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Abstract In this paper, we consider a new two-component integrable system with cubic
nonlinearity, which can be deduced by a curve flow and it is integrable with its Lax pair, bi-
Hamiltonian structure, and infinitely many conservation laws. We mainly establish the local
well-posedness of this system in a range of the Besov spaces B, , with s > max{2 + %, g .
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1. Introduction

The present paper focuses on the Cauchy problem of the new two-component integrable
system with cubic nonlinearity:
me = bug + %[m(uv — UpVg)]e — %m(uvx —uzv), t>0, zE€R

ne = bug + %[n(uv — UyUy)]s + %n(uva: —uzv), t>0, c€R

M =1U— Upge,N =V — Vgy, t>0, x€R, )
u(z,0) = u0(z),v(x,0) = v0(x)
where b is an arbitrary constant. This system was proposed by Qu, Song and Yao in [1]. Note
that system (1) can be considered as the two-component case of Eq. (40) in [1]. And Qu et al. [1]
showed that Eq. (40) can be deduced by a curve flow (z,t). Then system (1) can be induced
by a curve flow ~y(z,t), where 7 denotes the curvature vector.

Note that when we take v = 2, the system (1) becomes the famous Camassa-Holm equation:
myg + bug, + 2mug, + meu = 0, (2)

which has been derived independently by Fokas and Fuchssteiner [2] by the method of recursion
operators, and by Camassa and Holm in [3]. Like the celebrated KdV equation, Camassa-Holm
equation describes the unidirectional propagation of shallow water waves over a flat bottom.
Here u(t, ) stands for the fluid velocity at time ¢ in the spatial = direction (or equivalently the

height of the free surface of water above a float bottom), b is a constant related to the critical
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shallow water wave speed. It turns out that it is also a model for the propagation of nonlinear
waves in cylindrical hyperplastic rods [4] with u(z,t) representing the radial stretch relative to a
pre-stressed state. Since the work of Camassa and Holm, various studies on this equation have
been developed. For instance, it has been found that Eq. (2) conforms with many conservation
laws, is completely integrable [5] and admits bi-Hamiltonian structures [6], Lax representation,
multi-soliton solutions and algebra-geometric solutions [7]. Meanwhile, Eq. (2) possesses smooth
solitary wave solutions if b > 0 (see [8]) or peakons if b = 0 (see [3]). It is also regarded as a
model of the geodesic flow for the H' right invariant metric on the Bott-Virasoro group if b > 0
and on the diffeomorphism group if b = 0 (see [9]). The local well-posedness, global existence,
blow-up structures and the well-posedness of global weak solutions of Eq. (2) have been given in
[10]. The sharpest results for the global existence and blow-up solutions were found in Bressan
and Constantin [11].
For v = 2u, system (1) is exactly the cubic CH equation:

my + (u? — u?)mg + 2uym? + bu, =0, (3)

which was derived independently by Fuchssteiner [12], Olver and Rosenau [13] and Fokas [14]
by applying the general method of tri-Hamiltonian duality to the bi-Hamiltonian representation
of the modified Korteweg-de Vries equation. Later, it was derived by Qiao [15] from the two-
dimensional Euler equations, where the variables u(t,z) and m(t, z) represent, respectively, the
velocity of the fluid and its potential density. In [15,16], it was shown that equation (3) admits
a Lax pair, and hence can be solved by the method of inverse scattering. In [17], the local well-
posedness and blow-up scenario to its Cauchy problem were considered. In [18], it was shown
that the singularities of the solutions can occur only in the form of wave-breaking, and a new
wave-breaking mechanism was described for solutions with certain initial profiles.

If we choose v = kju + ko, system (1) became the generalized CH equation:

(4)

my + bug + ki [m(u? — u2)], + 1ka(2mu, + meu) =0, t >0,z €R,
U(JZ,O) = UO(x)a r € R,

where b, k1 and ko are arbitrary constants, which was proposed by Qiao, Xia and Li [19]. In [19],
Qiao et al showed that the above equation was completely integrable, and derived its Lax pair,
bi-Hamiltonian structure, peakons, weak kinks, kink-peakon interactional and smooth soliton
solutions. Very recently, we have established the well-posedness, blow-up criteria and the lower
bound of the maximal time of existence for Eq. (4) in our another paper.

