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Abstract Let τ be a subgroup functor andH a p-subgroup of a finite groupG. Let Ḡ = G/HG

and H̄ = H/HG. We say that H is Φ-τ -supplement in G if Ḡ has a subnormal subgroup T̄

and a τ -subgroup S̄ contained in H̄ such that Ḡ = H̄T̄ and H̄ ∩ T̄ ≤ S̄Φ(H̄). In this paper,

some new characterizations of hypercyclically embedability and p-nilpotency of a finite group

are obtained based on the assumption that some primary subgroups are Φ-τ -supplement in

G.

Keywords Sylow subgroups; subnormal subgroups; subgroup functor; p-nilpotent group;

Φ-τ -supplement

MR(2010) Subject Classification 20D10; 20D15; 20D20

1. Introduction

Throughout this paper, all groups considered are finite and G always denotes a group and

p denotes a prime. All unexplained notation and terminology are standard, as in [1,2].

A chief factor L/K of G is called a Frattini (non-Frattini) chief factor if L/K ≤ Φ(G/K)

(resp., L/K � Φ(G/K)). For a class of groups F, a chief factor L/K of G is said to be F-central

in G if L/K o G/CG(L/K) ∈ F. A normal subgroup N of G is said to be F-hypercentral (FΦ-

hypercentral) in G if eitherN = 1 or every chief factor (every non-Frattini chief factor) of G below

N is F-central in G. Let ZF(G) and ZFΦ(G) denote the F-hypercentre (resp., FΦ-hypercentre)

of G, respectively, that is, the product of all F-hypercentral (FΦ-hypercentral) normal subgroups

of G. In this paper, we use U to denote the classes of all supersoluble groups. It is well known

that U is a saturated formation.

A function τ which assigns each group G to a set of subgroups τ(G) of G is called a subgroup

functor [3] if 1 ∈ τ(G) and θ(τ(G)) = τ(θ(G)) for any isomorphism θ : G → G∗. If H ∈ τ(G),

then we say that H is a τ -subgroup of G.

Recall that a subgroup H of G is S-quasinormal in G if H permutes with every Sylow

subgroup of G. A subgroup H of G is said to be s-semipermutable in G (see [4]) if HGp = GpH

for any Sylow p-subgroup Gp of G with (p, |H|) = 1; weakly s-permutable in G (see [5]) if G has

a subnormal subgroup T and an s-permutable subgroup S contained in H such that G = HT
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and H ∩ T ≤ S; weakly SS-permutable in G (see [6]) if G has a subnormal subgroup T and

an SS-permutable subgroup S contained in H such that G = HT and H ∩ T ≤ S; weakly

s-semipermutable in G (see [7]) if G has a subnormal subgroup T and an s-semipermutable

subgroup S contained in H such that G = HT and H∩T ≤ S; weakly s-supplemently embedded

in G (see [8]) if G has a subnormal subgroup T and an S-quasinormal embedded subgroup S

contained in H such that G = HT and H ∩T ≤ S; Π-normal in G (see [9]) if G has a subnormal

subgroup T such that G = HT and H ∩ T ≤ S, where S is a subgroup of G contained in H and

S satisfied Π-property; SΦ-supplemented [10] in G if there exists a subnormal subgroup T of G

such that G = HT and H ∩ T ≤ Φ(H). Naturally, it is necessary to unify the above-mentioned

generalized normal subgroups and discuss the influence on the structure of a finite group by

connecting these subgroups with Frattini subgroup of G. Hence we give the following notion.

Definition 1.1 Let τ be a subgroup functor and H a p-subgroup of a finite group G. Let

Ḡ = G/HG and H̄ = H/HG. We say that H is Φ-τ -supplement in G if Ḡ has a subnormal

subgroup T̄ and a τ -subgroup S̄ contained in H̄ such that Ḡ = H̄T̄ and H̄ ∩ T̄ ≤ S̄Φ(H̄).

