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1. Introduction

In this paper, all groups considered are finite groups. Let G be a finite group. Given
a nonempty subset H of G, the normal closure of H in G is the intersection of all normal
subgroups of G which contain H, it is denoted by H%. Obviously, H is the smallest normal
subgroup containing H and it is easy to show that HY = (h9|h € H,g € G). If H is a subgroup
of G, we notice that H < H < G and

H = HY if and only if H<G.

Thus a subgroup may be regarded as “far normal” if it has “large” normal closure or “nearly
normal” if it has “small” normal closure. Finite p-groups with “small” normal closure have
been investigated in [1-3], respectively. On the other hand, finite p-groups with “large” normal
closure have also been investigated. For example, Janko [4] classified finite p-groups G such that
|G : HE| = p for every nonnormal subgroup H of G. Zhao and Guo [5] classified finite p-groups
G such that |G : HY| < p? for every nonnormal cyclic subgroup H of G. As a continuation
of Janko, Zhao and Guo’s works, we classify finite p-groups such that G/H¢ is cyclic for every
nonnormal subgroup H of G in this paper.

For convenience, a finite p-group G is called a C.-group if G/H® is cyclic for every minimal
nonnormal subgroup H.

In Lemma 2.4, we give some equivalent conditions for a finite p-group G to be a C.-group.
It turns out that G is a C.-group if and only if every nonnormal subgroup of G is contained in

exactly one maximal subgroup of G. In [6], Janko gave a classification of such finite p-groups.
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Hence C.-groups are classified. This paper will give an independent proof of this classification
by using central extension. In Theorem 3.1, C.-groups will be classified up to isomorphism and
more detail information of C.-groups will be given.

Throughout this paper, p is always a prime. Let G be a finite p-group. The nth term of the
lower central series of G is denoted by G,, and G’ = Ga. We use ¢(G), exp(G) and d(G) to denote
the nilpotency class, the exponent and the minimal number of generators of G respectively. o(g)
denotes the order of g, and M < G denotes that M is a maximal subgroup of G. We also use Cp»
and Ep» to denote the cyclic group and the elementary abelian group of order p", respectively,
where Cpo = Ejo = 1.

We also use the following notation.
Q(G)=(9€G|g"=1)and U:(G) = (¢" | g € G).
My(n,m) = (a,b|a?” =b"" =1,ab = a1+pn71>,where n>2.
M,(n,m,1) = (a,b;c| a?" =" =P =1, [a,b] = ¢,[c,a] = [¢,b] = 1),

where n > m, and m+n > 3 if p =2.

The other terminology and notations are standard, as in [7].

2. Preliminaries

A nonabelian p-group is said to be minimal nonabelian if all its proper subgroups are abelian.

A p-group is said to be Dedekindian if all its subgroups are normal.

Lemma 2.1 ([8]) Let G be a minimal nonabelian p-group. Then G is Qs, M,(m,n), or
My(m,n,1).

Lemma 2.2 ([9, Theorem 1.1]) If G is Dedekindian, then G is either abelian or G = Qg X Eon.

Lemma 2.3 Let G be a finite p-group. If |G'| > p?, then there exists N < G such that G/N is
not a Dedekindian group, where N < G' N Z(G) and |K| = p.

Proof Since |G’| > p?, G is not Dedekindian. By [9, Lemma 2.1], there exists K < G such that
|G’ : K| = p and G/K is not Dedekindian. Thus there exists N < KN Z(G) < G' N Z(G) such
that |N| = p. Since G/K = (G/N)/(K/N), G/N is not Dedekindian. O

A minimal nonnormal subgroup of a finite group G is a nonnormal subgroup whose proper

subgroups are normal in G. We have the following

Lemma 2.4 Let G be a finite p-group which is not Dedekindian. Then the following statements
are equivalent.

(1) The factor group G/H€ is cyclic for every minimal nonnormal subgroup H of G.

(2) The factor group G/HY is cyclic for every nonnormal subgroup H of G.

(3) Every subgroup of ®(G) is normal in G and d(G) = 2.

(4) Every nonnormal subgroup is contained in exactly one maximal subgroup of G.
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Proof (1)=(2). Let H be a nonnormal subgroup of G. Then there exists L < H such that L
is a minimal nonnormal subgroup of G. Thus G/L¢ is cyclic. It follows that G/H¢ is cyclic.