Since the work of CH equation, the study on the two-component CH system has also been
remarkably developed [20-22]. In [23], Gui and Liu established the local well-posedness for the
two-component Camassa-Holm system. Inspired by the references cited above, the goal of the
present paper is to establish the local well-posedness for the strong solutions to the Cauchy
problem (1). The proof of the local well-posedness is inspired by the argument of approximate

solutions by Danchin [24] in the study of the local well-posedness to the Camassa-Holm equation.
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However, one problematic issue is that we here deal with two-component system with a higher
order nonlinearity in the Besov spaces, making the proof of several required nonlinear estimates
somewhat delicate. These difficulties are nevertheless overcome by carefully estimating each

iterative approximation of solutions to (1).

2. Basic facts and notation

For convenience, we need to recall some basic facts on the transport equations and Moser-

type estimates.

Definition 2.1 ([25]) (Besov space) Let s € R,1 < p,r < co. The inhomogeneous Besov space
Bs .(RY) (Bj . for short) is defined by

By, ={f €S ®); |/l

Bf,'yr < OO},

where

1
Ul =4 Cacz 21841507, for v < oo,
" supgez 2% Aq fllL,, for T = oo.

If s =00, ByS. = Nscr B; ..
Definition 2.2 ForT > 0,s € R and 1 < p < 400, we set
Es (T)=C([0,T);B;,)nC* ([0,T); By if r < 400,
ES (T) = L™ (0,T]; By ) N Lip ([0,T]; By .!)
and E, . = Nr>oEp . (T).

Proposition 2.3 ([25,26]) The following properties hold.
I) Density: if p,r < oo, then S(R?) is dense in Bj . (R?).

1 1

s—d(———==
II) Sobolev embedding: if py < pa, and r1 < ro, then B2 — Bpy 't T2 Ifs1 < 89,1 <

P1,71

p < +o0 and 1 < rq,72 < +00, then the embedding B,?., < B, is locally compact.

p,r2

III) Algebraic properties: for s > 0, B, , N L* is an algebra. Moreover, B , is an algebra

@Bgyr%Loo(:)s>%or(szgandrzl),
and 0 € [0,1],1 < p,r < oo, then u €

e

IV) Complex interpolation: if w € By . N Bf;

0 1-0)5 _
Byt 0%, and [lull gor -0 < Jlullf ull}? -

Lemma 2.1 ([25,26]) Suppose that (p,r) € [1,00]?, and s > —%. Let v be a vector field such

d
that Vo belongs to L'([0,T}; B ;') if s > 1+ % or to L*([0,T); By N L>) otherwise. Suppose
also that fo € By ., F € L*([0,T]; By ) and that f € L>°([0,T]; B ) N C([0,T];S") solves the
d-dimensional linear transport equations

{@f—i—v-Vf:F,

5
fli=0 = fo. ©®
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Then there exists a constant C' depending only on s,p and d such that the following statements
hold:

I) Ifr:10r57é1+%, then

- <llfolls

IIF

Bé d’T

™ dT+c/ V(I

or

t
155, < eV (1ol + [ e OF)

;.. 47).

where V fO ||VU || d dr if s < ].-|- £ and V fO ||VU |

By .NL>
II) Ifs < 1—&—% and, in addition, Vfo € L=, Vf € L>([0, T]xR%) and VF € L*([0,T)]; L>),
then

B! dr else.

t
11z, +IVFOlz= < e O (I follzg, + IV Follz= + / e VOIE @) 5, + [VF()]|dr)

with V(¢ fo Vo(r)] « dr.
BY .NL>

III) If f = v, then for all s > 0, the estimate (6) holds with V(¢ fo |0z u(T)|| Lo dT.
IV) Ifr < +oo, then f € C([0,T]; By ,.). If r = 400, tbenfEC([OT] )fora]ls < s.

