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Abstract In this paper, we consider the r-uniform hypergraphs H with spectral radius at most
r
√

2 +
√

5. We show that H must have a quipus-structure, which is similar to the graphs with

spectral radius at most 3
2

√

2 [Woo-Neumaier, Graphs Combin. 2007].
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1. Introduction

The spectral radius ρ(G) of a graph G is the largest eigenvalue of its adjacency matrix. The

(simple, undirected and connected) graphs with small spectral radius have been well-studied in

the literature. In 1970 Smith classified all connected graphs with spectral radius at most 2. The

graphs G with ρ(G) < 2 are simple Dynkin Diagrams An, Dn, E6, E7, and E8, while the graphs

G with ρ(G) = 2 simply extend Dynkin Diagrams Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8. Cvetković et al. [1]

gave a nearly complete description of all graphs G with 2 < ρ(G) <
√
2 +
√
5. Their description

was completed by Brouwer and Neumaier [2]. Namely, E(1, b, c) for b = 2, c ≥ 6 or b ≥ 3, c ≥ 4,

E(2, 2, c) for c ≥ 3, and G1,a:b:1,c for a ≥ 3, c ≥ 2, b > a+ c.

r r r r r r rp p p p p p p p p p p p p p

r

E1,b,c

r r r r r rp p p p p p p

r

r

E2,2,c

r r r r r r r r r rp p p p p p p p p p p p p p p p p p p p p

r r

G1,a:b:1,c

Figure 1 The graphs with spectral radius between 2 and
√

2 +
√

5

Wang et al. [3] studied some graphs with spectral radius close to 3
2

√
2. Woo and Neumaier [4]

proved that any connected graph G with
√
2 +
√
5 < ρ(G) < 3

2

√
2 is one of the following graphs.

(1) If G has maximum degree at least 4, then G is a dagger (i.e., a tree obtained by attaching

a path to a leaf vertex of the star S5).
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(2) If G is a tree with maximum degree at most 3, then G is an open quipu (i.e., all vertices

of degree 3 lie on a path).

(3) If G contains a cycle, then G is a closed quipu (i.e., a unicyclic graph with maximum

degree at most 3 such that all vertices of degree 3 lie on a cycle).

In this paper, we would like to study the r-uniform hypergraphs H with small spectral

radius. In our previous paper [5], we generalized Smith’s theorem to hypergraphs and classified

all connected r-uniform hypergraphs with the spectral radius at most ρr = r
√
4. The main

method is using α-normal labeling. Roughly speaking, we can label all “corners of edges” by

some numbers in (0, 1) such that for each vertex v the sum of these numbers at v is always equal

to 1 while for each edge f the product of these numbers at f is always equal to α. The detail of

the definition of α-normal labeling can be found in Section 2. If H has a “consistent” α-normal

labeling, then ρ(H) = α−1/r. As an important corollary, any (r − 1)-uniform hypergraph H ′

with ρ(H ′) = α−1/(r−1) can be extended to an r-uniform hypergraph H with spectral radius

ρ(H) = α−1/r by simply extending each edge by adding one new vertex. If H is not extended

from someH ′, then H is called irreducible. We use the following convention: if the notation H(r′)

is an r′-uniform hypergraph, then for each r > r′, H(r) means the unique r-uniform hypergraph

extended from H(r′) by a sequence of extension described above.

From [5], we show all r-uniform hypergraphs H with ρ(H) = (r − 1)! r
√
4 listed as follows:

Extended from 2-graphs: C
(r)
n , D̃

(r)
n , Ẽ

(r)
6 , Ẽ

(r)
7 , and Ẽ

(r)
8 .

Extended from 3-graphs: B̃
(r)
n , B̃D

(r)

n , C
(r)
2 , S

(r)
4 , F

(r)
2,3,4, F

(r)
2,2,7, F

(r)
1,5,6, F

(r)
1,4,8, F

(r)
1,3,14, G

(r)
1,1:0:1,4,

and G
(r)
1,1:6:1,3.

Extended from 4-graphs: H
(r)
1,1,2,2.

Similarly here are all r-uniform hypergraphs H with ρ(H) < (r − 1)! r
√
4:

Extended from 2-graphs: A
(r)
n , D

(r)
n , E

(r)
6 , E

(r)
7 , and E

(r)
8 .

Extended from 3-graphs: D′(r)
n , B

(r)
n , B′(r)

n , B̄
(r)
n , BD

(r)
n , F

(r)
2,3,3, F

(r)
2,2,j (for 2 ≤ j ≤ 6), F

(r)
1,3,j

(for 3 ≤ j ≤ 13), F
(r)
1,4,j (for 4 ≤ j ≤ 7), F

(r)
1,5,5, and G

(r)
1,1:j:1,3 (for 0 ≤ j ≤ 5).

Extended from 4-graphs: H
(r)
1,1,1,1, H

(r)
1,1,1,2, H

(r)
1,1,1,3, H

(r)
1,1,1,4.

The details of these hypergraphs can be found in the paper [5].

It is natural to ask what structure the hypergraph with spectral radius slightly greater than

ρr can have. Since (2,
√
2 +
√
5) is the next interesting interval for the spectral radius of graphs,

naturally we consider all connected r-uniform hypergraphs H with ρ(H) ∈ ( r
√
4,

r
√
2 +
√
5).

When r = 2, these graphs are E1,b,c, E2,2,c, and G1,a:b:1,c with b > a+ c as shown by Cvetković

et al. [1] and Brouwer-Neumaier [2]. The structures of these hypergraphs are slightly more

complicated for r ≥ 3. For k ≥ 3, a vertex is called a degree-k vertex if it is incident to exactly

k edges while an edge is called a k-branching edge if it contains no degree-k vertex but it is

incident to exactly k edges (When k = 3, we simply say branching edge instead of 3-branching

edge). We have the following results.

Theorem 1.1 Consider an irreducible connected 3-uniform hypergraphH . If the spectral radius

of H satisfies ρ(H) ≤ 3

√
2 +
√
5, then no vertex (of H) can have degree more than three, no edge
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can be incident to more than 3 other edges, and each degree-3 vertex is not incident to any

branching edges. Moreover, H belongs to one of the following two categories:

(1) Open 3-quipu (see Figure 2): H is a hypertree with all branching vertices and all branch-

ing edges lying on a path. Moreover, there are at most 2 branching vertices. A branching vertex

cannot lie between two branching edges, or between a branching edge and another branching

vertex.

(2) Closed 3-quipu (see Figure 2): H contains a cycle C and no degree-3 vertex. All branching

edges lie on C, and the vertices of the branching edges not on the cycle can be only incident to

a path.

...
...

...

· · · · · ·. . . . . .

m1 m2 ms

· · ·k1 k2 k3 k4 ks+1

· · ·

· · ·

····· ·

...

