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Abstract In this paper, the concept of I-bornological vector spaces and two examples of the

spaces are given. Two methods on constructing new I-bornological vector spaces are discussed,

one is using a (crisp) bornological vector space to induce an I-bornological vector space, the

other is utilizing I-bornological linear maps to generate an I-bornological vector space.
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1. Introduction

The theory of bornological spaces was first introduced by Hogbe-Nlend [1] (It should be

noticed that, the notion of bornological vector spaces is different from that in [2,3], the former

[1] is a space without topology, however, the latter [2] is a space with topology). Since then, many

authors have carried out various work on bornological spaces. They investigated lattice-valued

bornological spaces [4], dicussed topologies of strong uniform convergence on bornologies [5–8],

studied bornologies for metrically generated theories [9], established Ekeland-type variational

principle and Caristi fixed point theorem in bornological vector spaces [10]. Nevertheless, the

work on the construction of fuzzy bornological vector spaces was rarely discussed. In this paper,

we introduce the notion of fuzzy bornological vector spaces. Based on that, we investigate the

method of constructing new fuzzy bornological vector spaces.

It should be mentioned here that, according to the standardized terminology in [11], fuzzy

set [12] should be called an I(= [0, 1])-valued map. For convenience, we rename the fuzzy

bornological vector space as IBV S in the following paper. Our purpose is three-fold. First, we

introduce the concept of IBV S. For specifically illustrating the definition, we show two examples

of IBV S. By using Q-neighborhood [13], we prove the family consisting of all I-bounded subset

[14,15] is an I-vector bornology; By employing the notion of I-semi-norm [16], we give the concept

of I-λ-bounded subset for the I-semi-norm, and obtain that the fuzzy subsets which are I-λ-

bounded subset for the I-semi-norm form an I-vector bornology. Thus we obtain the concrete
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IBV Ss. Next, in consideration of the relation between r-cut sets and I-valued maps, we give

special I-valued maps, which eventually induce an I-vector bornology. Further by employing

an r-cut vector bornological space, we prove a characterization theorem of the induced IBV S.

Finally, by using the fuzzy linear maps [17], we consider the I-bornological linear maps and prove

that the primary image under inverse projective map about a family of IBV S is still an IBV S,

which provides another method of constructing IBV S.

2. Preliminaries

Throughout this paper, let X be a vector space over K(R or C) and θ denote the zero

element of X. Let I = [0, 1] and IX denote a family of all fuzzy subsets of X. A fuzzy subset

which takes the constant value r on X (0 ≤ r ≤ 1) is denoted by r∗. A fuzzy subset of X is called

a fuzzy point [13], denoted by xλ, if it takes value 0 at y ∈ X\{x} and its value at x is λ. The set

of all fuzzy points on X is denoted by Pt(IX). A fuzzy point xλ is said to be quasi-coincident

with a fuzzy subset A, denoted by xλ∈̃A, if A(x) > 1− λ. A is a non-empty set.

Definition 2.1 ([18,19]) A stratified I-topology τ on X is said to be an I-vector topology, if

the following two mappings are continuous:

f : X ×X → X (x, y) 7→ x+ y,

g : K×X → X (k, x) 7→ kx,

where K is equipped with the I-topology induced by the usual topology, X × X and K × X

are equipped with the corresponding product I-topologies. A vector space X with an I-vector

topology τ , denoted by (X, τ), is called an I-topological vector space.

Definition 2.2 ([18,19]) Let A,B ∈ IX and k ∈ K. Then A+B and kA are defined respectively

by

(A+B)(x) =
∨

{A(s) ∧B(t) : s+ t = x};

(kA)(x) = A(x/k) whenever k ̸= 0;

(0A)(x) =

{ ∨
t∈X A(t), x = θ,

0, x ̸= θ.

In particular, for xλ, yµ ∈ Pt(IX), we have

xλ + yµ = (x+ y)λ∧µ, kxλ = (kx)λ.

Definition 2.3 ([1]) A vector bornology on X is a collection B of subsets of X which satisfies

the following conditions:

(B1) X =
∪

B∈B B;

(B2) B1 ⊆ B2 and B2 ∈ B implies that B1 ∈ B;

(B3) B1, B2 ∈ B implies that B1 ∪B2 ∈ B;
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(B4) B1, B2 ∈ B implies that B1 +B2 ∈ B, where

B1 +B2 = {x1 + x2 : x1 ∈ B1, x2 ∈ B2};

(B5) For any λ ∈ K, B ∈ B implies that λB ∈ B and
∪

|λ|≤1 λB ∈ B.