Lemma 2.2 ([26]) Let (p,p1,7) € [1,+00]3. Assume that s > —dmin{%, i} withp' = (1—%)_1
Let fo € B;, and F € L'([0,T];B;,). Let v be a time dependent vector field such that
v e LP([0,T]; BRM,) for some p > 1,M >0, and Vo € Ll([O,T];BﬁooﬁLoo) ifs<1+ p%, and
Vo e LN[0,T); By p) if s > 1+ L or s =1+ & and r = 1. Then the transport equations (5)
has a unique solution f € L>([0,T]; By ,.) N (Ns<sC([0, T}; B;:l)) and the inequalities in Lemma
2.1 hold true. If, moreover, r < oo, then we have f € C([0,T]; B, ,.).

Lemma 2.3 ([13]) (1-D Moser-type estimates) Assume that 1 < p,r < +o00. Then the following

estimates hold:

(I) Fors>0,]fg]

B, < C(Ifl Bs M fllz=);
(1) For s; < * 582> Li(sg>1 ifrzl) and s + s2 > 0,

5 llglli +llg

1f9ll sz, < Cllfls;,

s
Bp3.

where the constant C' is independent of f and g.

3. Local well-posedness

In this section, we will prove the local well-posedness of the Cauchy problem (1). For
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convenience, applying the operator (1 — 92)~! to both sides of the system (1), we have

1
:(1 - ai)_l(bu:r) + ax(l - ai)_l [(u + uue + Qui)v]—i_
1 1
(1 -2 (su2v — u?v) + (uv — ~upv, )y,
3 3 1 )
=(1 =80 (bo) + 0: (1= )7 (% + o + Sud)ul+
1 1
(1- 85)_1(§uv§ — uv®) + (uv — guwi)vwv

which enables us to define the solutions of the Cauchy problem (1).

Theorem 3.1 Suppose that 1 < p,r < 400, s > max{2 + %, g} and (uo,v0) € By, x By ..
Then there exists a time T' > 0 such that the initial-value problem (1.1) has a unique solution
(u,v) € By (T) x E; (T), and the map (ug,vo) ~ (u,v) is continuous from a neighborhood of
(uo,v0) € By, x By . into

C([0,7); Bs,) N CY([0,T]; B5 1) x C([0,T); B.,) N CY([0,T]; B 1)

for every s’ < s when r = +oo and s’ = s whereas r < +o0.

To prove this theorem, we need to prove the following Proposition and Lemma first. U-
niqueness and continuity with respect to the initial data are an immediate consequence of the

following result.

Proposition 3.2 Let 1 < p,r < 400 and s > max{2+ %, 5} Let (u™, vW), (u® v be two
given solutions of the initial-value problem (1) with the initial data (u(()l), vél)) (u(()Z)7 v(()Q)) € B, . x
B; . satisfying u™™ oM @ @) € L>([0,T); B ) N C([0,T];S"). Then for every t € [0,T]:

I - u<2>><t>| ] -
t
< (16" ~ w2 i) ep {C [ (OOl + 1@l +

oD s, + 0@ ), + b} (8)

o+ 0 —o®) (1))

2
i + (05 = uf?)]

where C > 0 is a generic constant only depending on p,r, s.

Proof Denote u1?) := 4 — 41 and v(1?) := (2 — () Tt is obvious that
w012 e £ ([0,7T); B;,) N C ([0,T];S'),
which along with the equivalent formulation (3.1) of (1.1) implies that

(u?,00?) e € ([0,T]; B:,)
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and (u(*®,v(1?)) solves the transport equation
,u1) & %(ug) +u@)p® =y Wp@19,402 Z fud) 4@ 1) @)