By [11, Examples 1.5, 1.7 and 1.9] and [12, Examples 4.6 and 4.9], we know the above

mentioned p-subgrops are Φ-τ -supplement in G. Now we introduce some properties of subgroup

functors (also, see [11,Definition 1.3]) which will be used in our results. If τ is a subgroup functor,

then we say that τ is:

(1) Inductive if for any group G, whenever H ∈ τ(G) is a p-group and N E G, then

HN/N ∈ τ(G/N).

(2) Hereditary if for any group G, whenever H ∈ τ(G) is a p-group and H ≤ E ≤ G, then

H ∈ τ(E).

(3) Regular (resp., quasiregular) if for any group G, whenever H ∈ τ(G) is a p-group

and N is a minimal normal subgroup (resp., an abelian minimal normal subgroup) of G, then

|G : NG(H ∩N)| is a power of p.

(4) Φ-regular (resp., Φ-quasiregular) if for any primitive group G, whenever H ∈ τ(G) is

a p-group and N is a minimal normal subgroup (resp., an abelian minimal normal subgroup) of

G, then |G : NG(H ∩N)| is a power of p.

2. Preliminaries

In the following section, we will introduce some lemmas used in this paper.

Lemma 2.1 Let H be a p-subgroup of G and τ an inductive subgroup functor. Suppose that

H is Φ-τ -supplement in G.

(1) If N EG and either N ≤ H or (|H|, |N |) = 1, then HN/N is Φ-τ -supplement in G/N .

(2) If τ is hereditary and H ≤ K ≤ G, then H is Φ-τ -supplement in K.

Proof Let Ḡ = G/HG and H̄ = H/HG. Since H is Φ-τ -supplement G, Ḡ has a subnormal

subgroup T̄ and a τ -subgroup S̄ contained in H̄ such that Ḡ = H̄T̄ and H̄ ∩ T̄ ≤ S̄Φ(H̄).

(1) Let Ĝ = G/(HN)G, ĤN = HN/(HN)G, T̂ = T (HN)G/(HN)G and Ŝ = S(HN)G/(HN)G.

Clearly, HG ≤ (HN)G. Then Ŝ ∈ τ(Ĝ) for τ is inductive. It is easy to see that T̂ is subnormal
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in Ĝ and Ĝ = ĤNT̂ . Since (|N |, |H|) = 1, (|NH ∩ T : T ∩ N |, |NH ∩ T : T ∩H|) = 1. Hence

(NH ∩ T ) = (N ∩ T )(H ∩ T ). It follows that ĤN ∩ T̂ = HN/(HN)G ∩ T (HN)G/(HN)G =

(H ∩ T )(HN)G/(HN)G ≤ (S(HN)G/(HN)G)Φ(HN/(HN)G)) = ŜΦ(ĤN). Therefore, HN/N

is Φ-τ -supplement in G/N .

(2) It is easy to see that HG ≤ HK . Let K̃ = K/HK , H̃ = H/HK , T̃ = THK/HK ∩K/HK

and S̃ = SHK/HK . Since τ is hereditary and inductive, S̃ ∈ τ(K̃). Clearly, T̃ is subnormal

in K̃ and K̃ = H̃T̃ . It is easy to see that H̃ ∩ T̃ = H/HK ∩ THK/HK = (H ∩ T )HK/HK ≤
(SHK/HK)Φ(H/HK) = S̃Φ(H̃). Hence H is Φ-τ -supplement in K. �

Lemma 2.2 [12, Lemma 2.6] Let F be a nonempty solubly saturated formation and P a normal

subgroup of G. If P/Φ(P ) ≤ ZF(G/Φ(P )), then P ≤ ZF(G).

The next lemma is clear.

Lemma 2.3 Let p be a prime divisor of |G| with (|G|, p− 1) = 1.

(1) If G has a cyclic Sylow p-subgroup, then G is p-nilpotent.

