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Abstract In this paper, we prove an improved Harnack inequality for Dirichlet eigenfunctions

of abelian homogeneous graphs and their convex subgraphs. As a consequence, we derive

a lower estimate for Dirichlet eigenvalues using the Harnack inequality, extending previous

results of Chung and Yau for certain homogeneous graphs.
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1. Introduction

Let G = (V,E) denote a graph with vertex set V and edge set E. Suppose a group χ acts

on V such that:

(i) For all a ∈ χ, {au, av} ∈ E if and only if {u, v} ∈ E;

(ii) For any two vertices u and v, there is a a ∈ χ such that au = v.

Then we say G is a homogeneous graph with the associated group χ. The edge set of a homo-

geneous graph can be described by an (edge) generating set K ⊂ χ so that each edge of G is of

the form {v, av} for some v ∈ V and a ∈ K, and we let the edge generating set K consist of

k generators. In this paper, we also require the generating set K to be symmetric, i.e., a ∈ K

if and only if a−1 ∈ K. If for every element a ∈ K, we have aKa−1 = K, then we say that a

homogeneous graph is invariant. If χ is abelian, we say G is an abelian homogeneous graph. For

more detailed definition of abelian homogeneous graph, we can refer to [1]. Moreover, we denote

x ∼ ax if vertex x is adjacent to vertex ax for some a ∈ K. For every vertex x of V , if the

number of edges connected to x is finite, we say that G is a locally finite graph. The distance

between two vertices is the minimum number of edges to connect them, while the diameter of G

is the maximum of all the distances of the graph.

In a graph G0, for a subset G of the vertex set V = V (G0), the induced subgraph determined

by G has edge set consisting of all edges of G0 with both endpoints in G. There are two types of

boundaries. The (vertex) boundary δG of an induced subgraph G consists of all vertices that are

not in G and are adjacent to some vertices in G. The edge boundary, denoted by ∂G, consists of
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all edges containing one endpoint in G and one endpoint not in G, but in the host graph. The

host graph can be regarded as a special case of a graph with no boundary. We will also use G

to denote the induced subgraph on G, if there is no danger of confusion.

For an induced subgraph G with non-empty boundary, there are, in general, two kinds of

eigenvalues, the Dirichlet eigenvalues and the Neumann eigenvalues, subject to different boundary

conditions. We consider the Dirichlet eigenvalues here, and we consider the family of functions

satisfying f(x) = 0 for any vertex x in the vertex boundary δG, which is called the Dirichlet

boundary condition.

Let V R = {f |f : V → R}, and the Laplace operator L of a graph G be

Lf(x) =
1

k

∑
a∈K

[f(x)− f(ax)], ∀f ∈ V R.

The Dirichlet eigenvalues of an induced subgraph G of G0 is defined as

λ = inf
f ̸=0

∑
x,y∈G∪δG(f(x)− f(y))2

k
∑

x∈G f2(x)
.

An induced subgraph G of a graph G0 with vertex boundary δG is said to be convex if for any

subset X ⊂ δG, its neighborhood N(X) = {y : y ∼ x ∈ X} satisfies

|N(X) \ (G ∪ δG)| = |y∈̄G ∪ δG : y ∼ x ∈ X| ≥ |X|.

Suppose a function f : V → R satisfies Lf(x) = λf(x), then f is called a harmonic eigenfunction

of Laplace operator L on graph G with eigenvalue λ, and we can easily note that 0 is a trivial

eigenvalue of L associated to the constant eigenfunction.

As we can see from the above definition, at each vertex x, the eigenfunction locally stretches

the incident edges in a balanced fashion. Globally, we need to have some tools to capture the

notion that how close the adjacent vertices are to each other.

Indeed, a crucial part of spectral graph theory [2] concerns understanding the behavior of

eigenfunctions, and Harnack inequalities are one of the main methods for dealing with eigenfunc-

tions. In 1994, Chung and Yau in [3] established the following Harnack inequality for homoge-

neous graphs and subgraphs G with edge generating set K consisting of k generators,

1

k

∑
a∈K

[f(x)− f(ax)]2 + αλf2(x) ≤ λα2

a− 2
sup
y∈S

f2(y)

for any α > 2 and x ∈ V , and using this Harnack inequality, they derived that λ ≥ 1
8kD2 for the

Neumann eigenvalues and the Dirichlet eigenvalues in [1] and [3], respectively.

