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Abstract In this paper, we consider point spectra of the operator corresponding to the M/M/1

queueing model with working vacation and vacation interruption. We prove that the underlying

operator has uncountable eigenvalues on the left real line and these results describe the point

spectra of the operator. Then, we show that the essential growth bound of the C0-semigroup

generated by the operator is 0 and therefore it is not quasi compact, the essential spectral

bound of the C0-semigroup is equal to 1. Moreover, our results imply it is impossible that the

time-dependent solution of the model exponentially converges to its steady-state solution.
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1. Introduction

According to Zhang and Hou [1], the M/M/1 queueing system with working vacation and

vacation interruption can be described by the following system of partial differential equations

with integral boundary conditions:

dp0,0(t)

dt
= −λp0,0(t) + µ0

∫ ∞

0

p1,0(x, t)dx+ µ1

∫ ∞

0

p1,1(x, t)dx,

∂p1,0(x, t)

∂t
+

∂p1,0(x, t)

∂x
= −[λ+ θ + µ0]p1,0(x, t),

∂pn,0(x, t)

∂t
+

∂pn,0(x, t)

∂x
= −[λ+ θ + µ0]pn,0(x, t) + λpn−1,0(x, t), ∀n ≥ 2, (1.1)

∂p1,1(x, t)

∂t
+

∂p1,1(x, t)

∂x
= −[λ+ µ1]p1,1(x, t),

∂pn,1(x, t)

∂t
+

∂pn,1(x, t)

∂x
= −[λ+ µ1]pn,1(x, t) + λpn−1,1(x, t), ∀n ≥ 2,

with boundary conditions:

p1,0(0, t) = λp0,0(t),

pn,0(0, t) = 0, ∀n ≥ 2,
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pn,1(0, t) = θ

∫ ∞

0

pn,0(x, t)dx+ µ0

∫ ∞

0

pn+1,0(x, t)dx+

µ1

∫ ∞

0

pn+1,1(x, t)dx, ∀n ≥ 1, (1.2)

and initial condition:

p0,0(0) = ϕ0, pm,0(x, 0) = ϕk(x), ∀k ≥ 1; pm,1(x, 0) = φm(x), ∀m ≥ 1, (1.3)

where, (x, t) ∈ [0,∞) × [0,∞); p0,0(t) represents the probability that there is no customer in

the system and the server is in a working vacation period at time t; pn,0(x, t)dx (n ≥ 1) is the

probability that at time t the server is in a working vacation period and there are n customers

in the system with elapsed service time of the customer undergoing service lying in (x, x+ dx];

pn,1(x, t)dx (n ≥ 1) is the probability that at time t the server is in a regular busy period and

there are n customers in the system with elapsed service time of the customer undergoing service

lying in (x, x + dx]; λ is the mean arrival rate of customers; θ is the vacation duration rate of

the server; µ0 is the service rate of the server while the server is in a working vacation period.

µ1 is the service rate of the server while the server is in a regular busy period.

In classical vacation queueing models, the server completely stops service during the vacation

period. However, there are numerous situations where the server remains active during the

vacation period which is called working vacation [2]. In 2002, Servi and Finn [3] first studied the

M/M/1 queueing system with multiple working vacation and obtained the transform formula

for the distribution of the number of customers in the system and the sojourn time in a steady

state. Moreover, Wu and Takagi [4] extended Servi and Finn’s [3] M/M/1 queueing system

to an M/G/1 queueing system with multiple working vocation. In 2007, Li and Tian [5] first

introduced the vacation interruption policy in an M/M/1 queueing model. Since then, vacation

interruption models have been studied by several researchers, see Ke et al. [6], Zhang and Hou [1],

Gao et al. [7], Liu et al. [8], Lee and Kim [9] and the references given there.

In 2010, Zhang and Hou [1] considered the M/G/1 queueing system with working vacation

and vacation interruption where the server enters into vacations when there are no customers and

it can take service at a lower rate during the vacation period. If there are customers in the system

at the instant of a service completion during the vacation period, the server will come back to the

normal working level no matter whether or not the vacation has ended. Otherwise, it continues

the vacation. Using supplementary variable technique they established the above model and gave

the Laplace-Stieltjes transform of the stationary waiting time. Then, they presented the queue

length distribution and service status at an arbitrary epoch in steady state condition. In 2016, by

using the C0-semigroups theory Kasim [10] did dynamic analysis and proved that the above model

has a unique positive time-dependent solution which satisfies the probability condition. When the

service completion rates are constant (in this case the M/G/1 queueing model is called M/M/1

queueing model), by studying spectral properties of the underlying operator corresponding to

