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Abstract In this paper we give a categorification of the n-th tensor products of the spin
modules of enveloping algebra of lie algebra of type D4 via some subcategories and projective
functors of the BGG category of the general linear Lie algebra gl,, over the complex field C.
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1. Introduction

The terminology of categorification was introduced by Crane [6] and the idea originates
from the earlier joint work with Frenkel [5]. The general idea is that, replacing a simpler object
by something more complicated, one gets a bonus in the form of some extra structure which may
be used to study the original object.

One of sources for categorification models is the Bernstein-Gelfand-Gelfand (BGG) category
O associated to a fixed triangular decomposition of a finite dimensional complex semisimple Lie
algebra g. This category appears as a non-semisimple extension of the semisimple category of
finite-dimensional g-modules, which not only contains a lot of new objects, but also has several
nice properties [3]. It was found that category O has a number of different kinds of symmetries
and connections to combinatorics and geometry. Most importantly, the category O leads to a
variety of naturally defined functorial actions on this category, which are very useful and play an
important role in various categorifications. Khovanov, Mazorchuk and Stroppel [11] presented
several examples about categorifications of various representations of the symmetric group S,
via projective functors acting on certain subcategories of O. Moreover, they categorified integral
Specht modules over S,, and its Hecke algebra via some translation functors [12]. Mazorchuk
and Stroppel [14] constructed a subcategory of O on which the actions of translation functors
categorify cell modules and induced cell modules for Hecke algebras of finite Weyl groups. Soon
after, they gave a categorification of Wedderburn’s basis for C[S,] (see [15]). Bernstein, Frenkel

and Khovanov [1] studied a categorification of the n-th tensor products of the fundamental

Received February 21, 2014; Accepted September 4, 2014

Supported by National Natural Science Foundation of China (Grant No.11271043), Natural Science Foundation
of Beijing (Grant No. 1122006) and Specialized Research Fund for the Doctoral Program of Higher Education of
China (Grant No.201111103110011).

* Corresponding author

E-mail address: huabo0567@163.com (Huabo XU)



670 Huabo XU and Shilin YANG

representation of U(sle) via certain singular blocks and projective functors of O(gl,,). Sussan
[17] generalized the case of sly in [1] to that of sl and studied slg-link invariants. Xu and Yang
[18] gave a categorification of the n-th tensor products of the spin representation of enveloping
algebra of simple Lie algebra of type B3 by using certain subcategories of O and projective
functors of O(gl,,). In this paper we give a categorification of the n-th tensor products of the
spin modules of enveloping algebra of Lie algebra of type Dy.

The paper is organized as follows. In Section 2 we give some notations and results used
in the sequal. In Section 3 we give a categorification of the n-th tensor products of the spin

representation Vg, of U(so(8,C)), and give a remark about the categorification of (V_g,)®™.

2. Preliminaries

In this section we give some known notations and results. All the vector spaces and algebras
are considered over the complex field C. Denote by K (C) the Grothendieck group of an abelian
category C. For an object M € C, denote by [M] the equivalent class in K(C), and denote by [F]
the abelian group homomorphism induced by the exact functor F'. Let g be a finite dimension
reductive Lie algebra over C, and g = n™ ® h @ n~ be the triangular decomposition associated
to a fixed Cartan subalgebra fj. Let us denote the universal enveloping algebra of g by U(g), the
center of U(g) by Z(g) and the set of central characters by ©. W denotes the Weyl group of g.
Let p be the half sum of all the positive roots, and M (\) the Verma module with the highest
weight A € h*. We recall a shifted action of W defined as follows.

Definition 2.1 ([10]) For any w € W and A € b*, the dot action of W on b* is given by
w-A=wA+p)—p.
Let 6 be the central character corresponding to A € h* and Ajot be the set of dominant

weight with respect to the dot action defined above. Then we have the following conclusion.

Theorem 2.2 ([10]) There exists a bijective map between A . and © defined by sending \ to

dot
0.
Next we introduce some results about general lineal Lie algebra gl,,. Let gl, =nt ®hdn~
be a triangular decomposition of gl,, and €1,¢9,...,e, be a standard orthogonal basis in R"™.

We identify C ®r R™ with h* so that @ = {e; — ;|1 <14 < j < n} is the set of positive roots
and IT = {8; = &; — g;41]1 < i < n — 1} is the set of simple roots. Then by definition

n—1 +n_3 + Jr1—n
g 1T g 2 2

p= En.