In this paper, we get a similar Harnack inequality, which extends the result of Chung and

Yau for certain homogeneous graphs.

According to Bakry and Emery [4], we can define a bilinear operator Γ : V R × V R → V R

by

Γ(f, g)(x) =
1

2
{f(x)Lg(x) + g(x)Lf(x)− L(f(x)g(x))},
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and then the Ricci curvature operator on graphs Γ2 by iterating Γ as

Γ2(f, g)(x) =
1

2
{Γ(f, Lg)(x) + Γ(g, Lf)(x)− LΓ(f, g)(x)}.

More explicitly, we have

Γ(f, f)(x) =
1

2
ρ(x) =

1

2
· 1
k

∑
a∈K

[f(x)− f(ax)]2.

Definition A The operator L satisfies the curvature-dimension type inequality CD(m, ξ) for

some m > 1 and ξ ∈ R if for any f ∈ V R,

Γ2(f, f)(x) ≥
1

m
(Lf(x))2 + ξΓ(f, f)(x).

We call m the dimension of the operator L and ξ the lower bound of the Ricci curvature of

the operator L. It is easy to see that for m < m̃, the operator L satisfies CD(m̃, ξ) if it satisfies

CD(m, ξ). If Γ2(f, f)(x) ≥ ξΓ(f, f)(x), we say that L satisfies CD(∞, ξ).

For Laplace operator L on a complete m dimensional Riemannion manifold, the operator L

satisfies CD(m, ξ) if the Ricci curvature of the Riemanian manifold is bounded below by constant

ξ.

In 2010, Lin and Yau proved in [5] that the Ricci flat graphs have the non-negative Ricci

curvature in the sense of Bakry and Emery. In fact, in most cases, the Ricci curvature is zero,

except for some very special examples like complete graph (every two vertices of graph connected

by an edge), the Ricci curvature is positive. The proof is similar to the case of the grid Zn, see

Example 5 in [6]. They also proved in [5] that any locally finite connected graph satisfies either

CD(2, 2
d − 1) if d is finite, or CD(2,−1) if d is infinite, where d = supx∈V supy∼x

dx

µxy
.

In this paper, since homogeneous graphs are locally finite and connected Ricci flat graphs,

by using the curvature-dimension type inequality CD(m, ξ), we get different Harnack inequalities

and eigenvalue estimate from those as in [1], [3] and [7] for certain homogeneous graphs. Our

main theorems are as follows:

Theorem 1.1 Suppose G is a finite convex subgraph in an abelian homogeneous graph that

satisfies the curvature-dimension type inequality CD(m, ξ), and the edge generating set K con-

sists of k generators. Let f ∈ V R be a harmonic eigenfunction of Laplacian L with Dirichlet

eigenvalue λ ̸= 0. Then the following inequality holds for all x ∈ V and α > 2− 2ξ+2
λ

1

k

∑
a∈K

[f(x)− f(ax)]2 + αλf2(x) ≤
(α2 − 4

m + 2)λ+ 2αξ + 2α

(α− 2)λ+ 2ξ + 2
· λ ·max

z∈V
f2(z).

By taking α = 4− 2ξ+2
λ ≥ 0, we can easily get

Theorem 1.2 Suppose G is a finite convex subgraph in an abelian homogeneous graph that

satisfies the curvature-dimension type inequality CD(m, ξ), and the edge generating set K con-

sists of k generators. Let f ∈ V R be a harmonic eigenfunction of Laplacian L with Dirichlet
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eigenvalue λ ̸= 0. Then the following inequality holds for all x ∈ V

1

k

∑
a∈K

[f(x)− f(ax)]2 ≤ [(9− 2

m
)λ− 4ξ − 4]max

z∈V
f2(z).

We can use the Harnack inequality in Theorem 1.2 to derive a lower eigenvalue estimate as

follows.

Theorem 1.3 Suppose G is a finite convex subgraph in an abelian homogeneous graph that

satisfies CD(m, ξ), and λ is a non-zero Dirichlet eigenvalue of Laplace operator L on G. Then

λ ≥ m+ 4mkD2(ξ + 1)

(9m− 2)kD2
,

where D is the diameter of G.