the model he obtained that the time-dependent solution of the model strongly converges to its

steady-state solution. In 2017, Kasim and Gupur [11] studied the asymptotic property of the
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time-dependent solution of the general case of above model by using the boundary perturbation

method which was developed by the Greiner [12]. So far, no other results have been found in the

literature. In this paper, inspired from the queueing model studied by Gupur [13–15] we prove

that if λ < µ1, then all points inγ ∈ C

∣∣∣∣∣∣
ℜγ + θ + µ0 > 0, ℜγ + µ1 > 0,∣∣∣γ + λ+ µ1 ±

√
(γ + λ+ µ1)2 − 4λµ1

∣∣∣ < 2µ1

 ∪ {0}

are eigenvalue of A+U+E with geometric multiplicity one. In particular, the interval (−min{θ+
µ0, µ1}, 0] belongs to its point spectrum when λ < µ1 < 2

√
λµ1 − λ − θ − µ0. Therefore, our

results imply that the C0-semigroup generated by the underlying operator is not compact, even

not eventually compact. Moreover, by combining the results in this paper and the results in [10]

together with [16, Corollary 2.11] we deduce that the essential growth bound of the C0-semigroup

is 0. So, it is not quasi-compact. In addition, we show that the spectral radius and the essential

spectral radius of the C0-semigroup are equal to 1, respectively. Altogether, we can conclude

it is impossible that the time-dependent solution of the model exponentially converges to its

steady-state solution.

Our first aim is to rewrite the Eqs. (1.1)–(1.3) in the form of an abstract Cauchy problem

on a suitable Banach space. For this purpose we select the following state space (we follow the

notation of Gupur et al. [17], Kasim [10,11]).

X = {(p0, p1)
∣∣∣ p0 ∈ Y1, p1 ∈ Y2, ∥(p0, p1)∥ = ∥p0∥Y1 + ∥p1∥Y2 < ∞},

Y1 =
{
p0 ∈ R× L1[0,∞)× · · ·

∣∣∥p0∥ = |p0,0|+
∞∑

n=1

∥pn,0∥L1[0,∞) < ∞
}
,

Y2 =
{
p1 ∈ L1[0,∞)× L1[0,∞) · · ·

∣∣∥p1∥ =

∞∑
n=1

∥pn,1∥L1[0,∞) < ∞
}
.

It is obvious that X is a Banach space. For simplicity, we introduce

Γ1 =


e−x 0 0 0 · · ·
λe−x 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 , Γ2 =


0 θ 0 0 · · ·
0 0 θ 0 · · ·
0 0 0 θ · · ·
...

...
...

...
. . .

 ,

Γ3 =


0 0 µ0 0 0 · · ·
0 0 0 µ0 0 · · ·
0 0 0 0 µ0 · · ·
...

...
...

...
...

. . .

 , Γ4 =


0 µ1 0 0 · · ·
0 0 µ1 0 · · ·
0 0 0 µ1 · · ·
...

...
...

...
. . .

 .
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Now we define operators and their domain as follows.

A





p0,0

p1,0(x)

p2,0(x)

p3,0(x)
...


,



p1,1(x)

p2,1(x)

p3,1(x)

p4,1(x)
...




=





−λ 0 0 0 · · ·
0 − d

dx 0 0 · · ·
0 0 − d

dx 0 · · ·
0 0 0 − d

dx · · ·
...

...
...

...
. . .





p0,0

p1,0(x)

p2,0(x)

p3,0(x)
...


,


− d

dx 0 0 · · ·
0 − d

dx 0 · · ·
0 0 − d

dx · · ·
...

...
...

. . .




p1,1(x)

p2,1(x)

p3,1(x)
...



 ,

D(A) =

(p0, p1) ∈ X

∣∣∣∣∣∣∣∣∣
dpn,0

dx ∈ L1[0,∞),
dpn,1

dx ∈ L1[0,∞), pn,0(x) and pn,1(x)

(n ≥ 1) are absolutely continuous and p0(0) = Γ1p0;

p1(0) =
∫∞
0

Γ2p0dx+
∫∞
0

Γ3p0dx+
∫∞
0

Γ4p1dx

 .

U





p0,0

p1,0(x)

p2,0(x)

p3,0(x)
...


,



p1,1(x)

p2,1(x)

p3,1(x)

p4,1(x)
...




=





0 0 0 0 · · ·
0 D0 0 0 · · ·
0 λ D0 0 · · ·
0 0 λ D0 · · ·
...

...
...

...
. . .





p0,0

p1,0(x)

p2,0(x)

p3,0(x)
...