The Weyl group of gl,, is isomorphic to the symmetric group S,,, and the generator s; of .S,, acts
on h* by permuting ¢; and €;41. Let L,, be the n-dimensional fundamental representation of
gl,, and uq,ug, ..., u, be the weight vectors with weights €1, ¢9,..., ey, respectively. Then L}
has weights —e1, —€9, ..., —&,. Denote by Sym?L, the symmetric square of L,, generated by
{u;, ® w;]1 < i < n}and {u;, ® u; +u; ® |l <i<j < n}. Denote by Al?L,, the alternative
square of L,, generated by {u; ® u; —u; @ u;|1 <1i < j < n}. It is easy to obtain {2¢;|1 <i < n}



Categorification of spin modules of enveloping algebra of Lie algebra of type D4 671

and {e; +¢;]1 <i < j < n} are weights of Sym*L,,, {; + ;|1 < i < j < n} are weights of
Alt?L,,. Denote by SmeL; and AthL;; the symmetric square and alternative square of L},
respectively. It is also easy to obtain {—2¢;|1 < i < n} and {—(g; +¢;)|1 < i < j < n} are
weights of Sym? L%, {—(g; +¢;)|1 <i < j < n} are weights of Alt>L%.

n’

Definition 2.3 ([10]) The BGG category O is defined to be the full subcategory of Mod-U (g)
whose objects are the modules satisfying: M is a finite generated, h-semisimple U(g)-module,

and M is locally n"-finite, that is, for every v € M, U(n")v is of finite dimension.

For M € O, define a U(g)-submodule of M for each fixed § € © by
My :={v e M|(z—0(z))"v = 0 for some n > 0 depending on z} .
Denote by Oy the full subcategory of O whose objects are the modules Mjy.

Proposition 2.4 ([10]) Category O is the direct sum of the subcategory Oy as 6 ranges over

the central characters of the form 0.

Denote by projy the functor from O to O defined by projy(M) = My for M = P,_,, M.
For any V € Mod-U(g), we denote V®- by Fy for convenience.

Definition 2.5 ([10]) A functor F : O — O is called projective if it is isomorphic to direct

summand of some Fy,, where V is finite dimensional.

Here are some basic general properties of projective functors [2].

Proposition 2.6 (1) Projective functors are exact.
(2) Any direct sum and composition of projective functors is a projective functor.
(3) The functor projy is a projective functor.
(4) Let F,G be projective functors. If [F| = [G], then F ~ G.

For a fixed central character 6 € O, the set {[M(N)]|0 = 0} = {[M ()]l € W - A} forms a
Z-basis of K(Op). Hence the set {[M(A)]| there exists § € © such that § = 0,} forms a Z-basis

of K(O). Moreover, the following conclusion holds.

Proposition 2.7 ([1]) Let V be a finite dimension U(g)-module, v; € V' be the weight vectors
corresponding to weights ;, where 1 <i <n. Then [V Q M(\)] = 31" [M(A + p;)].

Definition 2.8 ([9]) The universal enveloping algebra U(so(8, C)) is the associative algebra over
C with unity generated by e;, f;,h; (1 <i < 4) subject to the following defining relations

(1) hih; = hjhi, eif; — fiei = dizhi, 1 <, j < 4;

(2) hiej —ejh; = aijej, hifj — fihi = —asif;, 1 <14, 5 < 4;

(3) Shss” (DR (e ejel = 0 fori £

(4) Tico” GRS T i = 0 for i £,

where a;; (1 <1,j < 4) are the entries of the Cartan matrix A of so(8,C).
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Definition 2.9 The spin modules Vi, are 8-dimensional vector spaces

Vigp = Z (61.62.6.80), Vo= Y. (4.6.6.%)

£i= &,==%,
51525354 + €1€28384=—

with the U(so(8,C))-action given by

(+,—,83,84), if (§1,82) = (=, +);
(§1a+7_7£4)a if (§2353) = (_7+)a
(

ei(€17£27§3364) = 617527"'7"‘3)7 if (53,§4> — (_,_)7

0, otherwise.
( , 53354)7 if (51752) = (+7 _);
(1, =+ &),  if (§&.&)=(+ )

fi(€1,€2,83,84) = (€1, 60y — =) i (€3,60) = (4, 4);

0, otherwise.

hi(&1,62,83,8&4) = (eifi — fiei)(&1,62,€3,&4)-

1)1:(*,*,*,*),’02:(*,*,+,+),U3:(*,+,*,+) U4*( y s+, )
Us = (+7_7 _7+)7U6 = (+7 _7+7 —),’1}7 = (+a+7 —7—),’[)8 = (+7+a+7+)

for convenience. For V_g,, we can do this similarly.