(2)=(3). Let H < ®(G). Then HE < ®(G). Since G/®(G) is not cyclic, G/H® is not
cyclic. Tt follows that H < G. Thus every subgroup of ®(G) is normal in G.

Let H be a minimal nonnormal subgroup of G. By [9, Lemma 1.4], H is cyclic. Let
H = (a). Since HY < HG' and G/H€ is cyclic, G/HG" is cyclic. Let G/HG' = (b). Then
G = {a,b,G") = (a,b). Thus d(G) = 2.

(3)=(4). Since d(G) = 2, M1 N My = ®(G) for any two distinct maximal subgroups M
and My of G. If H < M; N My = ®(G), then H < G. Tt follows that (4) holds.

(4)=(1). Let H be a minimal nonnormal subgroup of G. Then H is contained in exactly one
maximal subgroup of G. It follows that H®(G) is contained in exactly one maximal subgroup
of G. Hence G/H®(G) is of order p by correspondence theorem. Let G/H®(G) = (a). Then
G = (a, H,®(Q)) = {a)HY. Thus G/H® = (a). (1) holds. O

Lemma 2.5 Let G be a C.-group. Then the following statements hold.
(1) If N QG, then G/N is a C.-group.
(2) The derived subgroup G’ is cyclic.
(3) If H< ®(G) and HNG' =1, then H < Z(G).

Proof (1) Let G = G/N and H = H/N 4 G. Then H # G. Notice that G/(H") = G/HC =
G/HEC. Since G is a C.-group, G is a C.-group.

(2) Since G is a C.-group, d(G) = 2 by Lemma 2.4(3). Let G = {a,b). Then G’ = ([a, b} |
g € G). Since ([a,b]) < ®(G), ([a,b]) < G by Lemma 2.4(3). It follows that G’ = ([a, b]).

(3) If H < ®(G), then H <G by Lemma 2.4(3). It follows that [H,G] < HNG’' = 1. Thus
H<Z(G).O

Lemma 2.6 Let G be a finite p-group. Then G is a C.-group if G is one of following groups.
(1) G is a 2-group of maximal class.

(2) G is a minimal nonabelian p-group.

Proof (1) Let H be a nonnormal subgroup of G. Since G is a 2-group of maximal class, G; is
the unique normal subgroup of order 27~*. It follows that H“ = G; or a maximal subgroup of
G. If H® = G, which is cyclic, then H char G; < G. It follows that H < G, a contradiction.
Thus HY is a maximal subgroup of G and so G/H¢ is cyclic. It follows that G is a C.-group.

(2) Let H be a nonnormal subgroup of G. Notice that G is a minimal nonabelian p-group,
we get d(G) =2, |G’ =p and Z(G) = ®(G). It follows that H £ ®(G) and HP(G) is of index
at most p. Since H is not normal in G, H < H® < HG' and |HG' : H| = p. Thus H® = HG'.
Let G = G/H%. Then

G/2(G)] = |G/®(G)| = |G/2(G)H]| = p.

It follows that G/HY is cyclic. So G is a C.-group. (I
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3. The main results and their proofs

If all subgroups of G are normal, then G is a Dedekindian group. The groups have been

classified. Thus we consider the C.-groups with nonnormal subgroups in this section.

Theorem 3.1 Let G be a finite p-group with nonnormal subgroups. Then G is a C.-group if
and only if one of the following occurs.

I My(n,m) or My(n,m,1).

II. 2-groups of maximal class of order > 2*.

III. Nonmetacyclic 2-groups of order 2"+2, where n > 3.

(1) (a,b,c|a® =b>=1,[a,b] =c,® =a*[c,a] = 1,[c,b] = c2).

2) (a,bc|a® =1,02=a?""[a,b]=c,® =a"4 [c,a] = 1,[c,b] = c2).

In groups (1) and (2) of III, G’ = (c) = Cyn-1,P(GQ) = (a?) x {a%c) = Con-1 x Oz, Z(G) =
(a®" ") x (a%c) = C2.

(3) {a,b,c|a® =b* =1,[a,b] = ¢,c® = a4 [c,a] = 1,]c, ] %), where G’ = (c) =
Con1,B(G) = (a2) x (a2c) x (b?) = Con-1 x Cy x Co, Z(G) = (a®" ") x (a2c) x (b?) = C3.