,


D1 0 0 · · ·
λ D1 0 · · ·
0 λ D1 · · ·
...

...
...

. . .




p1,1(x)

p2,1(x)

p3,1(x)
...



 , D(U) = X,

here

D0 = −(λ+ θ + µ0), D1 = −(λ+ µ1).

E




p0,0

p1,0(x)

p2,0(x)
...

 ,


p1,1(x)

p2,1(x)

p3,1(x)
...





=




∫∞
0

µ0(x)p1,0(x)dx+
∫∞
0

µ1(x)p1,1(x)dx

0

0
...

 ,


0

0

0
...



 , D(E) = X.
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Then the above system of equations (1.1)–(1.3) can be written as an abstract Cauchy problem

in Banach space X. 

d(p0,p1)(t)
dt = (A+ U + E)(p0, p1)(t), t ∈ (0,∞),

(p0, p1)(0) =



1

0
...

 ,


0

0
...


 .

(1.4)

Kasim [10] have obtained the following result.

Theorem 1.1 A+U +E generates a positive contraction C0-semigroup T (t). T (t) is isometric

for the initial value. Therefore, the system (1.4) has a unique positive time-dependent solution

(p0, p1)(x, t) = T (t)(p0, p1)(0) satisfying

∥(p0, p1)(·, t)∥ = 1, ∀t ∈ [0,∞).

In addition, the time-dependent solution (p0, p1)(x, t) of the system (1.4) strongly converges to

its steady-state solution (p0, p1)(x), i.e.,

lim
t→∞

∥(p0, p1)(·, t)− β(p0, p1)(·)∥ = 0,

here β is decided by the eigenvector satisfying (A+ U + E)∗(q∗0 , q
∗
1) = 0 and initial value.

2. Main results

In this section, we describe the point spectra of A + U + E and obtain the main results of

this paper.

Theorem 2.1 If λ < µ1, then all points in the setγ ∈ C

∣∣∣∣∣∣
ℜγ + θ + µ0 > 0, ℜγ + µ1 > 0∣∣∣γλ+ µ1 ±

√
(γ + λ+ µ1)2 − 4λµ1

∣∣∣ < 2µ1

 ∪ {0}

are eigenvalue of A+U+E with geometric multiplicity one. In particular, the interval (−min{θ+
µ0, µ1}, 0] belongs to the point spectrum of A+ U + E when λ < µ1 < 2

√
λµ1 − λ− θ − µ0.

Proof We consider the equation [γI − (A+ U + E)](p0, p1) = 0, which is equivalent to

(γ + λ)p0,0 =µ0

∫ ∞

0

p1,0(x)dx+ µ1

∫ ∞

0

p1,1(x)dx, (2.1)

dp1,0(x)

dx
=− (γ + λ+ θ + µ0)p1,0(x), (2.2)

dpn,0(x)

dx
=− (γ + λ+ θ + µ0)pn,0(x) + λpn−1,0(x), n ≥ 2, (2.3)

dp1,1(x)

dx
=− (γ + λ+ µ1)p1,1(x), (2.4)

dpn,1(x)

dx
=− (γ + λ+ µ1)pn,1(x) + λpn−1,1(x), n ≥ 2, (2.5)

p1,0(0) =λp0,0, (2.6)
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pn,0(0) =0, n ≥ 2, (2.7)

pn,1(0) =θ

∫ ∞

0

pn,0(x)dx+ µ0

∫ ∞

0

pn+1,0(x)dx+

µ1

∫ ∞

0

pn+1,1(x)dx, n ≥ 1. (2.8)

Solving (2.2)–(2.5) we have

p1,0(x) =p1,0(0)e
−(γ+λ+θ+µ0)x, (2.9)

pn,0(x) =pn,0(0)e
−(γ+λ+θ+µ0)x+

λe−(γ+λ+θ+µ0)x

∫ x

0

pn−1,0(s)e
(γ+λ+θ+µ0)sds, n ≥ 2, (2.10)

p1,1(x) =p1,1(0)e
−(γ+λ+µ1)x, (2.11)

pn,1(x) =pn,1(0)e
−(γ+λ+µ1)x+

λe−(γ+λ+µ1)x

∫ x

0

pn−1,1(s)e
(γ+λ+µ1)sds, n ≥ 2. (2.12)

By combining (2.6) and (2.7) with (2.9) and (2.10) we deduce

p1,0(x) = λp0,0 e−(γ+λ+θ+µ0)x, (2.13)

p2,0(x) = λe−(γ+λ+θ+µ0)x

∫ x

0

λp0,0ds = λp0,0
λx

1!
e−(γ+λ+θ+µ0)x, (2.14)

p3,0(x) = λe−(γ+λ+θ+µ0)x

∫ x

0

λp0,0
λx

1!
ds = λp0,0

(λx)2

2!
e−(γ+λ+θ+µ0)x, (2.15)