Corollary 1.4 Suppose G is a finite convex subgraph in an abelian homogeneous graph that

satisfies CD(m, 0), and λ is a non-zero Dirichlet eigenvalue of Laplace operator L on G. Then

λ ≥ 1 + 4kD2

(9− 2
m )kD2

,

where D is the diameter of G.

Remark 1.5 The above four results are also applicable for general homogeneous graphs and

Neumann eigenvalues defined in [1] and [3]. Moreover, our results extend and strengthen the

results in [1] and [3], because in [1] and [3], they proved that λ ≥ 1
8kD2 , but from the above

Corollary 1.4, since m > 1, we can easily check that

λ ≥ 1 + 4kD2

(9− 2
m )kD2

>
5

(9− 2
m )kD2

>
1

8kD2
.

2. The proof of Theorem 1.1

First, we will establish several basic facts for homogeneous graphs. By using a modification

of the proof of Theorem 1.2 in [5], we can get the following Lemma 2.1.

Lemma 2.1 Let G be a homogeneous graph with edge generating set K consisting of k gen-

erators. Then for all f ∈ V R and x ∈ V , the following formula holds for the Ricci curvature

operator Γ2 on graph G

Γ2(f, f)(x) =
1

2
(Lf(x))2 − 1

2
ρ(x) +

1

4k2

∑
b∈K

∑
a∈K

[f(x)− f(ax)− f(bx) + f(abx)]2.

Lemma 2.2 Suppose G is a homogeneous graph with edge generating set K consisting of k

generators satisfying CD(m, ξ). Then for all x ∈ V , we have

− 1

k2

∑
b∈K

∑
a∈K

[f(x)− f(ax)− f(bx) + f(abx)]2 ≤ (2− 4

m
)(Lf(x))2 − 2(1 + ξ)ρ(x).

Proof Since G satisfies CD(m, ξ), we have

Γ2(f, f)(x) ≥
1

m
(Lf(x))2 + ξΓ(f, f)(x).
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By Lemma 2.1 and the above inequality, we get

1

2
(Lf(x))2 − 1

2
ρ(x) +

1

4k2

∑
b∈K

∑
a∈K

[f(x)− f(ax)− f(bx) + f(abx)]2

≥ 1

m
(Lf(x))2 +

ξ

2
ρ(x).

So we have

− 1

k2

∑
b∈K

∑
a∈K

[f(x)− f(ax)− f(bx) + f(abx)]2 ≤ (2− 4

m
)(Lf(x))2 − 2(1 + ξ)ρ(x). �

Lemma 2.3 ([1]) For a convex subgraph G of a graph G0, a function f : G∪ δG → R satisfying∑
y∼x

(f(x)− f(y)) = λf(x)dx

for x ∈ G and f(x) = 0 for x ∈ δG, can be extended to all vertices of G0 which are adjacent to

some vertex in G ∪ δG such that f(z), for x ∈ G ∪ δG, satisfies∑
y∼z

(f(z)− f(y)) = λf(z)dz,

where dx denotes the degree of x in G0.

Proof of Theorem 1.1 By Lemma 2.3, we can extend f to all vertices adjacent to some vertices

in G ∪ δG. Then, we set for any α > 0

ϕ(x) =
1

k

∑
a∈K

[f(x)− f(ax)]2 + αλf2(x).

We consider

Lϕ(x) =
1

k

∑
b∈K

[ϕ(x)− ϕ(bx)]2 =
1

k2

∑
b∈K

∑
a∈K

{[f(x)− f(ax)]2 − [f(bx)− f(abx)]2}+

αλ

k

∑
b∈K

[f2(x)− f2(bx)] = Y + Z,

where Y denotes the first term and Z denotes the second term in the above second equality.

Since G is an invariant homogeneous graph, we have∑
b∈K

[f(abx)− f(bax)] = 0.