IV. Metacyclic 2-groups of order 2"*2, where n > 3.

(1) (a,b|a®" =b*=1,[a,b] =a?).

(2) (a,b|a?" =b*=1,[a,b] = a2+2"").

In groups (1) and (2) of IV, G’ = (a?) = Cyn-1, ®(G) = (a?) x (b?) = Con-1 x Oz, Z(G) =
(2" 7'y x (b?) = C2.

Proof Let G be a C.-group with nonnormal subgroups. By Lemma 2.4(3), every subgroup of
®(G) is normal in G and d(G) = 2. If p > 2, then ®(G) < Z(G) by [7, §4, Exercise 8]. It
follows that G is a minimal nonabelian p-group. Since G has nonnormal subgroups, G is not
Dedekindian. By Lemma 2.1, we get G is isomorphic to M,(n, m) or My(n,m,1).

Next, we complete the proof by induction on |G’| for p = 2. Assume |G’| = 2. By Lemma
2.4(3), we get d(G) = 2. It follows that G is a minimal nonabelian p-group. By Lemma 2.1,
group G is M,(n,m) or M,(n,m,1). Assume |G’| > 22. Then there exists a normal subgroup
N of order 2 of G such that N < G’ N Z(G). Let G = G/N. Then G is a C.-group by Lemma
2.5(1), G has nonnormal subgroups by Lemma 2.3 and \é/| < |G'|. By induction, G is one of

groups of Theorem.

Case 1 G is a 2-group of maximal class or G = M,(n, 1), where n > 2.

Let G = (@,b) and N = (z). Then G is metacyclic by [10, Theorem 1]. Thus N = (a?")
and G = (a,b). It follows that (a) is a cyclic maximal subgroup of G. Since |G’| > p?, G is a
2-group of maximal class by [7, Theorem 1.2]. Thus G is one of groups of type II.

Case 2 G = M,(n,m), where n,m > 2.
Let G = (a,b | a*" = b =1, [@b] =a2" ') and N = (z). Then G is metacyclic by [10,
Theorem 1]. Thus N = (a®") and G = (a, b) with relations

n41 m AN n—1 n
' =1,0" =a'? [a,b] = a®  TF?,
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where j,k € {0,1}.

We can assume that j = 0. In fact, if j = 1 and m > n, then (b~
b=2".a2" = 1. It follows that (b=2" """-a2)NG’ = 1. Notice that a ¢ Z(G), then b=2" """ a2 ¢
Z(G). Hence (b=2" """ .a2) 4 G. This contradicts Lemma 2.4(3). It follows that m < n if
j=1. Sincem > 2, n > 3. Let b = ba=2""". Then b?m = 1. So we can assume that j = 0.

Since (b?) < ®(G), by Lemma 2.4(3), we get (b?) < G. Notice that (b?) NG’ = 1, then
[a,b?] = 1. Thus

m—n+1 n—1
2 - a?)? _

1= [0, = [a,bP[a,b,b) = " [ b = ” [0, b =0

It follows that n — 2 =0 (modn + 1), which implies that n = 2.

If m > 3, then (a26?”™ ") = (a2’p2" )2 = a¥’p2" = 1. It follows that (a2?" ") NG’ = 1.
Notice that a2 ¢ Z(G), then a20?" ~ ¢ Z(G). Hence (a®b*" ") 4 G. This contradicts Lemma
2.4(3). It follows that m = 2.

Now G is one of groups of IV(1) or IV(2).

Case 3 G = My(n,m,1), where n > m and m +n > 3.

Let G = (@be|a® =b =& =1,[a,b=¢[a,d=[bd =1). By Lemma 2.5(2), we get
G’ is cyclic. It follows that N = (c?). Thus

G = (a,b,c| " =2y = cj2,022 =1,[a,b] = ' [a, ] = ¢*2, [b, ] = ¢'?),

where 7,7, k,s,t € {0,1}.

We can assume k = 0 by letting ¢; = ¢! T52.

We may assume s = 0, that is, [a,c] = 1. If st = 0, without loss of generality, we can let
s = 0. If st = 1, letting a; = ab, then [a1,c| = [a,d][b,c] = ¢* = 1. Thus we can assume that
5 =0.

Since [a?,b] = [a,b]? = ¢ # 1, a®> ¢ Z(G). Tt follows that n > 2. Notice that (a?) < ®(G),
by Lemma 2.4(3), (a®) < G. Thus [a?,b] = ¢? € (a?). It follows that i = 1.