· · ·

pn,0(x) = λe−(γ+λ+θ+µ0)x

∫ x

0

pn−1,0(s)e
(γ+λ+θ+µ0)sds

= λp0,0
(λx)n−1

(n− 1)!
e−(γ+λ+θ+µ0)x, n ≥ 1. (2.16)

By using (2.11) and (2.12) repeatedly we obtain

p2,1(x) = p2,1(0)e
−(γ+λ+µ1)x + λe−(γ+λ+µ1)x

∫ x

0

p1,1(s)e
(γ+λ+µ1)sds

= p2,1(0)e
−(γ+λ+µ1)x + λe−(γ+λ+µ1)x

∫ x

0

p1,1(0)ds

= [p2,1(0) +
λx

1!
p1,1(0)]e

−(γ+λ+µ1)x

= e−(γ+λ+µ1)x
2∑

k=1

(λx)2−k

(2− k)!
pk,1(0), (2.17)

p3,1(x) = p3,1(0)e
−(γ+λ+µ1)x + λe−(γ+λ+µ1)x

∫ x

0

p2,1(s)e
(γ+λ+µ1)sds

= p3,1(0)e
−(γ+λ+µ1)x + λe−(γ+λ+µ1)x

∫ x

0

[p2,1(0) +
λs

1!
p1,1(0)]ds

= [p3,1(0) +
λx

1!
p2,1(0) +

(λx)2

2!
p1,1(0)]e

−(γ+λ+µ1)x



Point spectra of the operator corresponding to the M/M/1 queueing model 81

= e−(γ+λ+µ1)x
3∑

k=1

(λx)2−k

(3− k)!
pk,1(0), (2.18)

· · ·

pn,1(x) = [pn,1(0) +
λx

1!
pn−1,1(0) +

(λx)2

2!
pn−2,1(0) + · · ·+

(λx)n−1

(n− 1)!
p1,1(0)]e

−(γ+λ+µ1)x

= e−(γ+λ+µ1)x
n∑

k=1

(λx)n−k

(n− k)!
pk,1(0), n ≥ 1. (2.19)

Since
∫∞
0

xke−ωxdx =
k!

ωk+1
for ω > 0 and k ≥ 1, (2.16) and (2.19) imply, for ℜγ+λ+θ+µ0 > 0,

ℜγ + λ+ µ1 > 0 ∫ ∞

0

pn,0(x)dx = λp0,0
λn−1

(n− 1)!

∫ ∞

0

xn−1e−(γ+λ+θ+µ0)xdx

=
λn−1

(γ + λ+ θ + µ0)n
λp0,0, n ≥ 1, (2.20)∫ ∞

0

pn,1(x)dx =
n∑

k=1

λn−k

(n− k)!
pk,1(0)

∫ ∞

0

xn−ke−(γ+λ+µ1)xdx

=

n∑
k=1

λn−k

(γ + λ+ µ1)n+1−k
pk,1(0), n ≥ 1. (2.21)

Combining (2.8) with (2.20) and (2.21) gives

p1,1(0) =
µ1

γ + λ+ µ1
p2,1(0) +

µ1λ

(γ + λ+ µ1)2
p1,1(0)+

λ[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ θ + µ0)2
p0,0, (2.22)

p2,1(0) =
µ1

γ + λ+ µ1
p3,1(0) +

µ1λ

(γ + λ+ µ1)2
p2,1(0) +

µ1λ
2

(γ + λ+ µ1)3
p1,1(0)+

λ2[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ θ + µ0)3
p0,0, (2.23)

p3,1(0) =
µ1

γ + λ+ µ1
p4,1(0) +

µ1λ

(γ + λ+ µ1)2
p3,1(0) +

µ1λ
2

(γ + λ+ µ1)3
p2,1(0)+

µ1λ
3

(γ + λ+ µ1)4
p1,1(0) +

λ3[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ θ + µ0)4
p0,0, (2.24)

· · ·

pn,1(0) =
µ1

γ + λ+ µ1
pn+1,1(0) +

µ1λ

(γ + λ+ µ1)2
pn,1(0)+

µ1λ
2

(γ + λ+ µ1)3
pn−1,1(0) + · · ·+ µ1λ

n−1

(γ + λ+ µ1)n
p2,1(0)+

µ1λ
n

(γ + λ+ µ1)n+1
p1,1(0) +

λn[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ θ + µ0)n+1
p0,0
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=

n+1∑
k=1

µ1λ
n+1−k

(γ + λ+ µ1)n+2−k
pk,1(0)+

λn[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ θ + µ0)n+1
p0,0, n ≥ 2, (2.25)