(2) If N is a normal subgroup of G such that |N |p ≤ p and G/N is p-nilpotent, then G is

p-nilpotent.

Let P be a p-group. If P is not a non-abelian 2-group, then we use Ω(P ) to denote the

subgroup Ω1(P ). Otherwise, Ω(P ) = Ω2(P ).

Lemma 2.4 ([11, Lemma 4.4]) Let F be a saturated formation, P a normal p-subgroup of G

and C a Thompson critical subgroup of P (see [13, p.186]). If C ≤ ZF(G) or Ω(C) ≤ ZF(G),

then P ≤ ZF(G).

Lemma 2.5([14, Lemma 2.10]) Let C be a Thompson critical subgroup of a nontrivial p-group

P .

(1) If p is odd, then the exponent of Ω1(C) is p.

(2) If P is an abelian 2-group, then the exponent of Ω1(C) is 2.

(3) If p = 2, then the exponent of Ω2(C) is at most 4.

Lemma 2.6 ([15, Theorem B]) Let F be any formation and E a normal subgroup of G. If

F ∗(E) ≤ ZF(G), then E ≤ ZF(G).

3. Main results

In this section, we will give the main conclusions of this paper.

Proposition 3.1 Let F be a saturated formation containing all supersoluble groups and τ

a Φ-quasiregular (resp., quasiregular) inductive subgroup functor. Suppose that P is a nor-

mal p-subgroup of G and every maximal subgroup of P is Φ-τ -supplement in G. Then P ≤
ZFΦ(G) (resp., P ≤ ZF(G)).

Proof Suppose that the theorem is false and let (G,P ) be a counterexample with |G| + |P |
minimal. Then:
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(1) G has a unique minimal normal subgroup N contained in P , P/N ≤ ZFΦ(G/N) (resp.,

P/N ≤ ZF(G/N)) and P ∩ ZFΦ(G) = 1 (resp., P ∩ ZF(G) = 1).

Let N be any minimal normal subgroup of G contained in P . Clearly, by Lemma 2.1(1),

(G/N,P/N) satisfies the hypothesis, and so the choice of (G,P ) yields that P/N ≤ ZFΦ(G/N)

(resp., P/N ≤ ZF(G/N)). If P ∩ZFΦ(G) > 1 (resp., P ∩ZF(G) > 1), without loss of generality,

we may assume that N ≤ P ∩ ZFΦ(G) (resp., N ≤ P ∩ ZF(G)). It induces that P ≤ ZFΦ(G)

(resp., P ≤ ZF(G)), a contradiction. Thus P ∩ ZFΦ(G) = 1 (resp., P ∩ ZF(G) = 1). Suppose

that G has a minimal normal subgroup R contained in P such that N ̸= R. With a similar

discussion as above, we have that P/R ≤ ZFΦ(G/R) (resp., P/R ≤ ZF(G/R)). First, assume

that NR/R � Φ(G/R). Then, in the above two cases, we have NR/R ≤ ZF(G/R). Now we

assume that NR/R ≤ Φ(G/R). If P ∩ ZFΦ(G) = 1, then P ∩ Φ(G) = 1. By [1, Chap. A,

Lemma 9.1], NR ≤ P ∩ Φ(G)R = R, a contradiction. Hence we only consider τ is quasiregular.

Then P/N ≤ ZF(G/N), and so NR/R ≤ ZF(G/R). From G-isomorphism R ∼= NR/R, we have

N ≤ ZF(G), which is impossible. Thus N is the unique minimal normal subgroup of G contained

in P .

(2) Φ(P ) ̸= 1.

If Φ(P ) = 1, then P is elementary abelian. Let N1 be a maximal subgroup of N such that

N1 is normal in some Sylow p-subgroup of G, say Gp. Then P1 = N1S is a maximal subgroup

of P , where S is a complement of N in P . Obviously, (P1)G = 1 and Φ(P1) = 1. Therefore

by hypothesis, G has a subnormal subgroup T and a τ -subgroup S contained in P1 such that

G = P1T and P1 ∩ T ≤ S. Then G = PT and P = P ∩ P1T = P1(P ∩ T ). It is easy to see that

1 ̸= P∩TEG. HenceN ≤ P∩T , and so P1∩N ≤ P1∩T ≤ S. It follows thatN1 = P1∩N = S∩N .