3. Categorification of the spin modules V.,

In this section we give a categorification of the n-th tensor products V_ﬁz of the spin module
Visp for U(so(8,C)). The categorification of Vfig can be obtained similarly.
Let
A ={a=(a1,a2,...,a,) | 1 <a; <8for1<i<n},
8
D = {d = (dy,dy,...,ds) | d; € Z=° for any 1 <i <8 and Zdi =n}.

i=1

For any d = (dy,da,...,ds), d" = (d},d,, ... ,ds) € D, we define

—ds —dy +ds +dg = —dfy — dj + df + dj
—d2+d3—d6+d7=—d/2+dé—d/6+d/7
—d3+d4—d5+d6:—déﬁ-dil—dg"‘dg
—dy +dy —dr +ds = —dy +dy — di + dj

d~d <

It is easy to know that ~ is an equivalence relation on D. We denote by [d] and D the equivalent
class of d and the set of all the equivalent classes, respectively. For d € D and a sequence a € A.
Set

=(dy,...,di_1,d;i —1,diy1,...,dg), d* = (dy,...,di_1,d; +1,dis1,...,dg)
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d, = (d?,d5, ..., d3), where df = t{am|am =k, 1 <m <n}forl1 <k<8.
Bia) := {Va, @ Va, @ -+ @0y, | a= (a1,a2,...,a,) € A and d, € [d]}.
Denote by % (V_ﬁg)[d] the Z-module spanned by Biq). Set
Vi) = D FVED s (VEDM = Cer "(VEaD W, Vi =Coz (V).
[d]eD

It is easy to prove VI = @[d]ef)(vgsg)[d]‘ For any a € A, set M(ay,...,a,) := M(aie1 +
<o+ ape, — p). For each d € D, set \g = ZZZO(S — 1) E;i:f Edgtdyt-+de_;+j- Denote by
0a =n(Aa — p) in ©. Set Oq := Op,, Olq) = Bgrejq) Oar, O" 1= ea[d]eﬁ Ojq)- It is easy to see

that there exists w € W satisfying a1e1 + -+ - + ape, — p = w - Ag. Hence we have the following
theorem.

Theorem 3.1 There exists an isomorphism of abelian groups 7, : K(O") =% (V) defined

+sp
by
Vn([M(alv az,... 70%)]) = Vay @ Vay @+ D Vq,,
for any a = (a1, as, . ..,a,) € A. Moreover, the restriction of v, on K(Oq)) is an abelian group
isomorphism between K(O(q)) and “(VE2) -

For d = (dy,ds,...,ds) € D, we define
C1(d) =dg + ds — dy — d3; Cg(d) =d7 — dg + d3 — do;
c3(d) = de — ds +ds — ds; ca(d) = ds —d7 +d2 — d,
and for 1 <14 <4, denote the sign function of ¢;(d) by sgn(c;(d)). Then set
Sgn(c;(d)) o ¢ ¢ .
Hig ‘ ([d]) = (Ido[d])e9 (d)sgn(e:(d)) . O[d] — O[d]v

where Ido,, is the identity functor on Ojq). It is easy to check that the definition of 380 (ei () ([d)

is independent of the choice of the representative d in [d]. l
For any d = (dy,ds, . ..,ds) € D, define
Sif(d) = prOjgdg o Fsym?Ln :0q — Odg;
Sif(d) = projgd?1 o Fsymzr, : Oa — Ogs;
Ed) = projedg o Foeyp, Oa — Oas;
EIf(d) = projgdé61 o Fapry Oa — Oqs.