=⇒

pn+1,1(0) =
n+2∑
k=1

µ1λ
n+2−k

(γ + λ+ µ1)n+3−k
pk,1(0)+

λn+1[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ θ + µ0)n+2
p0,0, n ≥ 1. (2.26)

By (2.26) − λ
γ+λ+µ1

× (2.25) it follows that

pn+1,1(0)−
λ

γ + λ+ µ1
pn,1(0)

=

n+2∑
k=1

µ1λ
n+2−k

(γ + λ+ µ1)n+3−k
pk,1(0) +

λn+1[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ θ + µ0)n+2
p0,0−

n+1∑
k=1

µ1λ
n+2−k

(γ + λ+ µ1)n+3−k
pk,1(0)−

λn+1[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ µ1)(γ + λ+ θ + µ0)n+1
p0,0

=
µ1

γ + λ+ µ1
pn+2,1(0) +

λn+1(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

(γ + λ+ µ1)(γ + λ+ θ + µ0)n+2
p0,0

=⇒

pn+2,1(0) =
γ + λ+ µ1

µ1
pn+1,1(0)−

λ

µ1
pn,1(0)−

λn+1(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)n+2
p0,0, n ≥ 2. (2.27)

If we set

pn+2,1(0)− αpn+1,1(0)− πn+2 = β(pn+1,1(0)− αpn,1(0)− πn+1) ⇐⇒

pn+2,1(0) = (α+ β)pn+1,1(0)− αβpn,1(0)− (πn+2 − βπn+1), n ≥ 2, (2.28)

then comparison of (2.27) and (2.28) shows that

α+ β =
γ + λ+ µ1

µ1
, αβ =

λ

µ1
, (2.29)

πn+2 − βπn+1 =
λn+1(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)n+2
p0,0, n ≥ 2. (2.30)

From (2.29) it follows that

α =
γ + λ+ µ1 +

√
(γ + λ+ µ1)2 − 4λµ1

2µ1
, (2.31)

β =
γ + λ+ µ1 −

√
(γ + λ+ µ1)2 − 4λµ1

2µ1
. (2.32)

The equation (2.28) implies

pn+2,1(0)− αpn+1,1(0)− πn+2 = β(pn+1,1(0)− αpn,1(0)− πn+1)
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= β2(pn,1(0)− αpn−1,1(0)− πn) = β3(pn−1,1(0)− αpn−2,1(0)− πn−1)

= · · ·

= βn−1(p3,1(0)− αp2,1(0)− π3), n ≥ 2. (2.33)

Applying (2.33), we get

pn+1,1(0)− αpn,1(0)− πn+1 = βn−2(p3,1(0)− αp2,1(0)− π3) =⇒

αpn+1,1(0)− α2pn,1(0)− απn+1 = αβn−2(p3,1(0)− αp2,1(0)− π3), (2.34)

pn,1(0)− αpn−1,1(0)− πn = βn−3(p3,1(0)− αp2,1(0)− π3) =⇒

α2pn,1(0)− α3pn−1,1(0)− α2πn = α2βn−3(p3,1(0)− αp2,1(0)− π3), (2.35)

pn−1,1(0)− αpn−2,1(0)− πn−1 = βn−4(p3,1(0)− αp2,1(0)− π3) =⇒

α3pn−1,1(0)− α4pn−2,1(0)− α3πn−1 = α3βn−4(p3,1(0)− αp2,1(0)− π3), (2.36)

· · ·

p5,1(0)− αp4,1(0)− π5 = β2(p3,1(0)− αp2,1(0)− π3) =⇒

αn−3p5,1(0)− αn−2p4,1(0)− αn−3π5 = αn−3β2(p3,1(0)− αp2,1(0)− π3), (2.37)

p4,1(0)− αp3,1(0)− π4 = β(p3,1(0)− αp2,1(0)− π3) =⇒

αn−2p4,1(0)− αn−1p3,1(0)− αn−2π4 = αn−2β(p3,1(0)− αp2,1(0)− π3). (2.38)

Adding both side of (2.33) to (2.38) we have for n ≥ 2

pn+2,1(0)− αn−1p3,1(0)− πn+2 − απn+1 − α2πn − α3πn−1 − · · · − αn−3π5 − αn−2π4

= [βn−1 + αβn−2 + α2βn−3 + α3βn−4 + · · ·+ αn−3β2 + αn−2β](p3,1(0)− αp2,1(0)− π3)

=⇒

pn+2,1(0) = [βn−1 + αβn−2 + α2βn−3 + α3βn−4 + · · ·+ αn−3β2 + αn−2β + αn−1]p3,1(0)−

[βn−1 + αβn−2 + α2βn−3 + α3βn−4 + · · ·+ αn−3β2 + αn−2β]αp2,1(0)−

[βn−1 + αβn−2 + α2βn−3 + α3βn−4 + · · ·+ αn−3β2 + αn−2β]π3+

n+2∑
k=4

αn+2−kπk.