. . .

m1

m2

mi

Figure 2 (Examples) Left: an open 3-quipu where the branching vertex/edges are filled in black.

Right: a closed quipu where the branching edges are filled in black.

· · · · · · · · · · · · · · ·
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· · ·

...

...

· · ·

i↑

←
j

l↓

→k

Figure 3 (Examples) Left: an open 4-quipu. Right: a 4-dagger H
(4)
i,j,k,l.

Theorem 1.2 Suppose that H is an irreducible 4-uniform hypergraphs with ρ(H) ≤ 4

√
2 +
√
5.

Then H is a hypertree with no vertex (of H) having degree more than three and no edge incident

to more than 4 other edges. The hypergraph H belongs to one of the following two categories:

(1) Open 4-quipu (see Figure 3): H is a hypertree with all degree-3 vertices and all branching

edges lying on a path. Moreover, there are at most two degree-3 vertices (or two 4-branching

edges). A 4-branching edge (or a degree-3 vertex) cannot lie between two 3-branching edges, or

between a 3-branching edge and another 4-branching edge (or a degree-3 vertex). In addition,

each 4-branching edge is attached by three paths of length 1, 1, and k (k = 1, 2, 3), respectively.
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(2) 4-dagger (see Figure 3): H is obtained by attaching 4-paths of length i, j, k, l to a 4-

branching edge. Denote this hypergraph by H
(4)
i,j,k,l with i ≤ j ≤ k ≤ l. Then H must be one of

the following hypergraphs H
(4)
1,2,2,2, H

(4)
1,2,2,3, H

(4)
1,1,4,4, H

(4)
1,1,4,5, and H

(4)
1,1,k,l (1 ≤ k ≤ 3, and k ≤ l).

Theorem 1.3 For r = 5, there is only one irreducible 5-uniform hypergraph H with ρ(H) ≤
r
√
2 +
√
5; namely the five edge-star as shown in Figure 4.

For r ≥ 6, all r-uniform hypergraphs H with ρ(H) ≤ r
√
2 +
√
5 are reducible.

Figure 4 The five edge-star.

2. Notation and lemmas

Let us review some basic notation about hypergraphs. An r-uniform hypergraph H is a pair

(V,E) where V is the set of vertices and E ⊂
(
V
r

)
is the set of edges. The degree of vertex v,

denoted by dv, is the number of edges incident to v. If dv = 1, we say v is a leaf vertex. A

walk on a hypergraph H is a sequence of vertices and edges: v0e1v1e2 . . . vl satisfying that both

vi−1 and vi are incident to ei for 1 ≤ i ≤ l. The vertices v0 and vl are called the ends of the

walk. The length of a walk is the number of edges on the walk. A walk is called a path if all

vertices and edges on the walk are distinct. The walk is closed if vl = v0. A closed walk is called

a cycle if all vertices and edges in the walk are distinct except for the first and last vertices. A

hypergraph H is called connected if for any pair of vertices (u, v), there is a path connecting

u and v. A hypergraph H is called a hypertree if it is connected and acyclic. A hypergraph

H is called simple if every pair of edges intersects at most one vertex. In fact, any non-simple

hypergraph contains at least a 2-cycle: v1F1v2F2v1, i.e., v1, v2 ∈ F1 ∩ F2. A hypertree is always

simple.

The spectral radius ρ(H) of an r-uniform hypergraph H is defined as

ρ(H) = r max
x∈Rn

≥0

x 6=0

∑
{i1,i2,...,ir}∈E(H) xi1xi2 · · ·xir∑n

i=1 x
r
i

. (2.1)

Here R
n
≥0 denotes the set of points with nonnegative coordinates in R

n. This is a special case

of p-spectral norm for p = r. The general p-spectral norm has been considered by various

authors [6–8]. The following lemma has been proved in several papers.

Lemma 2.1 ([6–8]) If G is a connected r-uniform hypergraph, and H is a proper subgraph of

G, then ρ(H) < ρ(G).
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In our previous paper [5], we discovered an efficient way to compute the spectral radius

ρ(H), in particular when H is a hypertree. The idea is using the method of α-normal labelling

(or weighted matrix).

Definition 2.2 ([5]) A weighted incidence matrix B of a hypergraph H is a |V | × |E| matrix

such that for any vertex v and any edge e, the entry B(v, e) > 0 if v ∈ e and B(v, e) = 0 if v 6∈ e.

Definition 2.3 ([5]) A hypergraph H is called α-normal if there exists a weighted incidence

matrix B satisfying

(1)
∑

e : v∈e B(v, e) = 1, for any v ∈ V (H);

(2)
∏

v∈eB(v, e) = α, for any e ∈ E(H).

Moreover, the incidence matrix B is called consistent if for any cycle v0e1v1e2 · · · vl (vl = v0)

l∏

i=1

B(vi, ei)

B(vi−1, ei)
= 1.

In this case, we call H consistently α-normal.

The following important lemma was proved in [5].

Lemma 2.4 ([5, Lemma 3]) Let H be a connected r-uniform hypergraph. Then the spectral

radius of H is ρ(H) if and only if H is consistently α-normal with α = (ρ(H))−r.

Often we need to compare the spectral radius with a particular value.

Definition 2.5 ([5]) A hypergraph H is called α-subnormal if there exists a weighted incidence

matrix B satisfying

(1)
∑

e : v∈e B(v, e) ≤ 1, for any v ∈ V (H);

(2)
∏

v∈eB(v, e) ≥ α, for any e ∈ E(H).

Moreover, H is called strictly α-subnormal if it is α-subnormal but not α-normal.

We have the following lemma.

Lemma 2.6 ([5, Lemma 4]) Let H be an r-uniform hypergraph. If H is α-subnormal, then

the spectral radius of H satisfies ρ(H) ≤ α− 1

r . Moreover, if H is strictly α-subnormal then

ρ(H) < α− 1

r .

Definition 2.7 ([5]) A hypergraphH is called α-supernormal if there exists a weighted incidence

matrix B satisfying

(1)
∑

e : v∈e B(v, e) ≥ 1, for any v ∈ V (H);

(2)
∏

v∈eB(v, e) ≤ α, for any e ∈ E(H).

Moreover, the incidence matrix B is called consistent if for any cycle v0e1v1e2 · · · vl (vl = v0)

l∏

i=1

B(vi, ei)

B(vi−1, ei)
= 1.

In this case, we callH consistently α-supernormal. In addition, H is called strictly α-supernormal

if it is α-supernormal but not α-normal.
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Lemma 2.8 ([5]) Let H be an r-uniform hypergraph. If H is strictly and consistently α-

supernormal, then the spectral radius of H satisfies ρ(H) > α− 1

r .

Because leaf vertices can be assigned the weight 1, we can note that if H is consistently

α-normal and H is extended from H ′, then so is H ′. This implies the following corollary.