By equivalent relations we set

|

(] o= [df) = [d3], [d72) := [d3] = [a]],
(ds) := [A2] = [d9), [dra) := [a] = [d2],
(1) = [A2] = [dd), [da) := [d] = [d9),
(ds) = [d) = [d3], [da) := [d}] = [a]].
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eh(d) = P @) @A) : O = O,
d’e[d]
En(d)) = P (€7 (@) @ E(d)) : Oy = O

d’e[d]

542-2((1) = Projed3 o Fp, : Oa — Ogs;
2

E05(d) == projg , © Fr, : Oa = Oqz,
6

Evz([d]) == P (€32(d) @ £55(d) : Oy = O

d’e[d]

E35(d) == projg , © F, : Oa = Oqs;
3

giB(d) = projgd6 oFr, : 04 — Odg‘,
5

Evs([d]) == P (€35(d) ® E35(d) : Oy — O

d’e[d]

Eiy(d) == projg , © F,, : Oa = Oqz;
1

814(d) = projedS o Fr, : Oa = Ogs,
7

Eva((d]) == P (€14(d) @ E4(d) : O = O,

d’e[d]
50 . '

Fii(d) = projg , © Fsymerx : Oa — Oas;

f;ir)(d) = projedg o FathL; : Od — Odg;

*7:-?-_16<d) = prOJedéls o FSmeL;; :0q — Odé;

Fir(d) = prOjedéé ° FathL; :0q — Ogs.

Fh(d) = P (FH@) o F@d)) : O = Og,
d’e[d]

Fr(d) = d@?ﬂ(ﬂf(d’) & Fr9(d") : O > O,

e

F_?_Q(d) = projgc12 oFp: :Oq — Od§§
3

fiz(d) = projeda oFp: :0q — Odg7
7

Fio(d]) == P (Fla(d) @ FLy(d)) : Opa) = Oar
deld]

Fig(d) = proj(;c13 oFp: :Oq — Odi;
4

Foy(d) == projg . © Frz : Oa = Ogs,
6

Fis([d) = €D (Fls(d) @ Fis(d)) : Og) = Osa,y)-
d’e[d]

]-"3_4(d) = proj(;dl o Fps : Oa — Oqy;
2
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.7:_?_4(d) = proj@dg oFrs : Oq4 — (’)dg,
R 2 8 .
Fra(ld) == P (Fia(d) @ FL4(d)) : Olq) = O g

d’e[d]

It is easy to know that the functors defined above are projective functors by Definition 2.5 and
Proposition 2.6. Therefore, they can induce abelian group homomorphisms of the corresponding

Grothendieck groups. Next we give some formulas which will be useful.

Proposition 3.2 The actions of abelian group homomorphisms [Eff (d)], []—'fzj (d)] are described

as follows.

n

[g—tf)(d)]([M(al’a?? ) an)]) = Z [M(a1>a27 ce e Om—1, A+ 2, g1, - -, an)]+

s
Z [M(ah ey Q1,04 + 1,ai+1, ceey G5-1,05 + 17aj+1, e ,an)];
1<i<j<n,
(aj.a;)=(3,2)0r(4,3)

[gif(d)]([M(ahaQ, ceey an)]) = Z [M(al’G’Q, cey 1, Gy + 23 Am+15-- -5 an)}+
m=1,
am =4

(]

[M(al,...,ai_l,a,» + 1,ai+1,...,aj_1,aj + 1,aj+1,...,an)];

1<i<j<n,

(a;,a;)=(4,5)0r(5,4)

[ (@)([M (ay, az,...,an)])
= Z [M(al,...,ai_l,ai+1,ai+1,...,aj_1,aj+1,aj+1,...,an)];

1<i<j<n,
(a;,a;)=(3,4)or(4,3)

[ES@)([M(ar, az,. .., an)])
= Z [M(ah...,ai,hai+1,a¢+1,...,aj,1,aj+17aj+17...7an)];

1<i<j<n,
(ai,aj):(4,5)or(5,4)

[E3(AD)]([M (a1, a2, ..., a,)]) = Z [M(a1,a2,...,¢m—1,0m + 1, ams1,-..,an)];

)

3
Il
—

2
3

I

N

[5—6&-2(d)}([M(a17a27 cee ’an)]) = [M(alv a2y ..., Qm—1,0m + ]-7am+17 R an)],

$3
1]
L

[53’_3(d)}([M(a1,a2, conan)]) = [M(a1,a2,. .. @m-1,0m + 1, ami1,-..,an)];

