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Abstract We give in this note some expansion formulas for the orthogonal projectors onto

the range of the row block matrix [ A, B ], and use the expansion formulas to examine relations

among the orthogonal projectors onto the ranges of A, B and [ A, B ]. In particular, we present

some identifying conditions for a pair of orthogonal projectors of the same size to commute.
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1. Introduction

Throughout this note, Cm×n denotes the set of all m × n complex matrices; A∗, r(A) and
R(A) stand for the conjugate transpose, rank, range (column space) of a matrix A ∈ Cm×n,
respectively; [ A, B ] denotes a row block matrix consisting of A and B. We write A > 0 (A > 0)
if A is Hermitian positive definite (positive semi-definite). Two Hermitian matrices A and B of
the same size are said to satisfy the inequality A > B (A > B) in the Löwner partial ordering if
A− B is positive definite (positive semi-definite). The inertia of Hermitian matrix A is defined
to be the triplet In(A) = { i+(A), i−(A), i0(A) }, where i+(A), i−(A) and i0(A) are the numbers
of the positive, negative and zero eigenvalues of A counted with multiplicities, respectively, and
s(A) = i+(A)− i−(A).

The Moore-Penrose inverse of A ∈ Cm×n, denoted by A†, is defined to be the unique matrix
X ∈ Cn×m satisfying the four matrix equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

A matrix X is called a generalized inverse of A, denoted by X = A−, if it satisfies (i); the
collection of all generalized inverses of A is denoted by {A−}.

A matrix A ∈ Cm×m is called an orthogonal projector if it is both idempotent and Hermitian,
i.e., A2 = A = A∗. A matrix X ∈ Cm×m is called the orthogonal projector onto the range R(A)
of A ∈ Cm×n, denoted by X = PA, if it satisfies

R(X) = R(A) and X2 = X = X∗.
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It can be seen from the definition of the Moore-Penrose inverse that the product AA† is the
orthogonal projector onto R(A), i.e., PA = AA†; while P⊥A = Im − AA† is the orthogonal
projector onto the null space of A∗.

Orthogonal projectors are fundamental objects of study in matrix theory, which play impor-
tant roles in the study of matrix factorizations of Hermitian matrices and matrix computations.
Various expressions or equalities consisting of orthogonal projectors may occur in matrix the-
ory and applications. In particular, much attention was paid to orthogonal projectors onto the
ranges of row block matrices and their submatrices [1, 3]. The purpose of this note is to revisit
the orthogonal projectors onto the ranges of the row block matrix [A, B ] and its two submatrices
A and B. We shall give some new expansion formulas for the orthogonal projectors onto the
ranges of the row block matrix [A, B ] and use the expansion formulas to examine the relations
among the orthogonal projectors onto the ranges of A, B and [A, B ]. In particular, we give
some identifying conditions for a pair of orthogonal projectors of the same size to commute.

The following are some known results on ranks of matrices, which will be used in the latter
part of this paper.

Lemma 1.1 ([2]) Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then, the following

rank formulas hold

r[A, B ] = r(A) + r[ ( Im −AA† )B ] = r(B) + r[ ( Im −BB† )A ], (1.1)

r

[
A B

C 0

]
= r(B) + r(C) + r[ ( Im −BB† )A( In − C†C ) ], (1.2)

r

[
A B

C D

]
= r(A) + r( D − CA†B ), if R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗). (1.3)

Lemma 1.2 Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×m. Then, the following rank formula

holds

r

[
AA† B

C 0

]
= r




CB 0 C

0 0 A∗

B A 0


− r(A). (1.4)

Proof Applying (1.3) and AA† = A(A∗A)†A∗ to the left-hand side of (1.4), and simplifying by
elementary matrix operations, we obtain

r

[
AA† B

C 0

]
= r



−A∗A A∗ 0

A 0 B

0 C 0


− r(A) = r




0 A∗ A∗B

A 0 B

0 C 0


− r(A)

= r




0 A∗ 0

A 0 B

0 C −CB


− r(A) = r




CB 0 C

0 0 A∗

B A 0


− r(A),

establishing (1.4). 2
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Lemma 1.3 ([11]) Let A ∈ Cm×n and B ∈ Cm×k. Then, the following rank formulas hold

r( PA − PB ) = 2r[A, B ]− r(A)− r(B), (1.5)

r( PAPB − PBPA ) = 2r[A, B ]− 2r(A)− 2r(B) + 2r(A∗B). (1.6)

Lemma 1.4 ([9]) Let P, P1, P2 ∈ Cm×m be three orthogonal projectors and assume that

R(P1) ⊆ R(P ) and R(P2) ⊆ R(P ). (1.7)

Then, the following hold.

