {w, v}. Note that B is a bicyclic graph. Then, |N(v) ∩
N(w)| ≤ 3 and |N(v) ∪N(w)| ≤ n. Therefore,

d(u) + m(u) = 2 +
d(v) + d(w)

2
≤ 2 +

n + 3
2

≤ n− 1.

Case 3 Suppose 3 ≤ d(u) ≤ n− 3. Note that B has n + 1 edges. So we have

d(u) + m(u) ≤ d(u) +
2(n + 1)− d(u)− 2

d(u)
= d(u)− 1 +

2n

d(u)
.

Next we will prove that d(u) − 1 + 2n
d(u) ≤ n − 1, equivalently, d(u)(n − d(u)) ≥ 2n. Let

g(x) = (n − x)x, where 3 ≤ x ≤ n − 3. Since g′(x) = n − 2x and 3 ≤ x ≤ n − 3, we have
g(x) ≥ g(3) = g(n− 3) = 3n− 9 ≥ 2n. Then the result follows. ¤

Proof of Theorem 3.1 Note that F 1
n and F 2

n are the only two bicyclic graphs with ∆ = n− 1,
and H1

n,H2
n,H3

n,H4
n,H5

n,H6
n,H7

n,H8
n,H9

n are all the bicyclic graphs with ∆ = n− 2. If B ∈ Bn

is a bicyclic graph on n(≥ 9) vertices with ∆(B) ≤ n− 3, by Lemma 3.2, then SQ(B) ≤ n− 1.
In order to finish the proof of Theorem 3.1, we will prove firstly the following six claims.

Claim 1 If n ≥ 9, then SQ(F 1
n) > n− 0.3 > n− 1.

Indeed by Lemma 2.5, we have

Φ(Q(F 1
n), x) = (x− 1)n−4(x− 2)ϕ1(x),

where ϕ1(x) = x3− (n+4)x2 +4nx−8. Since n ≥ 9, ϕ1(0) = −8 < 0, ϕ1(0.3) = 1.11n−8.333 >

0, ϕ1(3) = 3n− 17 > 0, ϕ1(4) = −8 < 0, ϕ1(n) = −8 < 0, and ϕ1(n+1) = (n+1)(n− 3)− 8 > 0,
then it follows that 0 < qn(F 1

n) < 0.3 and n < q1(F 1
n) < n + 1. Thus,

SQ(F 1
n) = q1(F 1

n)− qn(F 1
n) > n− 0.3.

Then we have SQ(F 1
n) > n− 0.3 > n− 1.

Claim 2 If n ≥ 9, then SQ(F 2
n) > n− 0.35 > n− 1.

Indeed by Lemma 2.5, we have

Φ(Q(F 2
n), x) = (x− 1)n−4(x− 3)ϕ2(x)

where ϕ2(x) = x3 − (n + 3)x2 + 3nx − 8. Since n ≥ 9, ϕ2(0) = −8 < 0, ϕ2(0.35) = 0.9275n −
8.32463 > 0, ϕ2(1) = 2n−10 > 0, ϕ2(3) = −8 < 0, ϕ2(n) = −8 < 0 and ϕ2(n+1) = n2−n−10 >

0, then it follows that 0 < qn(F 2
n) < 0.35 and n < q1(F 2

n) < n + 1. Thus,

SQ(F 2
n) = q1(F 2

n)− qn(F 2
n) > n− 0.35.

Then we have SQ(F 2
n) > n− 0.35 > n− 1.

Claim 3 If n ≥ 9, then SQ(H5
n) < n− 0.35 < min{SQ(F 1

n), SQ(F 2
n)}.
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By Lemma 2.5, we have

Φ(Q(H5
n), x) = (x− 1)n−6(x− 2)ϕ3(x),

where ϕ3(x) = x5 − (n + 6)x4 + (7n + 4)x3 − (11n + 2)x2 + (4n + 16)x − 8. Since n ≥ 9,
ϕ3(0) = −8 < 0, ϕ3(0.4) = 0.2624n− 1.80736 > 0, ϕ3(0.6) = −0.1776n + 1.04416 < 0, ϕ3(1.6) =
0.3584n + 0.02816 > 0, ϕ3(4) = 32n − 232 > 0, ϕ3(5) = −5n − 103 < 0, ϕ3(n − 1) = −9n2 +
38n− 37 < 0, ϕ3(n− 0.35) = 13

20n4 − 273
50 n3 + 13621

4000 n2 + 84557
5000 n− 45157727

3200000 > 0 and ϕ3(n− 0.3) =
7
10n4 − 287

50 n3 + 436
125n2 + 82907

5000 n− 1313903
100000 > 0, and by Claims 1 and 2, then SQ(H5

n) = q1(H5
n)−

qn(H5
n) < q1(H5

n) < n− 0.35 < min{SQ(F 1
n), SQ(F 2

n)}.