Q

3
3‘
g}MS

[5i3(d)}([M(a1,a2, conan)]) = [M(a1,a2,...,¢m-1,0m + 1, ami1,--.,an)];

Myl

e3
33
[l
I~
S

[M(ay,a2,...,¢4m—1,0m + 1, ams1,-..,an)];

NE

[gizl(d)}([M(alanv s ’an)]) =

m=1,
am=1
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[514(d)}([M(a1,a2, coan)]) = Z [M(a1,a2,...,@m-1,0m + 1, ami1,-..,an)];
o
[FR@([M(ar,az,...,a,)]) = Z [M(a1,a2,...,Gm—1,Gm — 2, Gmi1,s- -, 0n)]+
m=1,
Z [M(ay,...,ai—1,a; = L,aiq1,. . a5-1,a5 — Lajqn, ... an)];
1<i<j<n,
(a;,a;)=(5,2)0r(4,5)
[F (@M (ay, az, . .., an)])
= Z [M(ah...,ai,l,ai—17ai+1,...7aj,1,aj—17aj+17...,an)];
1<i<j<n,
(@iyaj)=(5,4)or(4,5)
[FE@N[M (a1, az,...,a,)]) = Z [M(ay,a2,...,@m—1,Cm — 2, Qmi1,- -, an)]+
pigtes
Z []\4((117 ey Qi—1,05 — ]., Ait1ye- -y aj_l, aj — 17(13'4_17 e ,an)];
1<i<j<n,
(a;,a;)=(5,6)0r(6,5)
[F (@M (ay, az, - .., an)])
= Z [M(ah...,ai,l,ai—1,ai+1,...,a]—,1,a]——17aj+1,...,an)];
1<i<j<n,
(ai,aj)=(6,5)or(5,6)
FL(@)([M(ar,az,...,an)]) = Y [M(ar,az,...,am—1,0m — L, amy1,- -, an)];
iy
[‘F—T-Z(d)}([M(aha% e 7an)]) = Z [M(a17a27 ey Am—1, Ay, — lvaWH-la ey an)]7
am=T
[fi3(d)}([M(a1,a2, coaR)]) = Z [M(a1,a2,...,@m-1,0m — 1, Gmi1,--.,an)];
i
[(FS3(@)]([M (a1, as,...,a,)]) = Z [M(a1,a2,...,¢m—1,0m — L, ami1,-..,an)];
ot
[./_'3_4((1)}([_]\4(&1,&2, e 7an)]) = Z [M(CleCL?a sy m—1,Qm — ]-7am+1a ey an)]7
m=1,
n—
[]:_?_4(d)}([M(a1,a2, conan)]) = Z [M(a1,a2,. .. 0m-1,0m — 1, mi1,.-.,an)]
Bt

Proof As examples, we only prove the first one, the second one and the fifth one. The rest

formulas can be shown similarly.

[ ())([M (ay, az, ..

san)]) = [E53(d)(M (a1, az, ...

,ay))] (by Proposition 2.7)
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n

= Z [M(a1,a2,...,@m—1,0m + 2, Gmi1s--.,an)]+

E M(al, ey Q1,04 + 1,ai+1,. sy 51,05 + 1,aj+1, .. .,an)].
1<i<j<n,
(aj,a;)=(3,4)or(4,3)

[E ()M (ar, a2, ..., a,)]) = [E;3(d)([M (a1, az, ..., a,))] (by Proposition 2.7)
= [pr0j9d5( Z M(alel+~-~+an6n—p+€i+€j))]

1<i<j<n
= E [al,...,ai_l,ai+1,...,aj_1,ajJrl,...,an].
1<i<j<n,

(a;,a;)=(3,2)0r(4,3)

n

[5—2&-2<d)}([M(a17 az, ... 7an)]) = [pr0j9dg (Z M(alsl + ot angn —p+ 52))}

= Z [M(a1,a2,...,m-1,0m + 1, Gmi1,...,a5)]

m=1,
am=2

The proof is completed. [
Now we give the first main theorem of this section which categorifies the actions of h;, e;, f;
on Z(V_,?Sg)[d]

Theorem 3.3 (1) For any [d] € D, the actions of h; (1 < i < 4) on Z(Vﬁg)[d] can be categorified
by the exact functors H?gn(ci(d))([d]). That is, sgn(c;(d))h; o v, = yn © [H?gn(ci(d))([d])].