The ordered pair (X,B) is called a bornological vector space (briefly BV S) and every candidate

of B is called a vector bornological subset.

It is easy to prove the following conclusion:

Remark 2.4 For any r ∈ [0, 1) and A ∈ IX , σr(A) = {x : A(x) > r}.
(1) If Aα ∈ IX , α ∈ A , where A denotes indicator set, then σr(

∪
α∈A Aα) =

∪
α∈A σr(Aα);

(2) If A,B ∈ IX , then σr(A+B) = σr(A) + σr(B);

(3) For r ∈ (0, 1], σr(A) = rσr(
1
rA);

(4) For any λ ∈ K and A ∈ IX , λσr(A) = σr(λA).

We just prove (4). It is not difficult to prove that when λ ̸= 0, λσr(A) = σr(λA). So, we

just need to prove the conditions when λ = 0. For each x ∈ σr(A), we have 0A(0x) = 0A(θ) =

supt∈X A(t) ≥ A(x) > r, which means 0x ∈ σr(0A), thus 0σr(A) ⊂ σr(0A). Conversely, for each

y ∈ σr(0A), we have 0A(y) > r, so y = θ = 0σr(A), which shows that σr(0A) ⊂ 0σr(A). �

3. IBVS and examples

In this section, we introduce the notion of an IBV S and give two examples of IBV S.

Definition 3.1 An I-vector bornology on X is a family IB of fuzzy subsets of X (IB ⊂ IX)

satisfying the following conditions:

(IB1) X =
∪

B∗∈IB B∗, i.e., supB∗∈IB B∗(x) = 1, ∀ x ∈ X;

(IB2) B∗
1 ⊂ B∗

2 and B∗
2 ∈ IB implies that B∗

1 ∈ IB;

(IB3) B∗
1 , B

∗
2 ∈ IB implies that B∗

1 ∪B∗
2 ∈ IB;

(IB4) B∗
1 , B

∗
2 ∈ IB implies that B∗

1 +B∗
2 ∈ IB, where

(B∗
1 +B∗

2)(x) = sup
s+t=x

min{B∗
1(s), B

∗
2(t)}, ∀x ∈ X;

(IB5) For any λ ∈ K, B∗ ∈ IB implies that λB∗ ∈ IB and
∪

|λ|≤1 λB
∗ ∈ IB, where

(λB∗)(x) =


B∗(x/λ), λ ̸= 0

(0B∗)(x) =

{ ∨
t∈X B∗(t), x = θ

0, x ̸= θ

for each x ∈ X. Every candidate of IB is called an I-vector bornological subset. If IB ⊂ IX

is an I-vector bornology on X, then the ordered pair (X, IB) is called an I-bornological vector

space (briefly IBV S).

Let X be a (crisp) topological vector space. A bounded subset of X is a subset that

is absorbed by every neighborhood of zero. The collection of bounded subsets of X forms a

vector bornology on X called the Vov Neumann Bornology of X (see [1]). Corresponding to

the bounded subsets in (crisp) topological vector space, there is an I-bounded subset defined
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by Q-neighborhood in I-topological vector space (X, τ) (A fuzzy subset U of X is called Q-

neighborhood of xλ iff there exists G ∈ τ such that xλ∈̃G ⊂ U (see [13]). Now, as a reference we

mention the definition of the I-bounded subset. Then we prove the I-bounded subset defined by

Q-neighborhood is an I-vector bornological subset. We refer to [14,19,20] for other symbols or

definitions which are not mentioned here.

Definition 3.2 ([14,15]) A fuzzy set B in (X, τ) is said to be λ-bounded (λ ∈ (0, 1]), if for

each Q-neighborhood U of θλ in X, there exist t > 0 and r ∈ (1 − λ, 1] such that B ∩ r∗ ⊂ tU .

B is said to be I-bounded, if it is λ-bounded for each λ ∈ (0, 1]. The family consisting of all

I-bounded subsets is denoted by U .

Example 3.3 Let (X, τ) be an I-topological vector space. Then U is an I-vector bornology.