If N � Φ(G), then G has a maximal subgroup M such that G = N o M . Clearly by (1),

P ∩MG = 1. By hypothesis, |G : NG(N1MG)| = |G : NG((S∩N)MG)| = |G : NG(SMG∩NMG)|
is a power of p. This implies thatN1MGEG and soN1 = N1MG∩PEG, a contradiction. We may,

therefore, assume that N ≤ Φ(G). If P/N ≤ ZFΦ(G/N), then P ≤ ZFΦ(G), a contradiction.

Hence we only consider that τ is quasiregular. It follows that |G : NG(N1)| = |G : NG(S ∩N)|
is a power of p. Thus N1 EG, a contradiction too. Therefore Φ(P ) ̸= 1.

(3) The final contradiction.

By (1) and (2), N ≤ Φ(P ). This induces P/Φ(P ) ≤ ZFΦ(G/Φ(P )) (resp., P/Φ(P ) ≤
ZF(G/Φ(P ))) and so P ≤ ZFΦ(G) (resp., P ≤ ZF(G)) by Lemma 2.2. The final contradiction

ends the proof. �

Theorem 3.2 Let E be a normal subgroup of G and P a Sylow p-subgroup of E such that

(|E|, p− 1) = 1. Suppose that τ is a Φ-regular inductive subgroup functor and every τ -subgroup

of G contained in P is subnormally embedded in G. If every maximal subgroup of P is Φ-τ -

supplement in G, then E is p-nilpotent.

Proof Suppose that the theorem is false and let (G,E) be a counterexample with |G| + |E|
minimal. We now proceed via the following steps:

(1) Op′(E) = 1.

Suppose that Op′(E) ̸= 1. LetM/Op′(E) be a maximal subgroup of POp′(E)/Op′(E). Then
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M = P1Op′(E) for some maximal subgroup P1 of P . By the Lemma 2.1(1) and the hypothesis,

P1Op′(E)/Op′(E) is Φ-τ -supplement E/Op′(E). This shows that (G/Op′(E), E/Op′(E)) satisfies

the hypothesis of the theorem. The choice of (G,E) implies that E/Op′(E) is p-nilpotent, and

so E is p-nilpotent, a contradiction. Hence Op′(E) = 1.

(2) G has a unique minimal normal subgroup N contained in E, E/N is p-nilpotent and

G = NM , where M is a maximal subgroup of G.

Let N be a minimal normal subgroup of G contained in E and H/N be a maximal subgroup

PN/N . Then there exists a maximal subgroup P1 of P such that H = P1N and P1∩N = P ∩N .

Set Ḡ = G/(P1)G and P̄1 = P1/(P1)G. By the hypothesis, Ḡ has a subnormal subgroup T̄ and

a τ -subgroup S̄ contained in P̄1 such that Ḡ = P̄1T̄ and P̄1 ∩ T̄ ≤ S̄Φ(P̄1), where S̄ = S/(P1)G

and T̄ = T/(P1)G. Let Ĝ = G/(P1N)G, P̂1N = P1N/(P1N)G, T̂ = T (P1N)G/(P1N)G and

Ŝ = S(P1N)G/(P1N)G. Since (|P1N ∩ T : P1 ∩ T |, |P1N ∩ T : N ∩ T |) = 1, P1N ∩ T =

(P1 ∩ T )(N ∩ T ). By using a similar discussion as in the proof of Lemma 2.1(1), we have that

H/N is Φ-τ -supplement in G/N . This shows that (G/N,E/N) satisfies the hypothesis of the

theorem. The choice of (G,E) implies that E/N is p-nilpotent. Since the class of all p-nilpotent

groups is a saturated formation, N is the unique minimal normal subgroup of G contained in E

and N � Φ(G). Then there exists a maximal subgroup M of G such that G = NM .