Hence, when α = β by the Cauchy products we calculate

pn+2,1(0) = nαn−1p3,1(0)− (n− 1)αnp2,1(0)− (n− 1)αn−1π3+

n+2∑
k=4

αn+2−kπk, n ≥ 2

=⇒
∞∑

n=2

|pn+2,1(0)| ≤ |p3,1(0)|
∞∑

n=2

n|α|n−1 + |p2,1(0)|
∞∑

n=2

(n− 1)|α|n+

|π3|
∞∑

n=2

(n− 1)|α|n−1 +
∞∑

n=2

|πn+2|
∞∑
k=1

|α|k−1. (2.39)
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When α ̸= β also by the Cauchy products we derive

pn+2,1(0) =
αn − βn

α− β
p3,1(0)− α(

αn − βn

α− β
− αn−1)p2,1(0)−

(
αn − βn

α− β
− αn−1)π3 +

n+2∑
k=4

αn+2−kπk, n ≥ 2

=⇒
∞∑

n=2

|pn+2,1(0)| ≤
|p3,1(0)|
|α− β|

( ∞∑
n=2

|α|n +
∞∑

n=2

|β|n
)
+

α|p2,1(0)|
[ 1

|α− β|

( ∞∑
n=2

|α|n +

∞∑
n=2

|β|n
)
+

∞∑
n=2

|α|n−1
]
+

|π3|
[ 1

|α− β|

( ∞∑
n=2

|α|n +

∞∑
n=2

|β|n
)
+

∞∑
n=2

|α|n−1
]
+

∞∑
n=2

|πn+2|
∞∑
k=1

|α|k−1. (2.40)

From (2.30) we deduce

πn+2 − βπn+1 =
λn+1(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)n+2
p0,0,

βπn+1 − β2πn = β
λn(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)n+1
p0,0,

β2πn − β3πn−1 = β2λ
n−1(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)n
p0,0,

· · ·

βn−4π6 − βn−3π5 = βn−4λ
5(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)6
p0,0,

βn−3π5 − βn−2π4 = βn−3λ
4(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)5
p0,0.

Adding both sides of the above equation and using the Cauchy products, we obtain

πn+2 = βn−2π4 +
n−3∑
k=0

βk λ
n+1−k(µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)n+2−k
p0,0,

=⇒
∞∑

n=2

πn+2 ≤ |π4|+ |π4|
∞∑

n=3

|β|n−2 + | (µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1
||p0,0|×

∞∑
n=3

n−3∑
k=0

| λn+1−k

(γ + λ+ θ + µ0)n+2−k
||β|k

= |π4|
∞∑

n=2

|β|n−2 + | (µ1 − θ − µ0)[µ0(λ+ θ) + θ(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)
||p0,0|×
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∞∑
n=3

| λ

γ + λ+ θ + µ0
|n

∞∑
k=0

|β|k. (2.41)

From (2.21) and the Cauchy products of series we estimate, when ℜγ + µ1 > 0

∥pn,1∥L1[0,∞) ≤
n∑

k=1

λn−k

(ℜγ + λ+ µ1)n+1−k
|pk,1(0)|, n ≥ 1,

=⇒
∞∑

n=1

∥pn,1∥L1[0,∞) ≤
∞∑

n=1

n∑
k=1

λn−k

(ℜγ + λ+ µ1)n+1−k
|pk,1(0)|

=
∞∑

n=1

λn−1

(ℜγ + λ+ µ1)n

∞∑
n=1

|pn,1(0)|

=
1

ℜγ + µ1

∞∑
n=1

|pn,1(0)|. (2.42)

From (2.20) and the Cauchy products of series we estimate, when ℜγ + θ + µ0 > 0

∥pn,0∥L1[0,∞) ≤
λn−1

(ℜγ + λ+ θ + µ0)n
λ|p0,0|,

=⇒
∞∑

n=1

∥pn,0∥L1[0,∞) ≤
∞∑

n=1

λn−1

(ℜγ + λ+ θ + µ0)n
λ|p0,0|

≤ λ

ℜγ + θ + µ0
|p0,0|. (2.43)

For simplicity, let

Ω :=

{
γ ∈ C

∣∣∣∣∣ ℜγ + θ + µ0 > 0, ℜγ + µ1 > 0∣∣∣γ + λ+ µ1 ±
√

(γ + λ+ µ1)2 − 4λµ1

∣∣∣ < 2µ1

}
.