Proof We need to prove that U satisfies the conditions (IB1)–(IB5) in Definition 3.1.

(IB1) For any x ∈ X, we have {x} ∈ U , which means {x} is an I-bounded subset in the

sense of Definition 3.2. In fact, for each λ ∈ (0, 1] and Q-neighborhood U of θλ, by [21], there

exists a balanced and Q−λ absorbing subset V such that V ⊂ U , where V is a Q−λ absorbing

subset, that is, there exists t > 0 such that V (tx) > 1−λ. Obviously, there exists ε > 0 such that

V (tx) > 1−λ+ε, therefore, tx1−λ+ε ∈ V . Notice that {x}∩(1−λ+ε)∗ = x1−λ+ε ∈ 1/tV ⊂ 1/tU ,

so {x} ∈ U . At the same time, it is easy to see that {x}(x) = 1 for each x ∈ X. Combining it

with {x} ∈ U , we obtain that supB∈U B(x) = 1. Thus X =
∪

B∈U B.

(IB2) Let B1 ⊂ B2 and B2 ∈ U . Then for each λ ∈ (0, 1] and Q-neighborhood U of θλ,

there exist t > 0 and r ∈ (1− λ, 1] such that B2 ∩ r∗ ⊂ tU . Since B1 ⊂ B2, B1 ∩ r∗ ⊂ tU , which

means B1 ∈ U .

(IB3) Let B1, B2 ∈ U . Then for each λ ∈ (0, 1] and Q-neighborhood U of θλ, there exists a

balanced Q− λ subset V such that V ⊂ U . Since B1, B2 ∈ U , there exist t1, t2 > 0 and r1, r2 ∈
(1 − λ, 1] such that B1 ∩ r1

∗ ⊂ t1V , B2 ∩ r2
∗ ⊂ t2V . Taking r = min{r1, r2}, t = max{t1, t2},

then we have (B1∪B2)∩r∗ = (B1∩r∗)∪(B2∩r∗) ⊂ (B1∩r∗1)∪(B1∩r∗2) ⊂ t1V ∪t2V ⊂ tV ⊂ tU,

thus B1 ∪B2 ∈ U .

(IB4) Let B1, B2 ∈ U . Then for each λ ∈ (0, 1] and Q-neighborhood U of θλ, there exists a

balanced Q−λ subset V such that V +V ⊂ U (see [19]). Considering that B1, B2 ∈ U , there exist

t1, t2 > 0 and r1, r2 ∈ (1− λ, 1] such that B1 ∩ r1
∗ ⊂ t1V , B2 ∩ r2

∗ ⊂ t2V . Let r = min{r1, r2},
t = max{t1, t2}. We have (B1 + B2) ∩ r∗ = (B1 ∩ r∗) + (B2 ∩ r∗) ⊂ (B1 ∩ r∗1) + (B1 ∩ r∗2) ⊂
t1V + t2V ⊂ tV + tV ⊂ tU, thus B1 +B2 ∈ U .

(IB5) Let B ∈ U . For any α ∈ K, firstly, we need to prove αB ∈ U . In fact, for each

λ ∈ (0, 1] and Q-neighborhood U of θλ, there exists a balanced Q−λ subset V such that V ⊂ U .

Note that B ∈ U , so there exist t > 0 and r ∈ (1 − λ, 1] such that B ∩ r ⊂ tV . Thus, we have

(αB) ∩ r∗ = α(B ∩ r∗) ⊂ αtV ⊂ (|αt| + 1)V ⊂ (|αt| + 1)U . Next, we prove for each B ∈ U ,∪
|α|≤1 αB ∈ U . In fact, for each λ ∈ (0, 1] and Q-neighborhood U of θλ, there exists a balanced

Q− λ subset V such that V ⊂ U . Note that B ∈ U , so there exist t > 0 and r ∈ (1− λ, 1] such

that B ∩ r ⊂ tV . Thus, we have (
∪

|α|≤1 αB) ∩ r∗ =
∪

|α|≤1 α(B ∩ r∗) ⊂
∪

|α|≤1 αtV ⊂ tV ⊂ tU .
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�
In [22], Wu and Fang introduced the definition of fuzzy norms. Then Wu and Ma gave the

notion of fuzzy semi-norms [20], and indicate that the fuzzy norm is a special fuzzy semi-norm.