(a) P − P1 − P2 satisfies the following equalities

i+( P − P1 − P2 ) = r(P )− r(P1)− r(P2) + r(P1P2), (1.8)

i−( P − P1 − P2 ) = r(P1P2), (1.9)

r( P − P1 − P2 ) = r(P )− r(P1)− r(P2) + 2r(P1P2), (1.10)

s( P − P1 − P2 ) = r(P )− r(P1)− r(P2). (1.11)

Hence, the following hold.

(i) P − P1 − P2 is nonsingular if and only if r(P ) = r(P1) + r(P2)− 2r(P1P2) + m.

(ii) P − P1 − P2 > 0 if and only if P1P2 = 0.

(iii) P − P1 − P2 6 0 if and only if r(P ) = r(P1) + r(P2)− r(P1P2).

(iv) P = P1 + P2 if and only if P1P2 = 0 and r(P ) = r(P1) + r(P2).

(v) The signature of P − P1 − P2 is zero if and only if r(P ) = r(P1) + r(P2).

(b) 2P − P1 − P2 satisfies the following equalities

i+( 2P − P1 − P2 ) = r( 2P − P1 − P2 ) = r(P )− r(P1)− r(P2) + r[P1, P2 ]. (1.12)

Hence, 2P = P1 + P2 if and only if r(P ) = r(P1) + r(P2)− r[P1, P2 ].

Lemma 1.5 ([5, 10]) Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n be given. Then the minimal

rank of A−BXC with respect to X ∈ Ck×l is given by the following closed-form formula

min
X∈Ck×l

r( A−BXC ) = r[A, B ] + r

[
A

C

]
− r

[
A B

C 0

]
. (1.13)

The matrix X satisfying (1.13) was also given in [5, 10].

2. Main results

We first show a group of results on the Moore-Penrose inverse of product of two orthogonal
projectors.

Lemma 2.1 Let A ∈ Cm×n and B ∈ Cm×k. Then,

(a) The following expansion formulas hold:

(PAPB)† = PBPA − PB(P⊥B P⊥A )†PA, (2.1)

(PAPB)(PAPB)† = PAPBPA − PAPB(P⊥B P⊥A )†PA, (2.2)
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(PAPB)†(PAPB) = PBPAPB − PB(P⊥B P⊥A )†PAPB . (2.3)

(b) The following inequalities hold:

(PAPB)(PAPB)† > PAPBPA, (2.4)

(PAPB)†(PAPB) > PBPAPB . (2.5)

(c) The following rank expansion formulas hold:

r[ (PAPB)† − PBPA ] = r[A, B ]− r(A)− r(B) + r(A∗B), (2.6)

r[ (PAPB)(PAPB)† − PAPBPA ] = r[A, B ]− r(A)− r(B) + r(A∗B), (2.7)

r[ (PAPB)†(PAPB)− PBPAPB ] = r[A, B ]− r(A)− r(B) + r(A∗B). (2.8)

Proof Eq. (2.1) was shown in [7, 8]. Pre- and post-multiplying PAPB yield (2.2) and (2.3),
respectively. Recall that PAPBPA > 0 and Im − PAPBPA > 0. Then, we have

(PAPB)(PAPB)† − PAPBPA = (PAPB)(PAPB)†( Im − PAPBPA )(PAPB)(PAPB)† > 0, (2.9)

(PAPB)†(PAPB)− PBPAPB = (PAPB)†(PAPB)( Im − PBPAPB )(PAPB)†(PAPB) > 0, (2.10)

establishing (2.4) and (2.5). Eq. (2.6) was shown in [8], while (2.7) and (2.8) follow from (2.6). 2

Let M = [ A, B ], A1 = P⊥B PA and B1 = P⊥A PB . Then,

M

[
In −A†PB

0 B†

]
= [ A, B1 ], M

[
A† 0

−B†PA Ik

]
= [ A1, B ].

Also note from (1.1) that r(M) = r(A) + r(B1) = r(A1) + r(B). In consequence,

R(M) = R[A, B1 ] = R[PA, PB1 ] = R( PA + PB1 ), (2.11)

R(M) = R[A1, B ] = R[PA1 , PB ] = R( PA1 + PB ). (2.12)

Also note that both PAPB1 = PBPA1 = 0. So that

( PA + PB1 )2 = PA + PB1 , ( PB + PA1 )2 = PB + PA1 . (2.13)

Thus, both PA + PB1 and PA1 + PB are orthogonal projectors, and PM can be decomposed as

PM = PA + PB1 = PA + B1B
†
1, (2.14)

PM = PA1 + PB = PB + A1A
†
1, (2.15)

which were due to Rao and Yanai [4], see also [3]. Two further expansion formulas derived from
(2.13) and (2.14) for PM are given below.