By Lemma 2.2 and the above fact, we have

Y =
1

k2

∑
b∈K

∑
a∈K

{[f(x)− f(ax)]2 − [f(bx)− f(abx)]2}

=− 1

k2

∑
b∈K

∑
a∈K

[f(x)− f(ax)− f(bx) + f(abx)]2+

2

k2

∑
b∈K

∑
a∈K

[f(x)− f(ax)− f(bx) + f(abx)][f(x)− f(ax)]

≤(2− 4

m
)(Lf(x))2 − (2 + 2ξ)ρ(x) +

2

k2

∑
a∈K

[
∑
b∈K

(f(abx)− f(bax))][f(x)− f(ax)]+
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2

k2

∑
a∈K

{
∑
b∈K

[f(x)− f(ax)− f(bx) + f(bax)]}[f(x)− f(ax)]

=(2− 4

m
)(Lf(x))2 − (2 + 2ξ)ρ(x) +

2

k2

∑
a∈K

[
∑
b∈K

(f(abx)− f(bax))][f(x)− f(ax)]+

2

k

∑
a∈K

{1
k

∑
b∈K

[f(x)− f(bx)]− 1

k

∑
b∈K

[f(ax)− f(bax)]}[f(x)− f(ax)]

=(2− 4

m
)(Lf(x))2 − (2 + 2ξ)ρ(x) +

2λ

k

∑
a∈K

[f(x)− f(ax)]2

=(2λ2 − 4λ2

m
)f2(x) + (2λ− 2ξ − 2)ρ(x).

On the other hand,

Z =
αλ

k

∑
b∈K

[f2(x)− f2(bx)] =
2αλ

k

∑
b∈K

f(x)[f(x)− f(bx)]− αλ

k

∑
b∈K

[f(x)− f(bx)]2

= 2αλ2f2(x)− αλρ(x).

Combining the above arguments, we have the following inequality for any positive α

Lϕ(x) ≤ (2λ2 − 4λ2

m
+ 2αλ2)f2(x) + (2λ− 2ξ − αλ− 2)ρ(x).

Now we consider a vertex v which achieves the maximum value for ϕ(x) over all x ∈ V , and we

have

0 ≤ Lϕ(v) ≤ (2λ2 − 4λ2

m
+ 2αλ2)f2(v) + (2λ− 2ξ − αλ− 2)ρ(v).

This implies

ρ(v) ≤
(2− 4

m + 2α)λ2

(α− 2)λ+ 2ξ + 2
f2(v)

for α > 2− 2ξ+2
λ . Therefore for every x ∈ V , we get

ρ(x) + αλf2(x) ≤ ρ(v) + αλf2(v)

≤
(2− 4

m + 2α)λ2

(α− 2)λ+ 2ξ + 2
f2(v) + αλf2(v)

≤
(α2 − 4

m + 2)λ+ 2αξ + 2α

(α− 2)λ+ 2ξ + 2
· λ ·max

z∈V
f2(z).

That is

1

k

∑
a∈K

[f(x)− f(ax)]2 + αλf2(x) ≤
(α2 − 4

m + 2)λ+ 2αξ + 2α

(α− 2)λ+ 2ξ + 2
· λ ·max

z∈V
f2(z). �

3. The proof of Theorem 1.3

Now, we give the proof of Theorem 1.3 by using the Harnack inequality in Theorem 1.2.

Proof Let f ∈ V R be a harmonic eigenfunction of Laplacian L with eigenvalue λ ̸= 0. That is
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Lf(x) = λf(x) for every x ∈ V . Then
∑

x∈V f(x) = 0. So we can assume that

sup
x∈V

f(x) = 1 > inf
x∈V

f(x) = k < 0.

Take x1, xn ∈ V such that f(x1) = supx∈V f(x) = 1, f(xn) = infx∈V f(x) = k < 0 and let

x1, x2, . . . , xn be the shortest path joining x1 and xn, where xi ∼ xi+1. Then n ≤ D, where D

is the diameter of G. From Theorem 1.2 we have

[f(xi)− f(xi+1)]
2 ≤ kρ(xi) ≤ k[(9− 2

m
)λ− 4ξ − 4].

Therefore,
n−1∑
i=1

[f(xi)− f(xi+1)]
2 ≤ k[(9− 2

m
)λ− 4ξ − 4]D.

On the other hand, by using the Cauchy-Schwartz inequality we have

n−1∑
i=1

[f(xi)− f(xi+1)]
2 ≥ 1

D
[f(xn)− f(x1)]

2 ≥ 1

D
.

So we get

λ ≥ m+ 4mkD2(ξ + 1)

(9m− 2)kD2
.

This completes the proof of Theorem 1.3. �
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