Corollary 2.9 For any r ≥ 3 and α ∈ (0, 1), if H extends H ′, then ρ(H) = α−1/r (or

ρ(H) < α−1/r) if and only if ρ(H ′) = α−1/(r−1) (or ρ(H ′) < α−1/(r−1), respectively).

Example 2.10 We give an example regarding the labeling method and consider the following

hypergraph H

x1 x2 x4x3 y4 y3 y2 y1

Figure 5 Hypergraph H and the labellings.

Starting from the first edge on the left, for the two leaf vertices can be assigned weight 1, we

omit the label, and label x1 on the left corner of the third vertex. We do like this for the other

edges. If we want to check if this hypergraph is β-normal, we can set x1 = β, and by Definition

2.3 we set x2 = 1 − β, and thus this edge satisfies item 1 and 2 of Definition 2.3. For the same

reason, we set x3 = β
x2

= β
1−β , and x4 = 1− x3 = 1− β

1−β . On the right side, we do this by the

same way, and we can get y4 = 1 − x3 = 1 − β
1−β . Therefore, by Definition 2.3, if x4 · y4 = β,

we can get H is β-normal. If x4 · y4 < β, by Definition 2.7 we can get H is β-supernormal. If

x4 · y4 > β, by Definition 2.5, we can get H is β-subnormal.

Definition 2.11 Given two r-uniform hypergraphs H1 and H2, a homomorphism from H1 to

H2 is a map f : V (H1) → V (H2) which preserves the edges. If the natural map from E(H1) to

E(H2) induced by f is injective, then is called a sub-homomorphism. In this case, we also say

H1 is a sub-homomorphic type of H2.

Every subhypergraph is a subhomorphic type. The reverse statement is not true. Consider

the following example. Suppose that v1 and v2 are two vertices of H which are not contained in

any common edge. We can form a new hypergraph H ′ from H by fusing v1 and v2 as one vertex

that we call a fat vertex denoted by x. Now we define f : V (H) → V (H ′) to be the identity

map everywhere but v1 and v2, and f(v1) = f(v2) = x. Then f is a sub-homomorphism. The

following lemma generalizes Lemma 2.1.

Lemma 2.12 Suppose H1 and H2 are two connected r-uniform hypergraphs. If H1 is a sub-

homomorphic type of H2, then we have ρ(H1) ≤ ρ(H2) and the equality holds if and only if H1

is isomorphic to H2.

Proof Let f : V (H1) → V (H2) be the sub-homomorphism. Setting α = ( 1
ρ(H2)

)r, by Lemma

2.4, H2 is consistently α-normal and let B2 be the incidence matrix. We can define an incidence

matrix B1 of H1 as follows:

B1(v, e) = B2(f(v), f(e)) for any v ∈ V (H1) and e ∈ E(H1).
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For any fixed e ∈ E(H1), we have
∏

v∈e

B1(v, e) =
∏

v′∈f(e)

B2(v
′, f(e)) = α.

For any fixed v ∈ E(H1), the set {e ∈ E(H1) : v ∈ e} is a subset of {e ∈ E(H1) : f(v) ∈ f(e)}.
This observation implies

∑

e : v∈e

B1(v, e) ≤
∑

e′ : f(v)∈e′

B2(f(v), e
′) = 1.

Therefore, H1 is α-subnormal. This implies ρ(H1) ≤ ρ(H2). When the inequality holds, f(H1) =

H2 (Otherwise ρ(H1) ≤ ρ(f(H1)) < ρ(H2), ρ(H1) < ρ(H2). Contradiction), and for any v ∈
V (H1) and e ∈ E(H1), v ∈ e if and only if f(v) ∈ f(e). This implies that f must be an injective

map (Otherwise, we have f(v1) = f(v2), then we can find an edge e1 containing v1. Since f is

a homomorphism, v2 is not in e1, but f(v2) = f(v1) ∈ f(e1). Contradiction). Hence, f is an

isomorphism. �

Often, we need to calculate the limit of the spectral radius of a sequence of hypergraphs. The

following lemma is helpful.

Lemma 2.13 For any fixed β ∈ (0, 1
4 ), let fβ(x) =

β
1−x and fn

β (x) = f(fn−1
β (x)) for n ≥ 2.

(1) If 0 < x ≤ 1−
√
1−4β
2 , then fn

β (x) is increasing with respect to n, 0 < fn
β (x) ≤ 1−

√
1−4β
2

and limn→∞ fn
β (x) =

1−
√
1−4β
2 . Moreover, when x = 1−

√
1−4β
2 , fn

β (x) =
1−

√
1−4β
2 , ∀n ≥ 1.

(2) If 1−
√
1−4β
2 ≤ x ≤ 1+

√
1−4β
2 , then fn

β (x) is decreasing with respect to n, and limn→∞ fn
β (x) =

1−
√
1−4β
2 .

Proof We first prove item 1. Since 0 < x ≤ 1−
√
1−4β
2 , the function fβ(x) = β

1−x attains

its maximum when x = 1−
√
1−4β
2 . So, 0 < fβ(x) ≤ 1−

√
1−4β
2 . Similarly, f2

β(x) = β
1−fβ(x)

at-

tains its maximum when fβ(x) = 1−
√
1−4β
2 , so we get 0 < f2

β(x) ≤ 1−
√
1−4β
2 . Again, we get

0 < fn
β (x) ≤ 1−

√
1−4β
2 , for all n ≥ 3. On the other hand, if 0 < fn

β (x) <
1−

√
1−4β
2 , we can easily

check that

fn
β (x) − fn−1

β (x) =
β

1− fn−1
β (x)

− fn−1
β (x) =

β − fn−1
β (x) + (fn−1

β (x))2

1− fn−1
β (x)

> 0

for all n ≥ 2. So, fn−1
β (x) < fn

β (x) for all n ≥ 2. Thus, the limit of 0 < fn
β (x) exists and we let

limn→∞ fn
β (x) = f0(x). By fn

β (x) =
β

1−fn−1

β
(x)

, we get f0(x) =
1−

√
1−4β
2 . The proof of item 2 is

very similar to the proof of item 1, so we omit the proof here. �

Lemma 2.14 Let fβ(x) = β
1−x and fn

β (x) = f(fn−1
β (x)) for n ≥ 2. Then for any positive

integer n, and any real β ∈ (0, 1
4 ), there exists a unique x ∈ (1−

√
1−4β
2 , 1+

√
1−4β
2 ) such that

fn
β (x) = 1− x.

Proof Consider the set F of functions f satisfying

(1) f is an increasing continuous function in (1−
√
1−4β
2 , 1+

√
1−4β
2 ).

(2) Both 1−
√
1−4β
2 and 1+

√
1−4β
2 are fixed points of f .