Furthermore, in [16], Wu and Ma gave several examples of fuzzy norm on concrete vector spaces

such as the vector space Lw[0, 1] = ∩p≥1Lp[0, 1] (where Lp[0, 1] = {f(t) : f(t) is measurable

function on [0, 1], and satisfies
∫ 1

0
|f(t)|pdt < ∞}). In which, letting p(fλ) = (

∫ 1

0
|f(t)|pdt)λ, for

each λ ∈ (0, 1] and for all f ∈ Lw[0, 1], they proved p(fλ) is a fuzzy norm on Lw[0, 1], so it is

a fuzzy semi-norm naturally. The examples show that the definition of fuzzy semi-norm in the

sense of Wu and Ma is practical. Now we use the definition of I-semi-norm in [16] to introduce

another example of I-vector bornology.

Definition 3.4 ([16]) A mapping p : Pt(IX) → [0,+∞) is called an I-semi-norm on X, if it

satisfies the following conditions:

(1) p(kxλ) = |k|p(xλ) for all xλ ∈ Pt(IX) and all k ∈ K;

(2) p(xλ + yλ) ≤ p(xλ) + p(yλ);

(3) p(xλ) is nonincreasing and left continuous for λ.

Definition 3.5 Let X be a vector space over K, p be an I-semi-norm on X. A fuzzy subset A

of X is said to be an I-λ-bounded subset for the I-semi norm p if p(A) = sup{p(xλ)|xλ∈̃A} < ∞,

λ ∈ (0, 1]. (Appoint sup ∅ = 0).

Example 3.6 The fuzzy subsets of X which are I-λ-bounded subsets for the I-semi-norm p

form an I-vector bornology on X, λ ∈ (0, 1].

Proof Let U ∗ = {A| p(A) = sup{p(xλ)|xλ∈̃A} < ∞}. We need to prove it satisfies the

conditions (IB1)–(IB5) in Definition 3.1.

(IB1) For any x ∈ X, it is easy to know that sup{p(xλ)|xλ∈̃{x}} = p(xλ) < ∞, which

means that {x} ∈ U ∗, so X =
∪

A∈U ∗ A.

(IB2) Let A1 ⊂ A2 and A2 ∈ U ∗. Consider the fact that {p(xλ)|xλ∈̃A1} ⊂ {p(xλ)|xλ∈̃A2},
hence sup{p(xλ)|xλ∈̃A1} ≤ sup{p(xλ)|xλ∈̃A2} < ∞, which shows A1 ∈ U ∗.

(IB3) LetA1, A2 ∈ U ∗. Notice that {p(xλ)|xλ∈̃(A1∪A2)} = {p(xλ)|xλ∈̃A1}∪{p(xλ)|xλ∈̃A2},
hence sup{p(xλ)|xλ∈̃(A1∪A2)} = max{sup{p(xλ)|xλ∈̃A1}, sup{p(xλ)|xλ∈̃A2}} < ∞, which im-

plies that A1 ∪A2 ∈ U ∗.

(IB4) Let A1, A2 ∈ U ∗. Notice that

{p(xλ)|xλ∈̃(A1 +A2)} ⊂ {p(sλ)|sλ∈̃A1}+ {p(tλ)|tλ∈̃A2},

where s+ t = x. So

sup{p(xλ)|xλ∈̃(A1 +A2)} ≤ sup{p(sλ)|sλ∈̃A1}+ sup{p(tλ)|tλ∈̃A2} < ∞,

thus A1 +A2 ∈ U ∗.

(IB5) Let A ∈ U ∗. For any α ∈ K, if α = 0, then sup{p(xλ)|xλ∈̃αA} = sup{p(θλ)} <

∞; if α ̸= 0, then {p(xλ)|xλ∈̃αA} = {p(xλ)|(1/αx)λ∈̃αA} = {p(α · 1/αx)λ)|(1/αx)λ∈̃αA} =
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|α|{p(yλ)|yλ∈̃A}, obviously, αA ∈ U ∗.