(2) (i) For any [d] € D, the actions of e; on Z(Vﬁg)[d] can be categorified by the exact
fiunctors £7,(d]), €3, (d]). That is, v, o (£, ()] - (€5, (A)]) = 70 0 er.

(ii) For any [d] € D, the actions of e; (2 < i < 4) on Z(Vﬁg)[d] can be categorified by the
exact functors £4,;([d]). That is, e; o v, = v, o [E44([d])].

(3) (i) For any [d] € D, the actions of f, on Z(Vﬁ’;)[d} can be categorified by the exact
functors %, ({d)), 75, ({d)). That is, fi 07, = o (F ()] - 77, ()]

(ii) For any [d] € D, the actions of f; (2 <i < 4) on Z(Vﬁg)[d} can be categorified by the
exact functors Fi;([d]). That is, f; o v, = v o [Fai([d])].

Proof (1) For any M(ay,az,...,a,) € Bla) = Ud/e[d] Biar- It is enough to prove that for any
1<i<4

sgn(ci(d))hi 0 v (M (ar, az, ..., an))) = 3 o HFE D (d)) (M (a1, as, ..., a,))).
On the one hand,

sgn(c;(d))h; o va([M (a1, as, ..., a,)]) =sgn(c;(d))h;(ve, @ Ve, @ -+ @ vg,)

n

:Sgn(ci(d))(z Vg, &+ & hi - Vg, @+ @ Uan)'
k=1

On the other hand,

o 0 HEE D (A]) (M (a1, a, . . ., a)]) =ynei(A)sgn(ci(A))([M (a1, az, . ., ay)])
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=sgn(c;(d))c;(d)(ve, @ Vgp @ -+ Q g, )
=sgn(c;(d Zva1® “® Ry Vg, @ D g, ).
k=1
Hence sgn(c;(d))h; o vp, = vn © [ngn(ci(d))([d])]-
(2) (i) For any M(ay,az,...,an) € Bja) = Uq eiq) Blar)- It is enough to prove that

e1om([M(ar, a2, .., an)]) = yn o (€5, ([d])] = (£ (D)) ([M (a1, az, - ., an)]).

On the one hand,

e107n([M(a1,az,...,an)]) = Vo, @Vay @ -+ @ €1 Vay, @ -+ ® Vg,

:Zval®Ua2®...®vak+2®...®fvan+

ap=3

n
qual®fua2®...®vak+2®...®fuan.

i

On the other hand,

oo ([E51([AD] = [EX2([dDD([M (a1, az, - . an)])

= (Y [M(ar, ... ak+2,.. a0+ Y [M(ar,...,ax +2,...,a,)))
k=1, k=1,
ap=3 ap=4

= Zval®va2®...®fvak+2®...®fvan+ vaal®fva2®...®vak+2®...®fuan

=1, k=1,
ap =3 ap =4

Hence 7, o ([€1([d])] — [€51([d])]) =y o €1
(ii) For any M (a1, as,...,a,) € Bjq) = Ud,e[d] Bia). It is enough to prove that for 2 <4 < 4

€; © ’Yn([M(alv az,... 7a'n)]) =Tn O [g-i-i([d})]([M(al’aQ) s 7an)])'

We take ¢ = 2 for example here. The cases for ¢ = 3,4 can be proved similarly. On the one hand,

n
ez 0 v, ([M (a1, az,...,a,)]) :ZUal ® - R exVqy, @ - RV,

=D Vo ® V0, @ @ Va1 @+ ®Va, + ) Vay ®Vay @+ ® Va1 @+ O Vg,
ot e

On the other hand,

Yo 0 [Er2([dD]([M (a1, ag, - -, an)])

n n

:'yn(z[M(al,...,ak+1,...7an)]+ Z[M(al,...,ak+1,...7an)])

k=1, k=1,
ap =2 aj =6
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n

=D Vo ®Va; @+ @ Vg1 @+ @V, + ) Vay ®Vay @+ ® V1 @+ ® Vg,

apd for)

(3) Similar to (2). O

Set

=P eh(d): 0" — 0", &= P £,(d]) : 0" — O™
[d]eD [dleD

Fh= € FLhd): 0" — 0", Fr = P F(d): 0" — O™
[d]eD [dleD

Epj= P €(d): 0" — O, Fyji= E Fij(d]) : 0" — O,
[d]eD [d]eD

P #E D a0 — o, H = @ 1D (a) o — o,

[d]eD, [d]eD,
c;(d)>0 c;(d)<0

where 2 < j < 4,1 <3 <

Firj (2<j<4)and ”Hj, H; (1 <4 < 4) are exact functors. Now we give the second main

theorem.