We claim that for any f ∈ F there exists a unique x ∈ (1−
√
1−4β
2 , 1+

√
1−4β
2 ) such that f(x) =
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1 − x. This is because g(x) := f(x) + x is a strictly increasing and continuous function in

(1−
√
1−4β
2 , 1+

√
1−4β
2 ) and

g(
1−√1− 4β

2
) = 1−

√
1− 4β < 1, and g(

1 +
√
1− 4β

2
) = 1 +

√
1− 4β > 1.

It suffices to show fm
β (x) ∈ F for any positive integer m. This can be proved by induction on

m. For m = 1, f1
β(x) = fβ(x) ∈ F can be easily verified. Now we assume fm

β ∈ F . Note both fβ

and fm
β map (1−

√
1−4β
2 , 1+

√
1−4β
2 ) to (1−

√
1−4β
2 , 1+

√
1−4β
2 ) increasingly and continuously to itself.

So is their composition, fβ ◦ fm
β = fm+1

β . We complete the proof. �

Lemma 2.15 Let the following graph be denoted by F
(3)
m,n,k

... ...

...

m↑

←
n

→
k

Figure 6 F
(3)
m,n,k

and the spectral radius of F
(3)
m,n,k by ρ(F

(3)
m,n,k). Then, when m,n, k→∞,

lim
m,n,k→∞

ρ(F
(3)
m,n,k) =

3

√
2 +
√
5.

Proof We label this graph as follows

... ...

...

m↑

←
n

→
k

Figure 7 The labellings of F
(3)
m,n,k

x1 x2 xn z1z2

z3

Let β be a real number in (0, 14 ), chosen later. Set z1 = 1 − fn−1
β (β), z2 = 1 − fk−1

β (β), and

z3 = 1 − fm−1
β (β). Note that (

√
5 − 2)3 =

√
5 − 2. By setting β =

√
5 − 2, we get (

√
5 − 2)-

subnormal labeling of F
(3)
m,n,k. Thus, for all m,n, k,

ρ(F
(3)
m,n,k) <

3

√
2 +
√
5.

Now let βm,n,k be the solution of z1z2z3 = β. We get a βn,m,k-normal labeling. Thus ρ(F
(3)
m,n,k) =

β
−1/3
m,n,k and β <

3

√
2 +
√
5. By the first item of Lemma 2.13, for a fixed β, note that all zi’s are

strictly increasingly approaching to 1+
√
1−4β
2 . We conclude that βm,n,k are increasing functions
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of each m, n, and k. The limit limm,n,k→∞ βm,n,k must exist and is the solution of

(
1 +
√
1− 4β

2
)3 = β.

By simple calculus, we get this limit β =
√
5− 2. By Lemma 2.4, we get

lim
m,n,k→∞

ρ(F
(3)
m,n,k) =

3

√
2 +
√
5. �

Taking ρ′r =
r
√
2 +
√
5, we have the following lemma.

Lemma 2.16 For r ≥ 3, let H be an r-uniform hypergraph with spectral radius ρ(H) ≤ ρ′r. If

H is not simple, then H = C
(r)
2 (i.e., the hypergraph consists of two edges sharing two common

vertices).

Proof In [5], we have shown that ρr(C
(r)
2 ) = r

√
4 < ρ′r.

Since H is not simple, H contains two edges F1 and F2 sharing s vertices for some s ≥ 2.

If s ≥ 3, denote by C
(r)
s+ the subgraph consisting of the two edges F1, F2. Define a weighted

incidence matrix B of C
(r)
s+ as follows: for any vertex v and edge e (called the other edge e′),

B(v, e) =





1
2 , if v ∈ e ∩ e′,

1, if v ∈ e \ e′,
0, otherwise.

It is easy to check that when s ≥ 3 we have (12 )
s < 0.1251 < β, so C

(r)
s+ is consistently β-

supernormal (The choice of labeling guarantees the labeling is consistent) and thus ρ(H) ≥
ρ(C

(r)
s+ ) > ρ′r. Contradiction.

Thus, F1 and F2 can only share 2-common vertices. SinceH is connected andH 6= C
(r)
2 , there

is a third edge F3 having non-empty intersection with F1 ∪F2. Since identifying the vertices will

not change the sub-homomorphic type, we can only consider the two sub-homomorphic types:

C
(r)
2+ and C′(r)

2+. Here both the hypergraphs C
(r)
2+ and C′(r)

2+ consist of three edges F1, F2, F3 where

|F1 ∩ F2| = 2 and |F3 ∩ (F1 ∪ F2)| = 1. The difference is that in C
(r)
2+ , F3 ∩ (F1 ∪ F2) ∈ F1 ∩ F2

while in C′(r)
2+, F3 ∩ (F1 ∪ F2) ∈ F1∆F2 the symmetric difference of F1 and F2. The below are

the drawings of C
(3)
2+ and C′(3)

2+.

Figure 8 Left: C
(3)
2+ . Right: C′(3)

2+

To draw the contradiction, it is sufficient to show ρr(C
(r)
2+ ) > ρ′r and ρr(C

′(r)
2+) > ρ′r (This implies

ρ(H) > ρ′r by Lemma 2.12). Observe that C
(r)
2+ is extended from C

(3)
2+ and C′(r)

2+ is extended from

C′(3)
2+. We only need to show that both C

(3)
2+ and C′(3)

2+ are consistently strict β-supernormal. We

label the two hypergraphs as follows:
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y1
y2y3

y4y5

x1x2

x3x4

x6x5

Figure 9 The labellings of C
(3)
2+ and C

′(3)
2+.

In C
(3)
2+ , we set the labels y1 = β, y2 = y3 = 1−β

2 , and y4 = y5 = 2β
1−β . Since y4+y5 ≈ 1.2361 > 1,

this is a consistently β-supernormal labelling.

In C′(3)
2+, we set x1 = β, x2 = 1 − β, x3 = x6 =

√
β

1−β , and x4 = x5 =
√
β. Since

x3 + x4 = x5 + x6 ≈ 1.0418 > 1, this is a consistently β-supernormal labelling. �

3. Proof of Theorem 1.1

By the lemmas in Section 2, we give the proof of Theorem 1.1. It suffices to consider

irreducible hypergraphs. We consider 3 cases for the proof.

Proof Assume that H is an irreducible 3-uniform hypergraph with ρ(H) ≤ 3

√
2 +
√
5. We need

to show that H has certain forbidden structures. The idea is to show these forbidden subgraphs

have some (consistently, if not a hypertree) (
√
5 − 2)-supernormal labelings. To simplify our

notation, we write β =
√
5 − 2 in this proof. By Lemma 2.16, when r = 3, we only need to

consider H is simple.

Case 1 If ∃ v ∈ V (H), such that dv ≥ 5, then H contains S
(3)
5 that has been labeled as follows.