If t = 0, that is [b,c] = 1, then [a,b?] = [a,b]? = ¢*. Thus b* ¢ Z(G). It follows that m > 2.
Since (b?) < ®(@), by Lemma 2.5(3), we can get j = 1. If n > m, then (2" " )2" " =
b2"a?" = 1. Tt follows that (b%a®" " )N G’ = 1. Notice that (b2a®" ") < ®(G), then
(02" """) < Z(G), which contradicts that [p2a2" ", a] = [b%,a] = ¢ # 1. If m > n, consider
<a2b2m_"+1>, we can get a contradiction too. Thus t = 1.

Since (a2 )2 = a¥"'2 = =1, (a®" '¢) NG’ = 1. Notice that (a?" ¢} < ®(G), then
(a®" "' ¢) < Z(G). Tt follows that

=[] = [a, b2 [e,b] = 2" ¢ = 202,
We obtain that ¢ +2"~2 = 0 (mod 2). Thus n = 2.
We assert that m < 2. Otherwise, if m > 3, then a2b?" ,a22" € ®(Q) — Z(G).

By Lemma 2.5(3), we can get (a2b®” )N G’ # 1 and (a20?" YNNG # 1. If j = 1, then
(a®b*" )2 = 1. Tt follows that (a2b?" ') NG’ = 1, a contradiction. If j = 0, then (a2b?" ")2* =
(@b 1)2 = 1. Tt follows that (a2b?®" ) NG’ =1, a contradiction too. Thus m < 2.
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If m =1, then G is one of groups III(1) or (2).

Ifmz?,wecangetj:O.Iszl,then( >§ ®(G) and (b?c) £ Z(G). By Lemma
2.5(3), we can get (b%c) NG’ # 1. Since (b%c)? = =1, (b?’c) NG’ = 1, a contradiction. Thus
j=0if m =2, and G is one of groups IT1(3).

Case 4 G is one of groups I1I(1) of Theorem.
Let G = (a,b | a*" = 1,b> = 1,[a,b] = ¢,¢> = a~%,[¢,a] = 1,[¢,b] = ¢ 2) and N = ().
Then

G = {(a,b| " =2t b =, [a,b] = ca®, ® = a7 2!, [¢c,a] = 2°, [c,b] = ¢ 2at),

where i, 7, k,1,s,t € {0,1}.

By Lemma 2.5(2), G’ is cyclic. It follows that G/ = (¢) and N = (=" ). If a®" = 1,
notice that n > 3, then 1 = (a42!)2" "~ = (¢2)2"* =", a contradiction. Thus i = 1. Since
b* € N < Z(G), by computation, we get 1 = [a,b?] = [a, b]?[a, b, b] = 2c 22! = 2. Thus t = 0.
We can assume k = 0 by letting ¢; = ca*. It follows that

G = (a, b ‘ a2n+1 = 17 b2 = C‘anil, [a, b} =, 02 = a_4cl2n71, [C, a] = Csz”il, [C, b] = C_2>7

where j,1,s € {0,1}.
If s =1, then

n—2 n—1 _ n—1 jon-—1
(12" 77 02)2 = 22" g = g2 T I T gt 2

It follow that (c!+!2" “a) NG’ = 1. Notice that (c'2" "a) < &(G), by Lemma 2.5(3), we get
(H12"%) < Z(@). Since n > 3 and [c,a] € Z(G), by computation, we get [¢!H2" a2, a] =
(112" ] = [e,a] = ¢2" " # 1, a contradiction. Thus s = 0.

If I = 1, then (ca® 2" )2 = ¢2a® 2" = 1. It follows that (ca>~2" ') NG’ = 1. Notice
that (ca>~2" ") < ®(G), by Lemma 2.5(3), (ca>"2" ") < Z(G). Since n > 3 and [c,a] = 1, by

computation, we get
[ca® 2" b = [, b][a2 2", b = ¢ 2[a2,b)[a" 2", b] = ¢ 2[a, b)2[a, b, a]fa, b2 =2 £1,
a contradiction. Thus [ = 0.

If j =0, then G is one of groups ITI(1). If j = 1, then G is one of groups I11(2).