4. By the Proposition 2.6, we know 51'1, &, ]-'j_’l, Fiis Evs

Theorem 3.4 (1) The action of h; (1 < i < 4) on (V) can be categorified by functors
H H; . That is, hj o, = vn o ([H] — [H]]).

(2) (i) The action of e; on (VE)STPL) can be categorified by functors £f,,€;,. That is,
€10%Yn = Tn © ([gil] - [6;1])

(ii) The action of e; (2 < i < 4) on (Vf’bg) can be categorified by functors £,;. That is,
€; O Yp = Yn © [5+i].

(3) (i) The action of f; on Z(Vﬁ’;) can be categorified by functors F|,,F,. That is,
fioym="mo ([]'—11] - [-7':1])

(ii) The action of f; (2 < i < 4) on (Vﬁg) can be categorified by functors Fy;. That is,
fiom =m0 [Fuil-

Proof It is easy to check all the diagrams above are commutative by Theorem 3.3. OJ
In the following Theorem 3.5, we will give the categorification of the defining relations of

U(s0(8,C)) on V32,

Theorem 3.5 The defining relations of U(so(8,C)) on V_ﬁg can be categorified as follows.

(1) HiHToHIH; oM H 0H Hy ~ HIH oM H; oH HI oH;H; forl <i,j <A4.

2) () EHFhee FLoFhéneFLELhoH ~EL FLoELFhoFLELFLEL®
Hi;

(i) E51Fri @ Fri€iy ~ ELFi @ Fi€Ly, where i = 2,3,4;

(i) Epi FH @ Fi€qi = EiF L & F €y, where i =2,3,4;

(iv) E4iF4j @ 6iyHy ~ Fuj€qy @ 6, where i, j = 2,3,4.

(3) (i) Hi€hoHEL@ENHT @ ELHT @ (€)M 2 HiE, @ H EH @ ELHT @
EqHT @ (E4)%%
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(ii) Hy €5 OHy 5 OELH DELHT DEL 2 HyEL OHY EL DELHT BELH, DEL;

(iii) Hi €L o H EL @ ELH; @ ELH ~HfE o EL @ EFHI @ EL M, i=3,4;

(iv) HE £ ;04 My BE+j = Hy E4;0E4 M, where (i, ) € {(1,2),(2,3),(2,4),(3,2), (4,2)};

(v) Hi €4 @ ExjMy = Hi €4 ® Ex M, where (i) € {(1,3),(1,4),(3,4), (4,3)};

(vi) Hf E1i @ EviMy =~ H E4i © ELHT @ (E44)P2, where i = 2,3, 4.

4) (HfFheon  FroeFiHi o F H © (FI)2 2 HIF L oH FLoFLHT @
FaHy & (F)%%

(i) H FhioH, FLeF L Hy @F [ Hy ®F ~ Hy Fo @My FLoF LM eF L Hy Ff;

(i) Hf FhhoH; FLoFhH, o FoH ~ 1 FLoH, FLieo FLH @ FL,H;, where
i=3,4;

(iv) Hf Fyi ® FriH; & (Fpi)®2 = Hy Fyi @ FriH, where i = 2,3,4;

(V) M Frj@F e = Hy Fyj@F 1 @F,;, where (i) € {(1,2),(2,3),(2,4),(3,2), (4,2)};

(vi) Hi Foj @ FyjMy =~ Hy Fooy & FoHi, where (i,5) € {(1,3),(1,4), (3,4), (4,3)};

(5) (1) EFENErs ® ELELEL @ EF1E412ET) © EL1E 1267, ® E4aEL1ET, ® EE0,67 ~
5i15;15+2 2] 5;15115+2 2] 5115}2511 SELEREL D 5+25115;1 =) 5+25;15j[1;

(i) ENEL ® EpEL ~ ELEL @ ELEL, where i =3,4;

(iii) E4iEF ®EL Eqi = EiE7y ® EF1E4i, where i = 3,4;