912 4 [%(vg(cl) + o) uM — oMy @19,002 = g(u® 4@ D (2,

u(lz)\ 0 = u(()m) = ué2) — u((jl),
w12)],_g = {12 .= @ _ y(V

with

F,u® 0 4@y —g, (1 — §2)~! [buuz) + (0D 4 u® 4 @)@y (12 4,12y
1
2

(1027 [ 4 w0007 4 (S () — ()22~

3
1

() + u<2>)v<2>u(1z>} +u®y02)4@) 4,0y (1,02) _ 1,092,
xr x 3 xr

9@, u® M @y g (1 - §2)~ [bvum + @D 4 0@ L p@)u@y012) 4,02
1
2

(1= 02) 7[5 0) + o2)uM0,002 + (5 ()? — (1)) -

1

() + U<2>)u<2)v<12>] + @02 4, (1,10,02) _ L y2,02)

3

Thanks to the transport theory in Lemma 2.1, we get

Il (2)]

t
pot SHu(()12)||B§;1+/O ||f(u(1),u(2),v(1),v(2))||B;;1dT+

t
1
C/ 5 () +u)ol — w0l (7) | g 2
0 , P,
t
[0 (@) go-1 <[[0§™ | go-1 -I-/ lg(u™®,u® @ @) L. dr+
P, p,T O P,
t
1
C/ 5 (08 + 0@ )ul — oD g 00D ()] g1
0 , DT

Applying the product law in the Besov spaces, we have

||%(u§:1> +u@)ul) — V@)

1
202 4 uDu®y12) - 2 ()22

2 )Hu(12)|

s—1
Bp,r

s—1
BTJJ‘

< O(Ju® |2 + 0]

Bl T C”U@)H%gyr||v(12)HB;;1a

H(l _ 33)71%@;1) +u®)0 9,402 4 (%(ug))z = (wD)2)p12) _ () 4 u<2>)v<2>u<12>}‘

< C[ (M2 + u®

o O L e e (]

s—1
Bp,r

prt S OOy + 1@ 3+ O, ).

1
(= (@) + (uM)? 4 uDuM) + (Ho®@ 4 §(u§}> + u@)W)a,u1? | +

1
(,(U(Z))2 + (v(l))2 + U(l)vil)) + (v(l)u@) + 5(vg(cl) + vg(f))u(l))amv(l?) +

2o @), 002 g,
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9:(1 — 02)  bu® + (u® + u®@ 4 2@y (12) 4 (12). (%(uf))Q + ()2 4 My D)+

(D@ 4 %(ug) n u§3>)v<1>)axu<12>]‘

s—1
Bp.r

< (D2 + 0P 2 + O 2 + [P0 + [b]) a2

Clut 13- + [u® 1)l

Byt

s—1
By

which leads to

||f(u(1)’u(2)7v(1),y(2))||B§;1 SC[(||U(1)H2B;;1 + HU(Q)HZB% + [lo™M|

[B1) 2]

2t 0@, +

st |- (13)

piot Tt (||u(1)HZB;T + ||“(2)||2B§,r)||v(12)|
Similarly, we have

lg(u®, u® M) @)

mit SC[UO P+ W@+ 2 + o)

T T 2B:77+
B 1o

Bz,‘#] (14)

pet (0O 3, + @, a0

Then, inserting Eq. (12-14) into (10) and (11) implies that

D @) 1 + 1002 ()]

it <([?(0)]

Bt t ||U(12)(0)‘ B§;1)+
t

C/ (M F , + 1P (OB, + 0@ (7)]
O p,T p,T

Hv(z)(T)HQB;J + o) - (||U(12)(t)||35;.1 + o1 (Ol g2 )dr-

2
Bs T

Applying Gronwall’s inequality, we get (8).
Next, we use the classical Friedrichs regularization method to construct the approximate

solutions to the Cauchy problem (1).