It is easy to see that

γ ∈ Ω ⇐⇒ ℜγ + θ + µ0 > 0, ℜγ + µ1 > 0, |α| < 1, |β| < 1.

Consequently, together with (2.39) and (2.40) we know that
∑∞

n=2 |pn+2,1(0)| < ∞ when γ ∈ Ω.

Substituting (2.9) and (2.11) into (2.7) and noting ℜγ + θ + µ0 > 0, ℜγ + µ1 > 0 yields

(γ + λ)p0,0 = µ0

∫ ∞

0

p1,0(x)dx+ µ1

∫ ∞

0

p1,1(x)dx

= µ0

∫ ∞

0

p1,0(0)e
−(γ+λ+θ+µ0)xdx+ µ1

∫ ∞

0

p1,1(0)e
−(γ+λ+µ1)xdx

=
µ1

γ + λ+ µ1
p1,1(0) +

λµ1

γ + λ+ θ + µ0
p0,0

=⇒

p1,1(0) =
(γ + λ+ µ1)[µ0γ + (γ + λ)(γ + λ+ θ)]

µ1(γ + λ+ θ + µ0)
p0,0. (2.44)

Combining (2.44) with (2.22) and (2.23), we can get that |p1,1(0)|, |p2,1(0)| and |p3,1(0)| are finite
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for γ ∈ Ω. Therefore

∞∑
n=1

|pn,1(0)| = |p1,1(0)|+ |p2,1(0)|+ |p3,1(0)|+
∞∑

n=2

|pn+2,1(0)| < ∞. (2.45)

Together with (2.42) and (2.43) we conclude that

∥(p0, p1)∥ = |p0,0|+
∞∑

n=1

∥pn,0∥L1[0,∞) +

∞∑
n=1

∥pn,1∥L1[0,∞) < ∞,

which shows that all γ ∈ Ω are eigenvalues of A + U + E. Moreover, from (2.16), (2.19) and

(2.43) it is evident that the eigenvectors corresponding to each γ span 1 dimensional linear space,

i.e., their geometric multiplicity is one.

In the following, we consider the case that γ is a real number and obtain explicit results,

which includes the following three cases:

Case 1 If (γ + λ+ µ1)
2 > 4λµ1 ⇒ γ + λ+ µ1 > 2

√
λµ1 ⇒ γ > 2

√
λµ1 − λ− µ1, then by noting

γ + µ1 > 0, γ + θ + µ0 > 0, an easy computation shows that

0 < (γ + λ+ µ1)
2 − 4λµ1 < (γ + λ− µ1)

2 ⇒ |α| < 1, |β| < 1,

which together with λ < µ1 < 2
√
λµ1 − λ+ θ+µ0 implies γ ∈ Ω, that is, all points in (2

√
λµ1 −

λ− µ1, 0) are eigenvalues of A+ U + E.

Case 2 If (γ + λ+ µ1)
2 = 4λµ1 ⇒ γ = 2

√
λµ1 − λ− µ1, then the condition λ < µ1 implies

α = β =
γ + λ+ µ1

2µ1
⇒ |α| = |β| = 2

√
λµ1

2µ1
=

√
λ

µ1
< 1

=⇒ γ ∈ Ω.

Therefore, γ = 2
√
λµ1 − λ− µ1 is eigenvalue of A+ U + E.

Case 3 If (γ + λ + µ1)
2 < 4λµ1 ⇒ γ + λ + µ1 < 2

√
λµ1 ⇒ γ < 2

√
λµ1 − λ − µ1, then the

condition λ < µ1 gives

α =
γ + λ+ µ1 +

√
(γ + λ+ µ1)2 − 4λµ1

2µ1

=
γ + λ+ µ1 + i

√
4λµ1 − (γ + λ+ µ1)2

2µ1

β =
γ + λ+ µ1 − i

√
4λµ1 − (γ + λ+ µ1)2

2µ1

=⇒

|α| = |β| =
√
(γ + λ+ µ1)2 − 4λµ1 − (γ + λ+ µ1)2

2µ1
=

2
√
λµ1

2µ1
=

√
λ

µ1
< 1.