Case 5 G is one of groups I11(2) of Theorem.
Let G = (a,b|a?" =102 =a®" ,[a,bl=c=a4 [ca =1,[¢b = (¢)2) and N = (z).
Then

G=(a,b|a® =2 b= a2, [a,b] = ca®, ® = a2, [c,a] = 2°, [¢,b] = ¢ 2at),

where 4, j, k,1,s,t € {0,1}.

By a similar argument as in case 4, we can get G' = (¢) and & = " = 42", Since
[a?,b] = [a,b]*[a,b,a] and [a?, b, a®] = [¢,a®][z*,a®] = [¢,a]* = 1, noticing that n > 3, we can get
L= [0 = [0 2,6 = (@) b = [ 0" = et =
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a contradiction. Thus G/N is not one of groups III(2).

Case 6 G is one of groups I11(3) of Theorem.
Let G = (a,b| a*" =1,b* =1,[a,b) = ¢, = a4 [¢al = 1,[¢,b] = (¢)72) and N = (z).
Then

G=(a,b|a® =2 b* =27 [a,b] = ca¥,c? = a 42!, [c,a] = 2°, [c,b] = ¢ 2at),

where 1,5, k,1,s,t € {0,1}.

We can assume k = 0 by letting ¢; = cz®. By a similar argument as in Case 4, we can get
G ={c),and z =c®" =a*" and s =0.

If j = 1, that is b* = , then (22" )2 = b4c?" '[b2,¢¥" "] = 22 = 1. It follows that
22" Y NG’ = 1. Notice that (02¢2" ") < ®(G), by Lemma 2.5(3), we get (b2¢2" ) < Z(G).
By computation,

271—2

1= b =, b2 =2,

a contradiction. Thus j = 0, that is b* = 1.

Since (b?) < ®(G) and (b*) NG’ = 1, by Lemma 2.5(3), we get (b?) < Z(G). Thus
1 = [a,b?] = [a, b)*[a, b,b] = 2[c,b] = c2c~2a! = ', It follows that t = 0.

If | =1, that is ¢ = a=%a2", then (ca?" +2)2 = 2a2"+2" = 1. It follows that (ca?"  T2)N
G’ = 1. Notice that (ca®"  +2) < &(G), by Lemma 2.5(3), we get (ca?"  +2) < Z(G). Thus

[ca?" ' +2 a] = [ca®" '*2,b] = 1. By computation, we get
1= [caQn_lJFQ,a} =[e, d]
and so
1= [ca2n71+2,b] =, b][aQ,b}TH'H = c_2srt(c2)2n72+1 =zt
This implies that ¢t = 1, a contradiction. Thus [ = 0 and G is one of groups III(3).

Case 7 G is one of groups IV(1) of Theorem.
Let G = (a,b|a*" =1,b* =1,[a,b] = a~2) and N = (z). Then

G = (a,b | " =2t bt =, [a,b] = a=%a*), where i,j,k € {0,1}.

By Lemma 2.5(2), we get G’ is cyclic. Notice that G = (@), then G’ = (a,z) = {(a). Tt
follows that i = 1, that is = a?".

If j = 1, then (b2a2" )2 = b*a=2" = 1. Tt follows that (b?a=2" )N G’ = 1. Notice
that (b2a=2" ") < ®(G), by Lemma 2.5(3), we get (b?a=2" ) < Z(G). So 1 = [p2a=2" " b] =
[a2""" b = [a,b]72" = a?" #1, a contradiction. Thus j = 0.

If k =0, then G is one of groups IV(1). If k£ =1, then G is one of groups IV(2).

Case 8 G is one of groups IV(2) of Theorem.
Let G = (a,b|a2" =1,b* =1,[a,b] =a 22" ") and N = (z). Then

G = {a,b]| " =2 bt =ad, [a,b] = a*2+2n'71xk>, where 4,7,k € {0,1}.
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By a similar argument as in Case 7, we can get z = a®  and b* = 1. It follows that
(*) NG’ = 1. Notice that (b*) < ®(G), by Lemma 2.5(3), we get (b*) < Z(G). Since n > 3, by
computation, we get

2n—1

[a,0%] = [a,b)%[a,b,b] = [a,b)2[a~ 22" ", b] = [a,b][a, 0] 2T2" " =[a, ]2 =a® #£1,

a contradiction too. Thus G/N is not one of groups IV(2).

Conversely, if G is one of the groups in the Theorem, we can get easily G is a C.-group by
Lemmas 2.6 and 2.4(3).

The proof is completed. [
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