(3) Op(E) = 1.

Suppose that Op(E) ̸= 1. Then by (2), N ≤ Op(E) and G = NoM . Since Op(G) ≤ CG(N),

Op(G) ∩ M is normal in G and so Op(E) ∩ M is normal in G. If Op(E) ∩ M ̸= 1, then N ≤
Op(E) ∩M , a contradiction. Thus Op(E) ∩M = 1. It follows that Op(E) = Op(E) ∩NM = N

and it is easy to see that CE(N) = N . Denote K = M ∩ E. Then E = N o K. Let Kp be

a Sylow p-subgroup of K such that P = NKp and Mp a Sylow p-subgroup of M containing

Kp. Then Gp = NMp is a Sylow p-subgroup of G. Let N1 be a maximal subgroup of N such

that N1 is normal in Gp. Then G1 = N1Mp is a maximal subgroup of Gp, P1 = N1Kp is a

maximal subgroup of P and P = NP1. If (P1)G ̸= 1, then by (2), N ≤ P1 and so P = P1,

a contradiction. Hence (P1)G = 1. By the hypothesis, G has a subnormal subgroup T and a

τ -subgroup S contained in P1 such that G = P1T and P1 ∩ T ≤ SΦ(P1).

Since τ is a Φ-regular inductive subgroup functor, |G/MG : NG/MG
(SMG/MG∩NMG/MG)|

is a power of p. If SMG ∩ NMG ̸= MG, then (SMG/MG ∩ NMG/MG)
G/MG = (SMG/MG ∩

NMG/MG)
GpMG/MG ≤ G1MG/MG and so N ≤ G1MG. Hence N = N ∩ G1MG = N ∩

N1MpMG = N1, a contradiction. Thus SMG ∩ NMG = MG. Obviously, SN ∩ MG = 1 be-

cause E ∩ MG = 1. Hence SMG ∩ NMG = (S ∩ N)MG = MG and so S ∩ N ≤ MG ∩ N = 1.

Assume that S ̸= 1. Since S is subnormally embedded in G, there exists a subnormal subgroup

V of G such that S is a Sylow p-subgroup of V . Without loss of generality, we may assume

that V ≤ E. Let L be a minimal subnormal subgroup of G contained in V . Since Op′(L) is

subnormal in G, Op′(L) = 1 by (1). By (2), we know that E is p-soluble and so L is p-soluble.

This follows that L = Op(L) ≤ Op(E) = N . It implies that L ∩ S = 1, which is impossible.

Hence S = 1. Since E = E ∩ P1T = P1(E ∩ T ), Op(E) ≤ E ∩ T and so N ≤ T by (2). It

implies that P1 ∩ N ≤ Φ(P1). This deduces that P1 = P1 ∩ NKp = Kp(P1 ∩ N) = Kp. Hence

N1 = P1 ∩N = Kp ∩N = 1, and thereby |N | = p. By (2) and Lemma 2.3(2), we have that E is
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p-nilpotent, a contradiction. Therefore Op(E) = 1.

(4) N ∩ P < P .

If not, then P ≤ N . If N < E, then the choice of the (G,E) shows N is p-nilpotent. Then

by (1), N is a p-group, which contradicts (3). Hence E = N . Let P1 be a maximal subgroup of

P . Obviously, (P1)G = 1. Hence G has a subnormal subgroup T and a τ -subgroup S contained

in P1 such that G = P1T and P1 ∩ T ≤ SΦ(P1). Assume that S ̸= 1. Since τ is Φ-regular and

inductive, |G : NG(SMG)| is a power of p. It follows that N ≤ SGMG = SGpMG ≤ GpMG,

where Gp is a Sylow p-subgroup of G containing P . Then N = N ∩ GpMG = N ∩ Gp because

N ∩MG = 1. It follows that N is a p-group. This contradicts (3). Hence S = 1. It is easy to see

that N ≤ Op(G) ≤ T . It follows that P1 = Φ(P1), a contradiction. Hence N ∩ P < P .