Theorem 2.2 Let A ∈ Cm×n, B ∈ Cm×k, and define M = [ A, B ], A1 = P⊥B PA and

B1 = P⊥A PB . Then, the following hold.

(a) PM can be decomposed as

PM = PA + B1B
∗
1 −B1A

†
1P

⊥
A , (2.16)

PM = PB + A1A
∗
1 −A1B

†
1P

⊥
B . (2.17)
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(b) PM satisfies the following inequalities

PM > PA + B1B
∗
1 = PA + PB − PAPB − PBPA + PAPBPA, (2.18)

PM > PB + A1A
∗
1 = PA + PB − PAPB − PBPA + PBPAPB . (2.19)

(c) PM satisfies the following rank and inertia equalities

r( PM − PA −B1B
∗
1 ) = r(M)− r(A)− r(B) + r(A∗B), (2.20)

r(PM − PB −A1A
∗
1 ) = r(M)− r(A)− r(B) + r(A∗B), (2.21)

r( PM − PA − PB + PAPB ) = r(M)− r(A)− r(B) + r(A∗B), (2.22)

i−( PM − PA1 − PB1 ) = i−( PA − PA1 ) = i−( PB − PB1 )

= r(M)− r(A)− r(B) + r(A∗B). (2.23)

(d) The following formulas for minimum matrix rank optimization hold

min
X∈Cn×m

r

(
M −M

[
X

B†

]
M

)
= min

Y ∈Ck×m
r

(
M −M

[
A†

Y

]
M

)

= r(M)− r(A)− r(B) + r(A∗B). (2.24)

(e) The following statements are equivalent:

(i) PAPB = PBPA.

(ii) (PAPB)† = PBPA.

(iii) (PAPB)(PAPB)† = PAPBPA.

(iv) (PAPB)†(PAPB) = PBPAPB .

(v) PM = PA + B1B
∗
1 .

(vi) PM = PB + A1A
∗
1.

(vii) PM > PA1 + PB1 .

(viii) PA > PA1 .

(ix) PB > PB1 .

(x) PM = PA + PB − PAPB .

(xi) There exists an X ∈ Cn×m such that

[
X

B†

]
∈ {[A, B ]−}.

(xii) There exists a Y ∈ Ck×m such that

[
A†

Y

]
∈ {[A, B ]−}.

(xiii) r(M) = r(A) + r(B)− r(A∗B).

Proof Applying (2.1)–(2.5) to A1 = P⊥B PA and B1 = P⊥A PB gives

A†1 = PAP⊥B − PA(P⊥A PB)†P⊥B = A∗1 − PAB†
1P

⊥
B ,

B†
1 = PBP⊥A − PB(P⊥B PA)†P⊥A = B∗

1 − PBA†1P
⊥
A ,

A1A
†
1 = A1A

∗
1 −A1B

†
1P

⊥
B ,

B1B
†
1 = B1B

∗
1 −B1A

†
1P

⊥
A ,

A1A
†
1 > A1A

∗
1,
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B1B
†
1 > B1B

∗
1 .

Substituting them into (2.14) and (2.15) gives

PM = PA + PB1 = PA + B1B
∗
1 −B1A

†
1P

⊥
A ,

PM = PB + PA1 = PB + A1A
∗
1 −A1B

†
1P

⊥
B ,

PM = PA + PB1 > PA + B1B
∗
1 ,

PM = PB + PA1 > PB + A1A
∗
1,

as required for (2.16)–(2.19). It is also easy to verify that

PM − PA −B1B
∗
1 = PM − PA − P⊥A PBP⊥A = P⊥A (PM − PB )P⊥A , (2.25)

PM − PA − PB + PAPB = P⊥A (PM − PB ), (2.26)

where PM − PB > 0. Hence, applying (1.1) to (2.25) and simplifying, we obtain

r( PM − PA −B1B
∗
1 ) = r(PM − PA − PB + PAPB )

= r[P⊥A ( PM − PB )] = r[PA, P⊥B PA ]− r(PA)

= r[PBPA, P⊥B PA ]− r(PA) = r(PBPA) + r(P⊥B PA)− r(PA)

= r(M)− r(A)− r(B) + r(A∗B), (2.27)

as required for (2.20) and (2.22). Eq. (2.21) can be shown similarly. Eq. (2.22) was also shown
in [6]. Eq. (2.23) was shown in [9].