(iv) E42E42EL @ (E12671E42) P2 BEL €402 = E12E128 7, B (E42ET1E42) P BEL E42E 40

(V) E4i€4i€4j @ E4jE4i€qi = (E4:€45E€4:)F?, where (i,7) € {(2,3),(2,4),(3,2), (4, 2)};

(vi) E43E1a = E1a€qs;

(6) (i) Fh F i Fao®F | F L Fro®F [\ FiaF [ OF [ FroF i OF o F 1 F L ®F o F i Fiy ~
FhF O Feo® FOF L Fra @ F L FoF ) @ F L FpaF i @ FpaF (1 F @ FraF o Fis

(i) FH Fpi @ FyiF oy o F 1 Fpi @ FyiFiy, where i = 3,4;

(iii) FyiFfy & F oy Fri o~ FriFyy & F Fui, where i = 3,4;

(iv) FioFioFf & (FraF [ Fua)®? @ Fi FroFia ~ FraFyoF i @ (FaF Fia)®? @
FiFraFio;

(v) FriFyiFrj ® FyjFyiFpi = (FpiFyjFa)®2, where (i,7) € {(2,3),(2,4),(3,2), (4,2)};

(vi) FraFia =~ FraFys;

Proof Here some cases will be proved, the rest cases are similar to prove.
(1) For 1 <4i,j <4, it suffices to prove that

3

= [HIHS] + (1M ]+ T[T+ T

J J

(HIHS ]+ 1M+ T[] + ()]

Since v, is an isomorphism and h;h; = h;h;, we have h;h;v, = hjh;v,. By Theorem 3.4,

hihjon = hiva(HS] = M7 ]) = w7 = (HED(H]] = 7)),

hihivn = hiva (RG] = [Hi]) =y (K] = DT = 7))

Hence ([H;] — (M D((H]] = [M7]) = (K] = (M7 D] = [H7]). That is,

[HNHT] + R+ R+ (R )

7 % %
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= [MIIHT+ RG]+ T+ [H 1R
(2) (i) It suffices to prove that
[ENFL] + EnllFal + [FAlEn] + [FallEdh] + [Hy]
= [ELIFR] + ERIFR] + FRIED] + FLER] + ).

Since 7y, is an isomorphism and e; f1 — fiex = hq, we have (e1 f1 — fie1)yn = h1Yn. By Theorem
3.4,

(erfi = fren)vn = v (5] = [ELD(FL] = Fal) — (Fh] = [FaD (L] = [ERD),
hivn = Y ((H] = [Hi))-
Hence
(€8] = [ERDFL] = FaD — (Fh] = [FaD(ER] - [E0)) = ] - A ).
That is,
[ELNFRL] + ERIFal + FLIER] + [FLllEh] + Hy]
= [ENFA] + ERIFR] + FRIER] + [FRllEn] + [HT).
(3) (iii) Take i = 3 for example, it suffices to prove
[HI1EL] + M3 NER] + [ENHE ] + [EX][HT]
= [ELIH] + [EL]Hs ] + HENEL] + [Hi ] [E5]
Since 7, is an isomorphism and hge; —ejhs = 0, we have (hse; — e1hz)y, = 0. By Theorem 3.4,
(haer — erhs)vn = w([Hy] — Hz D(EL] — [E1]) — v (€5 — [ELD(HT] - M5
Hence
((Ha] = HaD([EL] — (€] = (ER] = [EaD(H3] = [H3 ])-
That is,
HANER] + [H3 )€ + [ERIHz ] + [E][HF]
= [ELIH3 ]+ [ELIHs ]+ M3 )ER] + H31IEL.
(6) (vi) Take (4,7) = (2,3) for example, it suffices to prove that
[Fial*[Fysl + [Fysl[Fral? = 2[Fya][Frsl[Fyal.
Since 7, is an isomorphism and f3f3 — 2fafsf2 + f3fs = 0, we can get
13 f3m — 2f2f3fovn + f3f3m = 0.
By Theorem 3.4, ’yn[f+2]2[f+3] — 27n[-7:'+2”-7:'+3”]:+2} + ’yn[f+3] [.F+2]2 = 0. That iS,
[Fiol’[Fysl + [Fysl[Fral? = 2[Fya][Frsl[Fyal.

The proof is completed. [
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By the definition of spin module V_g,, we can categorify V?;’; in a way similar to Vf;’;.
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