Lemma 3.3 Let 1 < p,r < 400,s > max{2 + %,g},(uo,vo) € By, x By ,. Assume that
u® = v = 0. There exists a sequence of smooth functions (u("),v("))neN e C(R*; BX.)?
solving the following linear transport equations by induction:
1
dymm ) 4 i(ugj")vg(c") - u(”)v(”))amm(wrl) =P™ v™) t>0,zeR,
At 4 }(u(”)v(”) —u™MyM)9,n" T = Qu™,v™), t > 0,2 € R
2 x x x ) 9 9 9

(15)
umtV|, = u((JnH)(x) = Spt1ug, T €R,
v oo = U(()n+1)(a:) = Spt1v0, T E€R,
where
Pu™, ™) = pul + %(guénmn) — @), )m™, o

1
Qu™, ™) = bof + - (20{"ul™ — (uf ) o) n™).

Moreover, there exists a T > 0 such that the solutions satisfy the following properties:



356 Qiong LONG, Chunlai MU, Pan ZHENG and et al.

1) (u(n) (™ ) nen is uniformly bounded in Es (T) x E3 (T).
1) (ut,v™) nen 18 a Cauchy sequence in C([0,T7; B

Proof As all data (S, 11uo, Sn11v0) belongs to BpS. x By,

induction that for all n € N, the equation (15) has a global solution which belongs to C'(R; B;f’r)Q.

Lemma 2.2 enables us to show by

Applying Lemma 2.1 to (15), we get for all n € N:

lm " V@) gz + 0D (0]

<exp( / Lo~y

0/ exp /|| [P0 — | sdr).

(1P, o) g2 + QU™ v™) | y2)dr an

s—2
p,T

- 1dT> ' (||5n+1U0HB§,T + ”S”HUOHB;T)—’—

Thanks to the product law in Besov spaces, one has

ol — a0 s < C(Jlu

TR (A

B;,T.)27

1™, o) 5 + Q™ v

< [l 155, + o)

s—2
BPwT

B;,) + ([u™ sy, + 10™lls; )? + (lu™ls;, + 0]

B;’T)4:| )
which combined with (17) leads to

||U("+1)(t)|‘B;r + ||v(n+1)(t)||35m
t

<o (C / (™)

c / exp / (et () lls., + 0 (7)1 )2dr) - (e

(™35, + N5, )2 + (15, + 0™l )] . (18)

By, + 0™ (7)]

b,

B;),,)QdT) (

By, * llvoll; )+

Bs,. T ||U(")||B;1T)+

Let us choose a T' > 0 such that
3 — 2M, 1
1C( + 6My)’ 16CME
B, + [lvollp;, and suppose by induction that for all ¢ € [0, 7]
< 2M,
T (1-16CM2t)z

T < min{

where My = |

lu™ )15, + 10 D)5, (19)

Then we obtain from (19) that for any 0 < 7 <t

t
¢ [ (e

And inserting the above inequality and (19) into (18) leads to

P,T

1
Miss, + 0™ ()]s, )?dr = 1 n(1 = 16CMg7) —In(1 — 16CM;D)].

a0 (1)

By, + 0"V Ols;,

p,T

t
< (1-16CM2t)"3 [Mo + C/ (2Mo(1 — 16CM2t) ™% + 4MZ(1 — 16CMEt) 5+
0
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4 2\ — 7
16MA(1 — 16CM21) 4)d7}

_ 8C(1+6Mo) Mot + 4M0
3(1—16CM2t)z

which implies

2M

(n+1) (n+1) 0
U t s+ |v t s < —5.
I @l + ©l> (1—-16CMZt)z

Therefore, ( (n), U(n))nEN is uniformly bounded in C(]0,T); BIS),T)2.

Since BS

. is an algebra, one can deduce from the Moser-type estimates (see Lemma 2

(I)) and equation (15) that

(Opul" D, 90Dy € C([0,T); B, )?
uniformly bounded, which yields that the sequence ( (n) v("))

357

3

u'\™, nen 8 uniformly bounded in
E; (T) x E; (T).