Claim 4 If n ≥ 9, then SQ(H8
n) < n− 0.35 < min{SQ(F 1

n), SQ(F 2
n)}.

Similarly, for the graph H8
n, by Lemma 2.5, we have that

Φ(Q(H8
n), x) = (x− 1)n−6ϕ4(x),

where ϕ4(x) = x6− (n+8)x5 +(9n+18)x4− (27n+12)x3 +(30n+29)x2− (9n+64)x+24. Since
n ≥ 9, ϕ4(0) = 24 > 0, ϕ4(0.4) = −0.30784n + 2.65498 < 0, ϕ4(0.5) = 0.15625n − 1.35938 > 0,

ϕ4(1) = 2n− 12 > 0, ϕ4(2) = −2n + 12 < 0, ϕ4(3) = 12 > 0, ϕ4(4) = −4n− 24 < 0, ϕ4(n− 1) =
−9n3 + 77n2 − 200n + 156 < 0, ϕ4(n− 0.35) = 13

20n5 − 559
80 n4 + 14029

800 n3 + 54221
3200 n2 − 53955731

640000 n +
3249981969
64000000 > 0 and ϕ4(n−0.3) = 7

10n5− 147
20 n4+ 1809

100 n3+ 16499
1000 n2− 322873

4000 n− 46299969
1000000 > 0, and by

Claims 1 and 2, then SQ(H8
n)) = q1(H8

n)−qn(H8
n) < q1(H8

n) < n−0.35 < min{SQ(F 1
n), SQ(F 2

n)}.

Claim 5 If n ≥ 9, B ∈ Bn and ∆(B) = n−2, then SQ(B) < n−0.35 < min{SQ(F 1
n), SQ(F 2

n)}.
Indeed if n ≥ 9, B ∈ Bn and ∆(B) = n − 2, then B is one of the bicyclic graphs

H1
n,H2

n,H3
n,H4

n, H5
n,H6

n,H7
n,H8

n and H9
n. By Theorem 2.4, Claims 1, 2, 3 and 4, we have

SQ(B) = q1(B)− qn(B) < q1(B) < n− 0.35 < min{SQ(F 1
n), SQ(F 2

n)}.

Claim 6 If n ≥ 9, then SQ(F 2
n) < SQ(F 1

n).
Indeed by Lemma 2.5, we have Φ(Q(F 1

n), x) = (x − 1)n−4(x − 2)ϕ1(x) and Φ(Q(F 2
n), x) =

(x−1)n−4(x−3)ϕ2(x), where ϕ1(x) = x3−(n+4)x2+4nx−8 and ϕ2(x) = x3−(n+3)x2+3nx−8.
By Theorem 2.4, we have q(F 1

n) > q(F 2
n). Next we will prove qn(F 1

n) < qn(F 2
n) as follows.

According to the proof of Theorem 2.4, suppose

F (x) = Φ(Q(F 2
n), x)− Φ(Q(F 1

n), x) = (x− 1)n−4ψ(x),

where ψ(x) = x2 − nx + 8.
When 0 < x < n−√n2−32

2 , n ≥ 9, ψ(x) > 0. For ϕ1(x) = x3 − (n + 4)x2 + 4nx − 8 and
ϕ2(x) = x3−(n+3)x2 +3nx−8, ϕ1(0) = −8 < 0 and ϕ1(n−√n2−32

2 ) = 4
√

n2 − 32−4n+24 > 0,
ϕ2(0) = −8 < 0 and ϕ2(n−√n2−32

2 ) = 4
√

n2 − 32 − 4n + 16 > 0, then 0 < qn(F 1
n) < n−√n2−32

2

and 0 < qn(F 2
n) < n−√n2−32

2 .

Case 1 When n is odd, 0 < x < n−√n2−32
2 ≤ 1 and n ≥ 9, then (x− 1)n−4 < 0 and ψ(x) > 0,

then F (x) < 0. We can obtain qn(F 1
n) < qn(F 2

n).

Case 2 When n is even, 0 < x < n−√n2−32
2 ≤ 1 and n ≥ 9, then (x− 1)n−4 > 0 and ψ(x) > 0,

then F (x) > 0. We also obtain qn(F 1
n) < qn(F 2

n).
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By combining with the above arguments, SQ(F 1
n) = q1(F 1

n)− qn(F 1
n) > q1(F 2

n)− qn(F 2
n) =

SQ(F 2
n).

By Lemma 3.2, and Claims 1–6, Theorem 3.1 is proved. ¤

Acknowledgements The authors are grateful to the referees for helpful comments that im-
proved the paper.

References

[1] Yanhong BAO, Yingying TAN, Yizheng FAN. The Laplacian spread of unicyclic graphs. Appl. Math. Lett.,

2009, 22(7): 1011–1015.
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