(5) Final contradiction.

By (4), P has a maximal subgroup P1 such that N ∩ P ≤ P1. Clearly, (P1)G = 1. By

hypothesis, G has a subnormal subgroup T and a τ -subgroup S contained in P1 such that

G = P1T and P1 ∩ T ≤ SΦ(P1).

We show that S = 1. Assume that S ̸= 1. By (2), SN ∩MG = 1. Thus SMG ∩ NMG =

(S ∩ N)MG. Since τ is Φ-regular and inductive, |G : NG(SMG ∩ NMG)| is a power of p. If

S ∩N ̸= 1, then N ≤ (S ∩N)GMG = (S ∩N)GpMG ≤ GpMG, where Gp is a Sylow p-subgroup

of G contained in P . It follows that N = N ∩GpMG = N ∩Gp, that is, N is a p-group, which

contradics (3). Thus S ∩ N = 1. By using a similar dicussion as in (3), let S be a Sylow p-

subgroup of a subnormal subgroup V of G and L a minimal subnormal subgroup of G contained

in V . By (1) and (3), L is a nonabelian simple group. It is easy to see that L∩N = 1 or L ≤ N .

If L∩N = 1, then by (2), L ∼= LN/N ≤ E/N is p-nilpotent, which is impossible. If L ≤ N , then

S ∩ L = 1. It implies that L is a p′-group, a contradiction. Hence S = 1.

Clearly, N ≤ T and so N ∩ P ≤ N ∩ P1 ≤ Φ(P ). Then by [16, Chap. IV, Satz 4.7], N is

p-nilpotent, a contradiction too. The proof is completed. �

Proposition 3.3 Let F be a saturated formation containing all supersoluble groups, E be

a normal subgroup of G and τ a regular inductive subgroup functor. Suppose that every τ -

subgroup of G contained in E is subnormally embedded in G and every maximal subgroup of

every noncyclic Sylow subgroup of E is Φ-τ -supplement in G. Then E ≤ ZF(G).

Proof Suppose that the theorem is false and let (G,E) be a counterexample with |G| + |E|
minimal. Let p be the smallest prime divisor of |E| and P a Sylow p-subgroup of X. If P is cyclic,

then E is p-nilpotent by Lemma 2.3(1). Now assume that P is not cyclic. Then by Theorem 3.2,

E is p-nilpotent. Let V be the normal p-complement of E. Then V is normal in G. If V = 1,

then by Proposition 3.1, E ≤ ZF(G), a contradiction. Hence V ̸= 1. Then it is easy to see that

(G,V ) satisfies the hypothesis, so V ≤ ZF(G). On the other hand, by Lemma 2.1(1), we know

that (G/V,E/V ) satisfies the hypothesis. The choice of (G,E) implies that E/V ≤ ZF(G/V ).

It implies that E ≤ ZF(G), a contradiction too. �

Proposition 3.4 Let τ be a quasiregular inductive subgroup functor and P a normal p-subgroup

of G. If every cyclic subgroup of P of prime order or order 4 (when P is a non-abelian 2-group)



On Φ-τ -supplement subgroups of finite groups 287

is Φ-τ -supplement in G, then P ≤ ZU(G).

Proof Suppose that the theorem is false and let (G,P ) be a counterexample with |G| + |P |
minimal. Then:

(1) G has a unique normal subgroup N contained in P such that P/N is a chief factor of

G, N ≤ ZU(G) and |P/N | > p.