Now, let us prove that (u("),v("))

nen 18 a Cauchy sequence in C([0,T); Bs1)?. By (15),
we have that, for all n, k € N,

[0; + 2( PR Y R) () ()Y ] (D) (D)) (bR () (k) )

. u(nJrk)v(nJrk))aI} (n(nJrkJrl) o n(nJrl))

[0, + 1 Sl =GR ) k) )y,

(20)
where

F(uFR) (0 (k) ()

n n 1 n n n n
= B — ) 4 L[ )

¢ _ (u(n+k)v(n+k) _ u(n)v(n))] 6xm(n+1)_|_
1
5[ng(vn)v(n) (ul (n) (n))x](m(n%) _ m(n)) + 5 [2[(u;n+k) _ ufcn))v(n+k) + (U(nJrk) _ U(n))u;n)] _
[+ — ) 4 @) — ] |,
G(uF) () (k) (n))
= bo(" TR — (M) 4 3 [( (nth) gy (nbk) (1) gy ()Y (R gy (nth) u(n)v(n))]gxn(n+l)+
1 n n n n n n 1 n n n n n n
5[21,56 D™ — (uMoM) ] (nHR) — () 4 5[2[@; FR) )y (nER) (g (nHR) g (1)) )]_
[+ — o)) 4 () — ] T,
Note that the equation (20) is equivalent to the following one:
(1- 83)[[8 + 2(u(n+k) k) (n+k)v(n+k))az] (u(n+k+1) _ u(n+1))] _ F(n,k) o
(1— ai)[[at + §(u§:n+k)®§n+k) _ u(n-i—k)v(n-i-k))az] (v(n+k+1) _ v(n-{-l))} _ é(n,k)

with

k) —(1 82)[ (PR HE) _ (nHR) (k) g (g (bRt D) o (nk )]
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%( () (k) o (k) (R ) (1 92 (u(nHRHD) (0D 4
G (1 — 02)[ (iR (R _ (k) (k) (nbktD) (i)
2 T x ig
%( (nHR) (k) (k) (R ) (1 — 92 (pHEHD) gy (nt 1)y

Applying the operator (1 —0%)7! to (21), one obtains that

[at 4= ( (n+k) (n+k) (n+k)v(n+k))8 }(u(n—i-k—&-l) _ u(n—i—l)) _ (1 _ 62)_1F(n,k)
2 x z
(22)
[at ( (n+k) (n+k) (nJrk)U(nJrk))aw} (,U(n+k+1) _ U(n+l)) ( 82) (n k)
Thanks to Lemma 2.1, for every ¢ € [0,T], one gets
0 (0 [ I3 9u) a0 )y D D))
< C/O exp _C/O ||§(U§;n+k)vgn+k) _ u(n+k)v(n+k))(7_/)| P dT/) . ||F(n,k)| B;;?dT"'

n+k+1 n+1
g — uf D g, (23)

g dr) <UD D) )

s—1
P,

t
1
exp (_C/O Hi(u;n—i-k)vén-i-k) R

t
(n n n n —=(n.k
<C / exp ( / 5 @GR — R ) () ) G gy sdr
n+k+1 (n+1
[o§ D — o )nB;-l.

Since s > max{2 + %, %}, by the product law in Besov spaces, one has

”(uén—&-k)v:(cn—&-k) _ u(n-‘,—k)v(n-i-k))aw (u(n+k+1) _ u(n+1))| B;’Tl
< Ol — DY g (B, 4 0P, ),

(U +H1048) — 44140044010, (1 — 2D — O
< Cllul D gD | (R, 4 o, ),
and
1l -0 <™ —a oy (u, |+ D3, + a9, +
o+ 03, + ) + Clo+ — o)
la DI, a0, ),
||G||B§;,3 SOHU(nHC) - U(n)||B§;,1 (””(H)HQB;W + ||U(n+1)||2B;Y7, + ol ||B§,r+
By,

gt (™%, +

[u® PN, N, Bl) + Cllu™® — ] g (ot
[0, + o9, ).