Meanwhile, since

sup{p(xλ)|xλ∈̃
∪

|α|≤1

αA} = sup{
∪

|α|≤1

{p(xλ)|xλ∈̃αA}} = sup{
∪

|α|≤1

|α|{p(yλ)|yλ∈̃A}} < ∞,

which means
∪

|α|≤1 αA ∈ U ∗. �

Remark 3.7 From Examples 3.3 and 3.6, we know easily that (X,U ) and (X,U ∗) both are

IBV Ss.

4. Induced IBVS

In this section, we introduce one method of constructing an IBV S and prove a characteri-

zation theorem of the induced IBV S.

At the beginning, we construct a family ω(B) of fuzzy subsets on X, which satisfies that a

fuzzy subset A ∈ ω(B) iff σr(A) ∈ B for each r ∈ [0, 1). Then, we prove the following theorem:

Theorem 4.1 Let (X,B) be a BV S. Then (X,ω(B)) is an IBV S.

Proof We just need to prove that ω(B) satisfies the conditions (IB1)–(IB5) in Definition 3.1.

(IB1) By (B1), we have X =
∪

A∈B A, which implies supA∈B A(x) = 1, ∀x ∈ X. From

A = σr(A) ∈ B for any r ∈ [0, 1), we know that A ∈ ω(B). Thus supA∈ω(B) A(x) = 1, hence

X =
∪

A∈ω(B) A.

(IB2) Let A1 ⊂ A2 and A2 ∈ ω(B). Thus σr(A2) ∈ B for each r ∈ [0, 1). Meanwhile, note

that σr(A1) ⊂ σr(A2), we have σr(A1) ∈ B for every r ∈ [0, 1), which means that A1 ∈ ω(B).

(IB3) Let A1, A2 ∈ ω(B). Then σr(A1), σr(A2) ∈ B for each r ∈ [0, 1). From (B3) we

obtain that σr(A1)∪σr(A2) ∈ B. Note that σr(A1∪A2) = σr(A1)∪σr(A2). Thus σr(A1∪A2) ∈ B

for each r ∈ [0, 1), which implies that A1 ∪A2 ∈ ω(B).

(IB4) Let A1, A2 ∈ ω(B). Then σr(A1), σr(A2) ∈ B for each r ∈ [0, 1). From (B4) we

have σr(A1) + σr(A2) ∈ B. Note that σr(A1 + A2) = σr(A1) + σr(A2). Thus σr(A1 + A2) ∈ B

for each r ∈ [0, 1), which implies that A1 +A2 ∈ ω(B).

(IB5) Let A ∈ ω(B). Then σr(A) ∈ B for each r ∈ [0, 1). For any λ ∈ K , by Remark

2.4 and (B5), we have λσr(A) = σr(λA) and σr(λA) ∈ B for any r ∈ [0, 1), which implies that

λA ∈ ω(B). Simultaneously, by Remark 2.4 and (B5), we have

σr(
∪

|λ|≤1

λA) =
∪

|λ|≤1

σr(λA) =
∪

|λ|≤1

λσr(A),

and σr(
∪

|λ|≤1 λA) ∈ B for any r ∈ [0, 1), which implies that
∪

|λ|≤1 λA ∈ ω(B).

Thus from Definition 4.1, we know that (X,ω(B)) is an IBV S. �

Remark 4.2 From Theorem 4.1, we know that a vector bornology B can induce an I-vector

bornology ω(B), where ω(B) is called an induced I-vector bornology, and (X,ω(B)) is called an

induced IBV S.
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Lemma 4.3 Let (X, IB) be an IBV S. Then (X, IBr) is a BV S for each r ∈ [0, 1), where

IBr = {σr(B
∗) : B∗ ∈ IB}.

Proof We need to prove that for each r ∈ [0, 1), IBr satisfies the conditions (B1)–(B5) in

Definition 2.3.

(B1) Obviously, when (X, IB) is an IBV S, from (IB1), we have for each x ∈ X and

r ∈ [0, 1), there exists B∗ ∈ IB, such that B∗(x) > r, hence x ∈ σr(B
∗), which implies that

X ⊂
∪

B∗∈B∗ σr(B
∗) (r ∈ [0, 1)), and so X =

∪
B∗∈IB σr(B

∗).

(B2) Let B1 ⊂ B2 and B2 ∈ IBr. Then there exists B∗
2 ∈ IB, such that B2 = σr(B

∗
2).