Let P/N be a chief factor of G. Clearly, (G,N) satisfies the hypothesis. The choice of

(G,P ) implies that N ≤ ZU(G). If |P/N | = p, then P/N ≤ ZU(G/N), and so P ≤ ZU(G),

a contradiction. Hence |P/N | > p. Now assume that P/R is a chief factor of G such that

N ̸= R. Then with a similar argument as above, we have that R ≤ ZU(G). It follows that

P = NR ≤ ZU(G), a contradiction. Therefore, N is the unique normal subgroup of G such that

P/N is a chief factor of G.

(2) The exponent of P is p or 4 (when P is a non-abelian 2-group).

Let C be a Thompson critical subgroup of P . If Ω(C) < P , then Ω(C) ≤ N ≤ ZU(G) by

(1), and so P ≤ ZU(G) by Lemma 2.4, which is impossible. Thus P = Ω(C). Then by Lemma

2.5, the exponent of P is p or 4 (when P is a non-abelian 2-group).

(3) The final contradiction.

Since P/N ∩ Z(Gp/N) > 1, where Gp is a Sylow p-subgroup of G, there exists a subgroup

V/N of order p contained in P/N ∩ Z(Gp/N). Let x ∈ V \N and H = ⟨x⟩. Then V = HN .

By (2), |H| = p or 4 (when P is a non-abelian 2-group). If V E G, then P = V by (1), and so

|P/N | = p, a contradiction. Hence V is not normal in G. Clearly by (1), HG ≤ VG = N . By

the hypothesis, G/HG has a subnormal subgroup T/HG and a τ -subgroup S/HG contained in

H/HG such that G = HT and (H/HG) ∩ (T/HG) ≤ (S/HG)Φ(H/HG). Assume that S/HG =

H/HG. Since τ is a quasiregular inductive subgroup functor, SN/N is a τ -subgoup of G/N and

|G : NG(V )| = |G : NG(HN)| is a power of p. It follows that V EG, a contradiction. Therefore,

we assume that S/HG ̸= H/HG. Then H/HG∩T/HG ≤ Φ(H/HG). Obviously, HG ̸= H. Hence

H ∩ T ≤ Φ(H). In this case, P ∩ T < P , and so (P ∩ T )G = (P ∩ T )P < P . This means from

(1) that (P ∩ T )G ≤ N , and so P = H(P ∩ T ) = HN = V . The final contradiction completes

the proof of the theorem. �

Theorem 3.5 Let τ be a regular inductive subgroup functor. Suppose that E is a normal

subgroup of G and P is a Sylow p-subgroup of E such that (|E|, p − 1) = 1. If every cyclic

subgroup of P of prime order or order 4 (when P is a non-abelian 2-group) is Φ-τ -supplement

in G, then E is p-nilpotent.

Proof Suppose that it is false and let (G,E) be a counterexample for which |G|+ |E| is minimal.

We prove theorem via the following steps.

(1) Op′(E) = 1

See step (1) in the proof of Theorem 3.2.

(2) E/Op(E) is a chief factor of G and Op(E) ≤ Z∞(E).

Let N be a normal subgroup of G such that N < E. It is easy to see that (G,N) satisfies

the hypothesis of the theorem, hence by the choice of (G,E), N is p-nilpotent. It follows from
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(1) that N is a p-group and so N ≤ Op(E). It shows that E/Op(E) is a chief factor of G.

Since (|E|, p − 1) = 1, ZU(E) = Z∞(E). It follows from Proposition 3.4 that Op(E) ≤
ZU(G) ∩ E ≤ ZU(E) = Z∞(E).

(3) p = 2 and E/O2(E) is a non-abelian chief factor of G.

If p - |E/Op(E)|, then E/Op(E) is p-nilpotent, and so by (2), E is p-nilpotent, a contra-

diction. Hence p|E/Op(E)|. Since E/Op(E) is a chief factor of G, E/Op(E) is non-abelian, and

thereby E is not soluble. Since (|E|, p− 1) = 1, by Feit-Thompson Theorem, we have p = 2.

(4) Final contradiction.