β

Figure 10 Hypergraph S
(3)
5

For the status of each edge is the same, we only label one edge. We can check 5β ≈ 1.1803 > 1,

so, by Lemmas 2.1 and 2.8, we get ρ(H) > ρ′3. Thus we can assume that every vertex in H has

degree at most 4. If ∃ v ∈ V (H), such that dv = 4, and H contains graph S
(3)
4+ that has been

labeled as follows,

Figure 11 Hypergraph S
(3)
4+ and the labelings

x1

x2x3

x4
x5
x6

where x1 = β, x2 = 1− β, x3 = β
1−β , x4 = x5 = x6 = β. We can check that x3 + x4 + x5 + x6 ≈

1.0172 > 1, so, by Lemmas 2.1 and 2.8, we get ρ(H) > ρ(S
(3)
4+ ) > ρ′3. Thus, since ρ(S

(3)
4 ) = ρ3

and ρ(S
(3)
4+ ) > ρ′3, so if H is irreducible, we can assume that every vertex in H has degree at
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most 3.

Case 2 The hypergraph H contains a cycle denoted by C
(3)
n . Since ρ(C

(3)
n ) = 3

√
4 (see [5]), we

may assume H contains at least one edge F not on the cycle C
(3)
n (But attached to C

(3)
n ). First

we prove that F can be only attached to the cycle through a branching edge, not a branching

vertex, otherwise, H contains a sub-homomorphic type C
(3)
n+ shown as follows:

· · ·
Figure 12 Hypergraph C

(3)
n+

This graph is reducible and can be extended from the following 2-graph C
(2)
n+:

· · ·
Figure 13 Hypergraph C

(2)
n+

The graph C
(2)
n+ is not in the list of Brouwer and Neumaier [2]. Thus, ρ(C

(2)
n+) >

√
2 +
√
5.

Applying Corollary 2.9, we get ρ(C
(3)
n+) >

3

√
2 +
√
5. Contradiction.

Thus, F must be attached to the cycle through a branching edge. Considering that we walk

away from the cycle through this edge F , we have the following subcases.

(1) Eventually, the path at F reaches a degree-3 vertex. In this subcase, H contains the

following sub-homomorphic type C′(3)
n+:

· · ·

C′(3)
n+

xn

x1
z1

x2

z2 · · · y1
y2ym

Figure 14 Hypergraph C′(3)
n+ and the labelings

By Lemma 2.14, there exists x1 ∈ (1−
√
1−4β
2 , 1+

√
1−4β
2 ) satisfying fn

β (x1) = 1 − x1. Now xn =

fn
β (x1) = 1 − x1 (This labeling guarantees the consistency). So, z1 = 1 − xn = x1. We set

y1 = y2 = β, yi = f i−2
β (2β) for 3 ≤ i ≤ m. Since 1−

√
1−4β
2 ≤ 2β ≤ 1+

√
1−4β
2 , by Lemma 2.13, we

get that yi is decreasing and limi→∞ yi =
1−√

1−4β
2 . In particular, ym ≥ 1−√

1−4β
2 . This implies

z2 = 1− ym ≤ 1+
√
1−4β
2 . Therefore, we have

x1 · z1 · z2 < (
1 +
√
1− 4β

2
)3 = β.
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Thus, C′(3)
n+ is consistently β-supernormal. So, we have ρ(H) ≥ ρ(C′(3)

n+) > ρ′3. Contradiction!

(2) If the path leaving at F reaches a branching edge, in this subcase, H contains the

following sub-homomorphic type C′′(3)
n+:

· · ·

xn

x1
z1

x2

z2 · · ·

k1

y1 k2ym

Figure 15 Hypergraph C′′(3)
n+ and the labelings

This is similar to the previous subcase. By Lemma 2.14, there exists x1 ∈ (1−
√
1−4β
2 , 1+

√
1−4β
2 )

satisfying fn
β (x1) = 1 − x1. Now xn = fn

β (x1) = 1 − x1 (The choice of labeling guarantees

the labeling is consistent). So, z1 = 1 − xn = x1. We set k1 = k2 = β, y1 = β
(1−β)2 , and

yi = f i−1
β (y1) for 2 ≤ i ≤ m. Since 1−

√
1−4β
2 ≤ β

(1−β)2 ≤
1+

√
1−4β
2 , by Lemma 2.13, we get

that yi is decreasing and the limit goes to 1−
√
1−4β
2 . In particular, ym ≥ 1−

√
1−4β
2 . This implies

z2 = 1− ym ≤ 1+
√
1−4β
2 . Therefore, we have

x1 · z1 · z2 < (
1 +
√
1− 4β

2
)3 = β.

Thus, C′′(3)
n+ is consistently β-supernormal. So, we have ρ(H) ≥ ρ(C′′(3)

n+) > ρ′3. Contradiction.

(3) Eventually, the path leaving at F returns to the cycle. In this subcase, H contains

subgraph Θ(m1,m2,m3), which can be obtained by connecting three pairs of vertices between

two branching edges using three paths of lengths m1, m2, and m3, respectively.

m1

m3

m2

Figure 16 Θ(m1,m2,m3) and its labeling

x1 x1

x2 x2

x3 x3

By Lemma 2.14, for i = 1, 2, 3, there exists xi ∈ (1−
√
1−4β
2 , 1+

√
1−4β
2 ) satisfying fmi

β (xi) = 1−xi.

We label x1, x2, and x3 on the Θ(m1,m2,m3) and extend these labels on path Pmi
naturally.

The choice of xi guarantees the labeling is consistent. Note

x1x2x3 < (
1 +
√
1− 4β

2
)3 = β.

The labeling is therefore consistently β-supernormal and this implies

ρ(H) ≥ ρ(Θ(m1,m2,m3)) > ρ′3.

Contradiction.
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(4) This is the remaining subcase: H contains a cycle C with several paths attached to C.

So H is a closed quipu as stated in the theorem.

Case 3 We assume that H is a hypertree, and let the following partial hypergraphs (That can

be glued together to form a hypergraph) be denoted by H
(3)
1 and H

(3)
2 that correspond to the

degree-3 vertex and the branching edge structure, respectively.

Figure 17 H
(3)
1 (n) and its labeling

· · ·yn
x1

x2

y1 · · ·· · ·

Figure 18 H
(3)
2 (n) and its labeling

qn

x1

x2q1
h1

h3 h2

In graph H
(3)
1 (n), we set x1 = x2 = β, y1 = β

1−2β = fβ(2β), yn = fn
β (2β). Since 2β ∈

(1−
√
1−4β
2 , 1+

√
1−4β
2 ), by Lemma 2.13, we get that yn = fn

β > 1−
√
1−4β
2 .