When r ∈ (0, 1), we put

B∗
1(x) =


(B∗

2(x) + r)/2, x ∈ B1;

r − ε0, x ∈ B2 \B1;

B∗
2(x), x ∈ X \B2,

where ε0 ∈ (0, r). If x ∈ B1, it is easy to know that B∗
2(x) > (B∗

2(x) + r)/2 = B∗
1(x). If

x ∈ B2 \ B1, B
∗
2(x) > r > r − ε0. If x ∈ X \ B2, B

∗
1(x) = B∗

2(x). Therefore, B
∗
1(x) ≤ B∗

2(x) for

any x ∈ X, so B∗
1 ⊂ B∗

2 . By (IB2), we obtain that B∗
1 ∈ IB. Meanwhile, it is not difficult to

prove that B1 = σr(B
∗
1). In fact, for each x ∈ B1, we have B∗

1(x) = (B∗
2(x) + r)/2 > r, which

means x ∈ σr(B
∗
1), thus B1 ⊂ σr(B

∗
1); Conversely, for each x ∈ σr(B

∗
1), we have B∗

1(x) > r,

which implies that x ∈ B1, or if x∈B1, by the definition of B∗
1 , B

∗
1(x) < r. So σr(B

∗
1) ⊂ B1.

When r = 0, we put

B∗
1(x) =

{
B∗

2(x)/2, x ∈ B1

0, x ∈ X \B1.

Repeat the above proof, we could obtain same conclusion, that is B1 ∈ IBr for r ∈ [0, 1).

(B3) Let B1, B2 ∈ IBr. Then there exist B∗
1 , B

∗
2 ∈ IB, such that B1 = σr(B

∗
1), B2 =

σr(B
∗
2). By (IB3), we have B∗

1 ∪ B∗
2 ∈ IB. Meanwhile, by Remark 2.4, we have B1 ∪ B2 =

σr(B
∗
1) ∪ σr(B

∗
2) = σr(B

∗
1 ∪B∗

2), so we have B1 ∪B2 ∈ IBr.

(B4) Let B1, B2 ∈ IBr. Then there exist B∗
1 , B

∗
2 ∈ IB, such that B1 = σr(B

∗
1), B2 =

σr(B
∗
2). By Remark 2.4, we have σr(B

∗
1) + σr(B

∗
2) = σr(B

∗
1 +B∗

2). Considering B∗
1 +B∗

2 ∈ IB,

thus we obtain that B1,+B2 ∈ IBr.

(B5) Let B ∈ IBr. Then there exists B∗ ∈ IB, such that B = σr(B
∗). For any λ ∈ K, by

Remark 2.4 and (IB5), we obtain that λB = λσr(B
∗) = σr(λB

∗), and λB∗ ∈ IB, which implies

that λB ∈ IBr.

Likewise, by Remark 2.4, we have∪
|λ|≤1

λB =
∪

|λ|≤1

λσr(B
∗) =

∪
|λ|≤1

σr(λB
∗) = σr(

∪
|λ|≤1

λB∗).

Note that
∪

|λ|≤1 λB
∗ ∈ IB, so

∪
|λ|≤1 λB ∈ IBr.

Therefore, for each r ∈ [0, 1), (X, IBr) is a BV S. �
Then, we will show the characterization theorem of the induced IBV S.

Theorem 4.4 Let (X, IB) be an IBV S, B be a vector bornology, and ω(B) be an induced
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I-vector bornology. Then IB = ω(B) if and only if B ⊂ IB and IBr = B for each r ∈ [0, 1).

Proof Necessary. Let IB = ω(B). Now, we prove B ⊂ IB. In fact, if B ∈ B, notice that

B is a crisp set, then σr(B) = B ∈ B for each r ∈ [0, 1), which means B ∈ ω(B). Hence,

B ⊂ IB = ω(B).

Next, we need to prove IBr = B for each r ∈ [0, 1). In fact, it is obvious from the above

proof that B ⊂ IBr. Conversely, if B ∈ IBr, then there exists an I-vector bornological subset

B∗ ∈ IB such that B = σr(B
∗). Considering that IB = ω(B), then B ∈ B, so IBr ⊂ B for

each r ∈ [0, 1).