If λ < µ1 < 2
√
λµ1−λ+ θ+µ0, then from γ+µ1 > 0, γ+ θ+µ0 > 0 we know that all points in

(−min{µ0 + θ, µ1}, 2
√
λµ1 − λ−µ1) are eigenvalues of A+U +E. Moreover, Kasim [10] proved

that 0 is an eigenvalue of A+ U + E when λ < µ1.
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To sum up, all points in Ω ∪ {0} are eigenvalues of A + U + E with geometric multiplicity

one. In particular, the interval (−min{µ0+θ, µ1}, 0] belongs to the point spectrum of A+U +E

when λ < µ1 < 2
√
λµ1 − λ− θ − µ0. �

3. Conclusion and discussion

Let σp(T (t)) and σp(A+ U +E) be the point spectrum of T (t) and A+ U +E respectively.

From Theorem 2.1 and the spectral mapping theorem for the point spectrum [16, p. 277]

σp(T (t)) = etσp(A+U+E) ∪ {0}

we know that T (t) has uncountable eigenvalues and therefore it is not compact, even not even-

tually compact [16, P. 330].

Corollary 2.11 in Engel and Nagel [16, P. 258] states that if T (t) is a C0-semigroup on the

Banach space X with generator A+ U + E, then

(1) ω0 = max{ωess, s(A+U+E)}, where ω0 is the growth bound of T (t), ωess is the essential

growth bound of T (t), s(A+ U + E) is the spectral bound of A+ U + E.

(2) σ(A+ U + E) ∪ {γ ∈ C|ℜγ ≥ w} is finite for each ω > ωess. Here, σ(A+ U + E) is the

spectrum of A+ U + E.

From the Theorem 1.1 we know that ω0 = 0 and s(A + U + E) = 0. These together with

the statements (1) and (2) above yield ωess = 0. From this and Proposition 3.5 in [16, P. 332],

we conclude that T (t) in not quasi-compact. Hence, this implies the essential difference between

this model and the reliability models that are described by a finite number of partial differential

equations [18], population equations [19–21].

Since ω0 = 0 and ωess = 0, from Nagel [22, P. 74] it follows that

r(T (t)) = ress(T (t)) = eωesst = e0 = 1,

where r(T (t)) and ress(T (t)) are the spectral radius and essential spectral radius of T (t), respec-

tively.

Theorem 1.1 and Proposition 4.3.14 in Arendt et al. [23, P. 268] give the decomposition

(p0, p1)(x) = (p0, p1)0(x) + (ϕ0, ϕ1)(x), (2.46)

here (p0, p1)(x) ∈ X; (p0, p1)0(x) is the eigenvector with respect to 0, i.e., (A+U+E)(p0, p1)0(x) =

0; (ϕ0, ϕ1) ∈ Range(A+ U + E) and limt→∞ ∥T (t)(ϕ0, ϕ1)∥ = 0 by ABLV theorem [23, P. 374].

Let (p0, p1)ζ(x) be eigenvector with respect to −min{µ0+ θ, µ1}ζ for ζ ∈ (0, 1) in Theorem 2.1.

Then by using (A+ U + E)(p0, p1)ζ(x) = −min{µ0 + θ, µ1}ζ(p0, p1)ζ(x) we have

T (t)((p0, p1)0(x) + (A+ U + E)(p0, p1)ζ(x))

= (p0, p1)0(x) + T (t)(A+ U + E)(p0, p1)ζ(x)

= (p0, p1)0(x) + T (t)[−min{µ0 + θ, µ1}ζ(p0, p1)ζ(x)]

= (p0, p1)0(x)−min{µ0 + θ, µ1}ζ T (t)(p0, p1)ζ(x)

= (p0, p1)0(x)−min{µ0 + θ, µ1}ζ e−min{µ0+θ,µ1}ζt(p0, p1)ζ(x)

=⇒ ∥T (t)((p0, p1)0(·) + (A+ U + E)(p0, p1)ζ(·))− (p0, p1)0(·)∥
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= min{µ0 + θ, µ1}ζe−min{µ0+θ,µ1}ζt∥(p0, p1)ζ∥, ∀t ≥ 0.

This shows that there are no positive constants ν > 0 and ϱ > 0 such that

∥T (t)
(
(p0, p1)0(·) + (A+ U + E)(p0, p1)(·)

)
− (p0, p1)0(·)∥

≤ νeϱt∥(p0, p1)∥, ∀t ≥ 0, ∀(p0, p1) ∈ D(A).

That is, it is impossible that the time-dependent solution of the system (1.4) exponentially

converges to its steady-state solution. i.e., the convergence result given in Theorem 1.1 is optimal.
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