In graph H
(3)
2 (n), we set x1 = x2 = β, h1 = h2 = 1 − β, h3 = β

(1−β)2 . We can check that

h3 ∈ (1−
√
1−4β
2 , 1+

√
1−4β
2 ). Since qn = fn

β (h3), by Lemma 2.13 we get qn > 1−
√
1−4β
2 .

To show H must be an open quipu as stated in the theorem, we need exclude the following

structures. First, suppose that there is a degree-3 vertex with black color in H , and H contains

the following subgraph,

G1 G2z1 z2
z3

Figure 19 Subgraph 1

where G1 and G2 are chosen from H
(3)
1 (n) and H

(3)
2 (n) (for some n ≥ 0) and pieces are united

together by gluing the black nodes together. We can get z1 = yn or z1 = qn, and so is z2. Just

as before, we can get

z1 + z2 + β >
1−√1− 4β

2
+

1−√1− 4β

2
+ β = 1.

This is a supernormal labeling of this subgraph. Thus, ρ(H) > ρ′3. Contradiction.

If H contains one branching edge, whose all three branches are not paths, then H contains

the following subgraph.

z3
z1 z2K1 K2

K3

Figure 20 Subgraph 2

Where K1, K2 and K3 are chosen from H
(3)
1 (n) and H

(3)
2 (n) (for some n ≥ 0) and pieces are

glued through black nodes. Similar to the previous case, for i = 1, 2, 3, by Lemma 2.13, we can
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get zi <
1+

√
1−4β
2 . Thus, z1 · z2 · z3 < (1+

√
1−4β
2 )3 = β. This is a supernormal labeling of this

subgraph. So, we have ρ(H) > ρ′3. Contradiction. Therefore, H must be an open quipu as stated

in the theorem. �

4. Proof of Theorem 1.2

Now, we give the proof of Theorem 1.2. We also only need to consider irreducible hypergraphs.

Proof Let H be an irreducible 4-uniform hypergraph with ρ(H) ≤ ρ′4 =
4

√
2 +
√
5. If H is not

simple, then it must be C
(4)
2 by Lemma 2.16. Now we suppose H is simple.

Case 1 H contains a cycle C. Since H is irreducible, it also has an edge F which contains no

leaf vertex. We consider the following two subcases.

(1) The edge F is on the cycle C. The H contains the following sub-isomorphic type:

x1
z1

x2

z2
xn

z3

y2

y1

Figure 21 Hypergraph C
(4)
n+ and its labeling

By Lemma 2.14, there exists a x1 ∈ (1−
√
1−4β
2 , 1+

√
1−4β
2 ) satisfying fn

β (x1) = 1 − x1. Now

xn = fn
β (x1) = 1− x1 (This labeling guarantees the consistency). So, z1 = 1 − xn = x1. We set

y1 = y2 = β, z2 = z3 = 1 − β, and we can check that x1 · z1 · z2 · z3 < (1+
√
1−4β
2 )2 · (1 − β)2 ≈

0.2229 < β, and thus C
(4)
n+ is β-supernormal. So we have ρ(H) ≥ ρ(C

(4)
n+) > ρ′r.

(2) If F is not on C, there is a path connecting F to C. Thus, H has the following sub-

homomorphic type:

x1
z1

x2

z2
xn

qm · · ·
x1

x2

q1 x3

Figure 22 Hypergraph C′(4)
n+ and its labeling

As above, there exists a x1 ∈ (1−
√
1−4β
2 , 1+

√
1−4β
2 ) and z1 = x1. We set x1 = x2 = x3 = β,

q1 = β
(1−β)3 , and we can check q1 ∈ (1−

√
1−4β
2 , 1+

√
1−4β
2 ). We set qm = fm−1

β (q1), and thus

by Lemma 2.13, we get qm decreases with m, and when m → ∞, we get qm > 1−
√
1−4β
2 . So
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z2 = 1 − qm < 1+
√
1−4β
2 . We can check that x1 · z1 · z2 < (1+

√
1−4β
2 )3 = β, and thus C′(4)

n+ is

β-supernormal (The labeling guarantees the consistency). So we have ρ(H) ≥ ρ(C′(4)
n+) > ρ′r.

Case 2 H is a hypertree but not a 4-dagger. To get the open quipu structures, we need to

forbid certain subhypergraphs.

The following partial hypergraphs H
(4)
1 (n) and H

(4)
2 (n, j) (for j = 0, 1, 2, 3) correspond to

the branching vertex and the branching edge structure, respectively.

Figure 23 H
(4)
1 (n) and its labeling

· · ·
←
n

yn
x1

x2

y1

· · ·· · · · · ·

Figure 24 H
(4)
2 (n, j) for j = 0, 1, 2, 3.

←
n

→
j

qn

x1

x2

q1
h1

h2

h4 h3 cj c1

Claim (a) Both H
(4)
1 (n) and H

(4)
2 (n, j) (for j = 0, 1, 2, 3) admit a β-supernormal labeling such

that the label at the corner of the black vertex is greater than 1−
√
1−4β
2 .

Proof of Claim (a) We will label the partial graphs so that the β-normal properties hold except

at the corner of the black vertex. In graph H4
1 (n), we set x1 = x2 = β, y1 = β

1−2β = fβ(2β),

yi = f i
β(2β), i = 2, 3, . . . , n. Since 2β ∈ (1−

√
1−4β
2 , 1+

√
1−4β
2 ), by Lemma 2.13, we get that

yn = fn
β > 1−

√
1−4β
2 .

In graph H4
2 (n, j), we set x1 = x2 = c1 = β, h1 = h2 = 1 − β, cj = f

j−1
β (β). When

j = 0, we have h3 = 1 and h4 = β
h1h2h3

= β
(1−β)2 . When j = 1, we have h3 = 1 − β and

h4 = β
h1h2h3

= β
(1−β)3 . When j = 2, we have h3 = 1− c2 = 1−2β

1−β and h4 = β
h1h2h3

= β
(1−β)(1−2β) .

When j = 3, we set h3 = 1 − c3 = 1−3β+β2

1−2β and h4 = β
h1h2h3

= β(1−2β)
(1−3β+β2)(1−β)2 . We can check

directly that for all j = 0, 1, 2, 3, the value h4 ∈ (1−
√
1−4β
2 , 1+

√
1−4β
2 ). Since qn = fn

β (h4), and

thus by Lemma 2.13, we get qn > 1−
√
1−4β
2 .

To show H must be an open quipu as stated in the theorem, we need exclude the following

structures.

(1) We first show that all branching vertices and branching edges lie on the same path

denoted by P . Otherwise, H contains the following subhypergraph.

z3

1
z1 z2U1 U2

U3

Figure 25 Subhypergraph 1 and its labeling
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Where U1, U2 and U3 are chosen from H4
1 (n) (for some n ≥ 0) and H4

2 (n, j) (for some n ≥ 0 and

j = 0, 1, 2, 3) and pieces are glued through black nodes.