Sufficiency. If B ∈ IB, from Lemma 4.3 and IBr = B, we have σr(B) ∈ B for each

r ∈ [0, 1). It implies that B ∈ ω(B), so IB ⊂ ω(B). If B ∈ ω(B), we know that σr(B) ∈ B ⊂ IB

for each r ∈ [0, 1). Meanwhile, from the decomposition theorem of a fuzzy set and Remark 2.4

(see [15]), we have

B =
∪

r∈[0,1]

[r∗ ∩ σr(B)] ⊂
∪

r∈[0,1]

σr(B) = σ0(B) ∪
∪

r∈(0,1]

rσr(
1

r
B).

Noting that ω(B) is an I-vector bornology. So for r ∈ (0, 1), 1
rB ∈ ω(B), naturally, σr(

1
rB) ∈

B ⊂ IB. Thus, by (IB5) and (IB2) in Definition 3.1, B ∈ IB, which means ω(B) ⊂ IB. So,

IB = ω(B). �

5. An IBVS generated by I-bornological linear map

In this section, we will give the other method for constructing new IBV S by using I-

bornological linear maps. For this, we will introduce the definition of fuzzy linear map due to

Katsaras and Liu [17] firstly.

Definition 5.1 Let X,Y be two vector spaces over K. Then f is called a fuzzy linear map

from X into Y (where f is a fuzzy map extended by the general map f̃ , see [20]), if for any

A,B ∈ IX , f(αA+ βB) = αf(A) + βf(B), α, β ∈ K.

By using the definition of fuzzy linear map, we give:

Definition 5.2 Let (X, IB) and (Y, ID) be two I-vector bornological spaces. If f is a fuzzy

linear map of X into Y and for each B∗ ∈ IB, f(B∗) ∈ ID. Then f is called an I-bornological

linear map.

Obviously, the identity map of any IBV S is an I-bornological linear map. As another

example of the I-bornological linear map, and from [1] and Theorem 4.1, we have:

Example 5.3 The linear map from IBV S (X, IB) into the scalar field K is an I-bornological

linear map, where the scalar field K is endowed with the I-vector bornology defined by U ,

U = {A : K −→ [0, 1]|σr(A) ⊂ K and sup{|b| : b ∈ σr(A)} < ∞}.

Theorem 5.4 Let (X, IB), (Y, ID) and (Z, IC) be three I-vector bornological spaces, and

f : X −→ Y , g : Y −→ Z be two I-bornological linear maps. Then g ◦ f is an I-bornological
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linear map.

An I-vector bornology IB1 on X is a Finer Bornology than an I-vector bornology IB2 on

X (or IB2 is a Coarser Bornology than IB1) if IB1 ⊂ IB2. It is not difficult to prove the

following result:

Theorem 5.5 The identity map (X, IB1) −→ (X, IB2) is an I-bornological linear map if and

only if IB1 ⊂ IB2.

It is easy to prove or obtain from [20] the following result:

Lemma 5.6 Let X,Y be two non-empty sets, f : X → Y and A,B ∈ IX . Then

(1) A ⊂ B ⇒ f(A) ⊂ f(B);

(2) f(
∪

α∈A Aα
) =

∪
α∈A f(Aα).

Then we show the method for obtaining a new IBV S:

Theorem 5.7 Let (Xα,Uα)(α ∈ A ) be a family of I-vector bornological spaces, and X be a

vector space. Suppose that, for every α ∈ A , fα : X −→ Xα is a linear map. If the family U

of all fuzzy subsets A on X has the following property: Every A ∈ U iff fα(A) ∈ Uα for each

α ∈ A . Then U is an I-vector bornology on X.

Proof Using the conditions (IB1)–(IB5) in Definition 3.1 and Lemma 5.6, we can easily obtain

the result, so we just prove the conditions (IB1) and (IB3).

(IB1) For each x ∈ X and α ∈ A , fα(x) ∈ Xα. Since Uα is an I-vector bornology, by

(IB1) in Definition 3.1, we know that fα(x) ∈ Uα, thus {x} ∈ U , which means X =
∪

A∈U A.

(IB3) Let A1, A2 ∈ U . By Lemma 5.6, we know fα(A1 ∪ A2) = fα(A1) ∪ fα(A2). Since

fα(A1), fα(A2) ∈ Uα, fα(A1) ∪ fα(A2) ∈ Uα, which implies A1 ∪A2 ∈ U .

It follows that the theorem is proved. �
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