Hence, we obtain that

n,k) n,k)

—( il
HF ‘ B:3 + ||G |
< O[(Hu(n+k) _ u(n)l

s—3
Bp,r

it + [ =) + [P, +

i) (g |+ a2,
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93, + o™l o™, [bl) 4 (D — g

ol D D ) (R, 4 o, ).
Thus, we have that
t
1
exp (—C/ ||§(u§:n+k),v§n+k) _ u(n-‘rk)v(n-‘rk))HBs_ldT) . <||(u(n+k+1) _ u("+1))(t)||Bs_1+
0 p,T p,T

D D) ()] )

k41 +1 +h+1 +1
< (”u(()n ) - u(()n )”B;;l + HU(()n ) - U(()n )HB;;l)"_

t T
1 n n n n n n
C [ exp (=€ [ 15l — e ) [ -

o HR) — ()]

e ) (1B, + ™D, o+ OB, 4 o, 4+
||”("H)||213;,7, + o™ QBS,T +1p]) + ([ul D “("H)“Bg;l + [o(ntErD) U(nH)HB;;l)X

(B, + o935, )]dr. (24)

Since (u(™,v(™),cy is uniformly bounded in Ey (T) x E; .(T) and

n+k
(n+k+1) (n+1)
Ug — Uy = Sn+k+1’U,0 — Sn+1uO = E Aqu07
g=n+1
n+k
(n+k+1) (n+1)
Vo — Y = Sn+k+1llo — Sn+1’UO = E Aq’Uo,
g=n+1

there exists a constant C(T") independent of n and k such that for all ¢ € [0, T

J@OHRED = D) @) + (0D = D) (1) s

t
<om(zm+ / 8 — () s + @ — o) (7).

And by induction with regard to index n, one can deduce that

||u(n+k+1) _ u(n+1)||L§9(Bf,;1) + Hv(n-‘rk-‘rl) _ U(n+1)||L%°(B;;1)
n

A (tC(T))?
(™l ege 33,y + 10* L5 (85,)) + C(T) ZQ*"‘”M.
=0

7

< (tC(T))”—H
- (n+1)!

7!

Similarly, ||u(’“)||L%o(B§ ) ||’U(k)||L%0(B;‘T) can be bounded independent of k. Hence, we conclude
that there exists some new constant C’(T") independent of n and k such that

(D — DY @) e+ oD — D) <27"CU(T).

Bz

Therefore, (u(™, (™), cy is a Cauchy sequence in C([0,T); B b2

Proof of Theorem 3.1 According to Lemma 3.3, we have that (u(™), v(™), cy is a Cauchy se-
quence in C([0,T}; Bs 1) xC([0, T]; By '), so it converges to some function (u,v) € C([0,T]; By ') x
C([0,T]; By,'). The only thing that we need to do is to check that (u,v) belongs to E3,.(T') x
E5 .(T) and solves the Cauchy problem (1). Since (u™,v(™), ey is uniformly bounded in
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L>=([0,TT; B, ) x L>=([0,T]; B, ,.) according to Lemma 3.3, the Fatou property for the Besov

spaces guarantees that (u,v) also belongs to L>([0,T]; B, .) x L>([0,T]; B, ,.).

On the other hand, as (u(™, v(™),, cy converges to (u,v) in C([0,T]; B: ) x C([0,T]; By, 1),
an interpolation argument ensures that the convergence holds in C([0, T; B;:r) x C([0,T); B;;l),
for any s’ < s. It is then easy to cross the limit in the equation (15) and to conclude that
(u,v) is indeed a solution to the Cauchy problem (1). Since (u,v) belongs to L>([0,T}; B, ,.) x
L>=([0,T]; B, ), the right-hand side of the equation

Bym+D) 4 l(u<n>v<n> — u™yM) gD = Py ()
2 x x x 9

belongs to L>([0, T; By ,2)x L>([0, T]; B3 2). Especially, for the case r < oo, Lemma 2.2 implies
that (u,v) € C’([O,T];B;:T) x C([0,T7; B;:T,) for any s’ < s. Finally, using the equation again,
we see that (dyu, dw) € C([0,T]; By,') x C([0,T]; By,') if r < oo, and in L*([0,T}; By ') x
LOO([O,T];B;;l) otherwise. Moreover, a standard use of a sequence of viscosity approximate

solutions (ue,ve)eso for the Cauchy problem (1) which converges uniformly in
C((0,7); B, ,) nCH([0,T]; By 1) x C((0,T]; By ) N C([0, T]; By,
leads to the continuity of the solution (u,v) in E; .(T) x E; .(T). The proof is completed. [J
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