From Claim (a), we have

z1 · z2 · z3 · 1 < (
1 +
√
1− 4β

2
)3 · 1 = β.

So, this subhypergraph is β-supernormal. This implies ρ(H) > ρ′4.

(2) Now we show that any branch vertex must lie at the end of that path P . Otherwise, H

contains the following subhypergraph.

U4 U5z1 z2
z3

Figure 26 Subhypergraph 2 and its labeling

Where U4 and U5 are chosen from H4
1 (n) (for some n ≥ 0) and H4

2 (n, j) (for some n ≥ 0 and

j = 0, 1, 2, 3) and pieces are glued through black nodes. From Claim (a), we have

z1 + z2 + z3 >
1−√1− 4β

2
+

1−√1− 4β

2
+ β = 1.

So, this subhypergraph is β-supernormal. This implies ρ(H) > ρ′4.

(3) Now we show that any branch edge must also lie at the end of that path P . Otherwise,

H contains the following subhypergraph.

β

β

z4

z3
z1 z2U6 U7

Figure 27 Subhypergraph 3 and its labeling

Where U6 and U7 are chosen from H4
1 (n) (for some n ≥ 0) and H4

2 (n, j) (for some n ≥ 0 and

j = 0, 1, 2, 3) and pieces are glued through black nodes. We have

z1 · z2 · z3 · z4 < (
1 +
√
1− 4β

2
)2 · (1− β)2 ≈ 0.2229 < β.

This subhypergraph is β-supernormal. Thus we have ρ(H) > ρ′r. Contradiction.

(4) It remains to show that each 4-branching edge is attached by three paths of length 1, 1,

and k (k = 1, 2, 3), respectively, if it is not a 4-dagger. Otherwise, it contains one of the following

two hypergraphs as a subhypergraph.
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z2

z3
z1 z4 U8x1 x2

y2

y1

y3

Figure 28 Subhypergraph 4

q1 q2 q3 q4

x1

x2

z2

z3
z1 z4 U9

Figure 29 Subhypergraph 5

Where U8 and U9 are chosen from H4
1 (n) (for some n ≥ 0) and H4

2 (n, j) (for some n ≥ 0 and

j = 0, 1, 2, 3) and pieces are glued through black nodes.

For the left hypergraph, we set x1 = y1 = y3 = β, x2 = y2 = β
1−β , z3 = 1 − β, and

z1 = z2 = 1−2β
1−β , and z4 < 1+

√
1−4β
2 (from Claim (a)). Thus, the product of labels on the

branching edge is

z1 · z2 · z3 · z4 < (
1 +
√
1− 4β

2
) · (1− 2β

1− β
)2 · (1− β) ≈ 0.2254 < β.

For the right hypergraph, we set q1 = x1 = x2 = β, qi = f i−1
β (β) (i = 2, 3, 4), z1 = 1 − q4 =

1−4β+3β2

1−3β+β2 , z2 = z3 = 1− β, and z4 < 1+
√
1−4β
2 (from Claim (a)). Thus, the product of labels on

the branching edge is

z1 · z2 · z3 · z4 <
1 +
√
1− 4β

2
· 1− 4β + 3β2

1− 3β + β2
· (1− β)2 ≈ 0.2314 < β.

Thus the both hypergraphs above are β-supernormal. Thus we have ρ(H) > ρ′r. Contradiction.

Therefore, H must be an open quipu as stated in the theorem.

Case 3 H is the 4-dagger H
(4)
i,j,k,l for 1 ≤ i ≤ j ≤ k ≤ l.

We try to label H
(4)
i,j,k,l so that the β-normal properties hold except the product of the la-

bels at the branching edge. Not that the product of the labels at the branching edge, denoted

by g(i, j, k, l), is given by g(i, j, k, l) = f i−1
β (β)f j−1

β (β)fk−1
β (β)f l−1

β (β). It is easy to verify that

g(i, j, k, l) < β for (i, j, k, l) = (2, 2, 2, 2), (1, 2, 2, 4), (1, 2, 3, 3), (1, 1, 5, 5), (1, 1, 4, 6). H cannot

contain those 4-daggers as a subhypergraph. Therefore, H must be one of the following hy-

pergraphs H
(4)
1,2,2,2, H

(4)
1,2,2,3, H

(4)
1,1,4,4, H

(4)
1,1,4,5, and H

(4)
1,1,k,l (1 ≤ k ≤ 3, and k ≤ l). It is also

easy to verify that those 4-daggers are β-subnormal. So this is a complete list of 4-daggers with

ρ(H) < ρ′4. �

5. Proof of Theorem 1.3

Now, we give the proof of Theorem 1.3.

Proof Let the edge-star S
(r)
r be the r-uniform hypergraph consisting of r + 1 edges: F0 =

{v1, v2, . . . , vr}, F1, . . . , Fr, where each Fi ∩ F0 = {vi} for 1 ≤ i ≤ r, and Fi ∩ Fj = ∅ for

1 ≤ i ≤ j ≤ r. (See the picture of S
(5)
5 at Theorem 1.3.)
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We first show that ρr(S
(r)
r ) > ρ′r for r ≥ 6. This can be done by assigning B(vi, Fi) = β

and B(vi, F0) = 1 − β, for 1 ≤ i ≤ r. Note that the product of labels on F0 is (1 − β)r < β for

all r ≥ 6. Thus, S
(r)
r is β-supernormal. If there is an irreducible r-uniform hypergraph H with

ρ(H) ≤ ρ′r for r ≥ 6, then H contains a sub-homomorphic type S
(r)
r . By Lemma 2.12, we have

ρ(H) ≥ ρ(S
(r)
r ) > ρ′r. Contradiction.

The same argument shows that S
(5)
5 is β-subnormal. Let H be an irreducible 5-uniform

hypergraphH with ρ(H) ≤ ρ′5. IfH is not S
(5)
5 ,H contains one of the following sub-homomorphic

types S′(5)
5 and S

(5)
5+ .

x4

x5

x1

x2x3

1
2
1
2

Figure 30 S′(5)
5 and its labeling

y4

y5
y1
y2y3 β

Figure 31 S
(5)
5+ and its labeling

For S′(5)
5 , we can label the corner of the only black vertex not on the branching edge by 1

2 , and

set x1 = x2 = 1 − 2β, x3 = x4 = x5 = 1 − β. We can check that the product of labels on the

branching edge is

x1x2x3x4x5 = (1− 2β)2(1− β)3 ≈ 0.1242 < β.

For S
(5)
5+ , we can set y1 = 1− fβ(β) =

1−2β
1−β , y2 = y3 = y4 = y5 = 1− β. We can check that the

product of labels on the branching edge is

y1y2y3y4y5 = (1− 2β)(1 − β)4 ≈ 0.1798 < β.