By [16, Chap. IV, Satz 5.4], E has a 2-closed minimal non 2-nilpotent subgroup A. Let A2

be a Sylow 2-subgroup of A contained in P . Then by [1, Chap. VII, Theorem 6.18], A2/Φ(A2)

is a chief factor of A; Φ(A) = Z∞(A); Φ(A2) = A2 ∩ Φ(A) and the exponent of A2 is p or

4 (when P is a non-abelian 2-group). By (2), A2 ∩ O2(E) ≤ A2 ∩ Z∞(E) ≤ A2 ∩ Z∞(A) =

A2 ∩ Φ(A) = Φ(A2). Hence there exists an element x ∈ A2\O2(E). Let H = ⟨x⟩. Then

|H| = p or 4 (when P is a non-abelian 2-group). By hypothesis, G/HG has a subnormal

subgroup T/HG and a τ -subgroup S/HG contained in H/HG such that G = HT = A2T and

(H/HG)∩(T/HG) ≤ (S/HG)Φ(H/HG). IfH/HG = S/HG, thenHO2(E)/O2(E) is a τ -subgroup

of G/O2(E) because τ is inductive. Since τ is regular and E/O2(E) is a minimal normal subgroup

of G/O2(E), |G/O2(E) : NG/O2(E)(E/O2(E)∩HO2(E)/O2(E))| = |G : NG(HO2(E))| is a power
of 2. Hence (HO2(E))G is a 2-group, and so H ≤ O2(E), a contradiction. Therefore, we assume

that S/HG < H/HG. Then H ∩ T ≤ Φ(H), and so A � T . Since A = A2(A ∩ T ), A ∩ T ̸= 1. It

implies that A∩T is a 2-nilpotent group because that A is a minimal non 2-nilpotent group. Let

A2′ be a normal 2-complement of A∩ T . Since A2′ is a subnormal Hall subgroup of A, A2′ EA.

It implies that A2′ is a normal 2-complement of A, which is impossible. The proof of the theorem

is completed. �

Proposition 3.6 Let E be a normal subgroup of G and τ a regular inductive subgroup functor.

Suppose that every cyclic subgroup of P of prime order or order 4 (when P is a non-abelian

2-group) is Φ-τ -supplement in G. Then E ≤ ZU(G).

Proof See the proof of Proposition 3.3 and use Proposition 3.4 and Theorem 3.5 instead of

Proposition 3.1 and Theorem 3.2. �

Theorem 3.7 Let F be a formation containing all supersoluble groups, τ a regular inductive

subgroup functor and E a normal subgroup of G such that G/E ∈ F. Suppose that X = E or

X = F ∗(E). If one of the following holds:

(i) Every τ -subgroup of G contained in E is subnormally embedded in G and every maximal

subgroup of every noncyclic Sylow subgroup of X is Φ-τ -supplement in G;

(ii) For every noncyclic Sylow subgroup P of X, every cyclic subgroup of P of prime order

or order 4 (when P is a non-abelian 2-group) is Φ-τ -supplement in G.

Then G ∈ F.

Proof By Propositions 3.3 and 3.6, we have that X ≤ ZU(G) ≤ ZF(G). Therefore, by Lemma

2.6, E ≤ ZF(G). Consequently, G ∈ F. �
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4. Further applications

In view of [11, Examples 1.5, 1.7 and 1.9] and [12, Examples 4.6 and 4.9], many results in

former literatures can be generalized by our theorem. For example, [17, Theorems 3.2 and 3.7];

[18, Theorems 3.1 and 3.3]; [19, Theorem 3.3]; [20, Theorems 3.4, 3.7 and Corollary 3.5]; [21,

Theorems 3.2, 3.5 and Corollary 3.2]; [10, Lemmas 2.2, 2.3 2.4 and Theorem 3.1]; [22, Theorems

3.1 and 3.2]; [23, Theorem]; [24, Theorems 3.2, 3.3, 3.6 and 3.7] and so on.
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