Applying (1.13) and simplifying by (1.1) and elementary matrix operations, we obtain

min
Y

r

(
M −M

[
A†

Y

]
M

)
= min

Y
r
(
[ 0, P⊥A B ]−BY M

)

= r[P⊥A B, B ] + r

[
0 P⊥A B

A B

]
− r

[
0 P⊥A B B

A B 0

]

= r[P⊥A B, PAB ] + r

[
0 0

A B

]
− r

[
0 0 B

A B 0

]

= r(P⊥A B) + r(PAB)− r(B)

= r[A, B ] + r(A∗B)− r(A)− r(B),

establishing the second equality in (2.24). The first equality in (2.24) can be shown similarly. Set-
ting the right-hand sides of (1.6), (2.6)–(2.8), (2.20)–(2.24) equal to zero leads to the equivalences
in (e). 2

It is of interest to consider extensions of the previous results to some general row block
matrices. A special case for the orthogonal projectors onto the ranges of a row block matrix
[A, B, C ] is formulated below.

Theorem 2.3 Let N = [ A, B, C ], where A ∈ Cm×n, B ∈ Cm×k, C ∈ Cm×l. Then,
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(a) The following rank equality holds

r( PN − PA − PB − PC + PAPB + PAPC + PBPC − PAPBPC )

= r

[
A∗C A∗B

B∗C 0

]
+ r[A, B, C ]− r(A)− r(B)− r(C). (2.28)

(b) The following statements are equivalent:

(i) PN = PA + PB + PC − PAPB − PAPC − PBPC + PAPBPC .

(ii) ( Im − PA )(PN − PB )( Im − PC ) = 0.

(iii) ( PN − PA )(PN − PB )(PN − PC ) = 0.

(iv) r

[
A∗C A∗B

B∗C 0

]
= r(A) + r(B) + r(C)− r(N).

(c) (see [4]) If PAPB = PBPA, PAPC = PCPA and PBPC = PCPB , then (i) of (b) holds.

Proof Note that PNPA = PA, PNPB = PB and PNPC = PC hold. Then it is easy to verify

PN − PA − PB − PC + PAPB + PAPC + PBPC − PAPBPC

= ( Im − PA )(PN − PB )( Im − PC ). (2.29)

It follows from (2.12) that PN can be decomposed as

PN = PB + (P⊥B [A,C])(P⊥B [A,C])†. (2.30)

Applying (1.2) to (2.29) and simplifying by (1.1), (1.4), (2.30) and elementary matrix operations,
we obtain

r[ ( Im − PA )(PN − PB )( Im − PC ) ]

= r

[
PN − PB PA

PC 0

]
− r(PA)− r(PC)

= r

[
(P⊥B [A, C])(P⊥B [A, C])† PA

PC 0

]
− r(A)− r(C)

= r




PCPA 0 PC

0 0 (P⊥B [A, C])∗

PA P⊥B [A, C] 0


− r(P⊥B [A, C])− r(A)− r(C)

= r




PCPA 0 PCPB

0 0 (P⊥B [A, C])∗

PBPA P⊥B [A, C] 0


− r(P⊥B [A, C])− r(A)− r(C)

= r

[
PCPA PCPB

PBPA 0

]
+ r(P⊥B [A, C])− r(A)− r(C)

= r

[
A∗C A∗B

B∗C 0

]
+ r[A, B, C ]− r(A)− r(B)− r(C),

establishing (2.28). Setting both hands of (2.28) equal to zero leads to the equivalence of (i), (ii)
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and (iv) in (b). It is also easy to verify that

PN − PA − PB − PC + PAPB + PAPC + PBPC − PAPBPC

= ( PN − PA )(PN − PB )(PN − PC ).

Setting both hands of (2.28) equal to zero leads to the equivalence of (i) and (iii) in (b).
Under PAPB = PBPA, PAPC = PCPA, and PBPC = PCPB , both PM = PA + PB − PAPB

and PMPC = PCPM hold by Theorem 2.2(e), where M = [ A, B ]. In this case, PN = PM +PC−
PMPC by Theorem 2.2(d). Substituting PM = PA + PB − PAPB into PN = PM + PC − PMPC

yields (i) of (b). 2

Many matrix expressions consisting of the orthogonal projectors onto the range of N =
[A, B, C ], A, B and C can be constructed, for instance,

P[ A, B, C ] − PA − PB − PC , P[ A, B, C ] − PA1 − PB1 − PC1 ,

where A1 = P⊥[ B, C ]PA, B1 = P⊥[ A, C ]PB and C1 = P⊥[ A, B ]PC . Thus, it is an attractive topic
to extend the previous results to the orthogonal projectors onto the range of a general row
block matrix [A1, . . . , Ak ]. In particular, it can also be derived from Theorem 2.2(e) that if
PAi

PAj
= PAj

PAi
for i, j = 1, . . . , s, then

PN =PA1 + · · ·+ PAs
− PA1PA2 − · · · − PAs−1PAs

+

PA1PA2PA3 + · · ·+ PAs−2PAs−1PAs
− · · ·+ (−1)s−1PA1 · · ·PAs

.

This result was first shown in Rao and Yanai [4].
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