Thus, both S′(5)
5 and S

(5)
5+ are consistently β-supernormal. This implies that ρ(H) > ρ′5, a

contradiction. Thus H must be the five edge-star. �

6. Constructing open quipus and closed quipus with ρ(H) ≤ r
√
2 +
√
5

In this section, we give a description of the connected r-uniform hypergraphs with spectral

radius at most
r
√
2 +
√
5: they are extended from the irreducible ones listed in Theorems 1.1-1.3

and the 2-graphs listed by Cvetković et al [1] and Brouwer-Neumaier [2]. This is not a complete

description for r ≥ 3, but rather a coarse description. The scenario is similar to the results of

Woo and Neumaier on the graphs with spectral radius at most 3
2

√
2 (see [4]). Our method is

very different from the linear algebra method used by Woo and Neumaier. In fact, it is possible

to make the proof of Woo-Neumaier’s result simply using our new method but we will omit it

here.
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In the rest of this section, we will construct many examples with ρ(H) ≤ r
√
2 +
√
5. This

shows that the descriptions in Theorems 1.1–1.3 are somewhat tight.

The 4-daggers are completely classified so no construction is needed. We only need to con-

struct closed 3- quipus, open 3-quipus and open 4-quipus first. The idea is to present some

partial hypergraphs, which can be glued together to form a hypergraph with ρ(H) ≤ r
√
2 +
√
5.

A partial r-uniform hypergraph is an r-uniform hypergraph together with (one or two) desig-

nated vertex/vertices. A partial hypergraph H is called α-subnormal if there exists a weighted

incidence matrix B satisfying

(1)
∏

v∈eB(v, e) ≥ α, for any e ∈ E(H);

(2)
∑

e : v∈e B(v, e) ≤ 1
2 , for any designated vertex v;

(3)
∑

e : v∈e B(v, e) ≤ 1, for any non-designated vertex.

Lemma 6.1 Consider the following partial hypergraphsG
(3)
1 (m, k1, k2), G

(2)
2 (m, k), andG

(4)
3 (t, k)

(with designated vertices colored in black). We have

(1) For any m ≥ 1, there exists a k0 such that for any k1, k2 ≥ k0, G
(3)
1 (m, k1, k2) is

(
√
5− 2)-subnormal.

(2) For any m ≥ 1, there exists a k0 such that for any k ≥ k0, G
(2)
2 (m, k) is (

√
5 − 2)-

subnormal.

(3) For any t = 1, 2, 3, there exists a kt such that for any k ≥ kt, G
(4)
3 (t, k) is (

√
5 − 2)-

subnormal.

...

· · ·. . .

m↑

← →k2 k1

Figure 32 G
(3)
1 (m, k1, k2)

· · · · · ·← →m k

Figure 33 G
(2)
2 (m, k)

· · ·· · · · · ·

Figure 34 G
(4)
3 (t, k) (for t = 1, 2, 3)

←t →k

Proof We label the corner of the designated vertices by 1
2 and the corner of other leaf-vertices

by 1. We try to maintain the properties that the product of all labels in one edge is β where

β =
√
5− 2 and the sum of all labels at one vertex is 1 except at the branching vertex or at the

branching edge. We get the labels of the three partial graphs as follows
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...

· · ·. . .

Figure 35 G
(3)
1 (m, k1, k2)

2β x3x2

x1

β

2β 1
2

1
2

· · · · · ·

Figure 36 G
(2)
2 (m, k)

β y1 y2 2β 1
2

β

· · ·· · · · · ·

Figure 37 G
(4)
3 (t, k)

β

β

β

z1

z2
z3 z4 2β 1

2

Now we consider the first partial hypergraph G
(3)
1 . Using the function fβ, we have x1 = 1 −

fm−1
β (β), x2 = 1− fk1−1

β (2β), and x3 = 1− fk2−1
β (2β). The product of the labels on the central

branching edges, denoted by g(m, k1, k2), satisfies

g(m, k1, k2) = x1x2x3 = (1− fm−1
β (β))(1 − fk1−1

β (2β))(1 − fk2−1
β (2β)).

By Lemma 2.13, 1−fm−1
β (β) > 1+

√
1−4β
2 , and limk1→∞(1−fk1−1

β (2β)) = limk2→∞(1−fk2−1
β (2β)) =

1+
√
1−4β
2 since 2β ∈ (1−

√
1−4β
2 , 1+

√
1−4β
2 ). Thus,

lim
k1,k2→∞

g(m, k1, k2) > (
1 +
√
1− 4β

2
)3 = β.

There exists a k0 such that for k1, k2 ≥ k0, g(m, k1, k2) > β. i.e., G
(3)
1 is β-subnormal.

A similar argument works for the graph G
(2)
2 . We have y1 = fm−1

β (β) and y2 = fk−1
β (2β).

The sum of the labels at the branching vertex is

β + y1 + y2 = β + fm−1
β (β) + fk−1

β (2β).

Note that the limit of this sum as k goes to infinity satisfies

lim
k→∞

(β + fm−1
β (β) + fk−1

β (2β)) < β +
1−√1− 4β

2
+

1−√1− 4β

2
= 1.

Thus, there exists a k0 = k0(m) such that for any k ≥ k0, we get y1 + y2 + β < 1. So G
(2)
2 is

β-subnormal.

In graph G
(4)
3 (t, k), we have z1 = z2 = 1 − β, z3 = 1 − f t−1

β (β), z4 = 1 − fk−1
β (2β). The

product of the labels at the branching edge is

z1z2z3z4 = (1− β)2(1− f t−1
β (β))(1 − fk−1

β (2β)).

For each t = 1, 2, 3, it is easy to check

(1− β)2(1− f t−1
β (β))

1 +
√
1− 4β

2
< β.
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There exists a kt such that for any k ≥ kt, G
(4)
3 is β-subnormal. �

Extension also works for partial hypergraphs: add one vertex to each edge while keep the

designated vertices. Observe that if a partial hypergraph H is α-subnormal then so is the

extension of H . For any r ≥ 4, we can extend G
(3)
1 (m, k1, k2) to G

(r)
1 (m, k1, k2), G

(2)
2 (m, k)

to G
(r)
2 (m, k), and G

(4)
3 (t, k) to G

(r)
3 (t, k), glue G

(r)
1 , G

(r)
2 and G

(r)
3 together via the designated

vertices, and get a new graph H that is still (
√
5− 2)-subnormal. We can get many examples of

H with ρ(H) < ρ′r as follows:

······

...

...
...

. . .
m

m

m
··· ··· · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

...
↑

...
↑

...
↑m1 m2 mi

k0k0k0k0k0 k1 k2 k3 k4 kj kj+1 n1 n2

Figure 38 Examples of H with ρ(H) < ρ′r
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