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Abstract For a graph G, a path cover is a set of vertex disjoint paths covering all the vertices

of G, and a path cover number of G, denoted by p(G), is the minimum number of paths in a

path cover among all the path covers of G. In this paper, we prove that if G is a K1,4-free graph

of order n and σk+1(G) ≥ n− k, then p(G) ≤ k, where σk+1(G) = min{
∑

v∈S d(v) : S is an

independent set of G with |S| = k + 1}.
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1. Introduction

In this paper, only finite and simple graphs are considered. Readers can refer to [1] for

notation and terminology not defined here. A graph G is K1,r-free, if G contains no induced

subgraph isomorphic to K1,r, where r ≥ 3. Let α(G) denote the independent number of a graph

G, i.e., the cardinality of a maximum independent set in G. For S ⊆ V (G), G[S] denotes the

subgraph of G induced by S. For a vertex v of G, N(v) denotes both the set of vertices adjacent

to v and the induced subgraph G[N(v)]. Let NS(v) denote the set of all vertices in S adjacent to

v and dS(v) = |NS(v)|. In particular, the degree of v is denoted by dG(v) = |NG(v)| and briefly

denoted by d(v). We use δ(G) to denote the minimum degree of a graph G. For a subgraph H

of a graph G, G − H denotes the subgraph induced by V (G) − V (H). We define σk+1(G) =

min{
∑

v∈S d(v) : S is an independent set of G with |S| = k + 1} if k + 1 ≤ α(G), otherwise,

σk+1(G) = +∞. For a graph G and A,B ⊆ V (G), let E(A,B) = {uv ∈ E(G) : u ∈ A, v ∈ B}.
Given a positive orientation of a path P , P [a, b] (or aPb) denotes a path from a to b along

the positive orientation, and P (a, b) denotes the path P [a, b] − {a, b}. For a path P [a, b], if

x, y ∈ V (P ), xPy denotes a subpath of P [a, b] from x to y along the positive orientation, and

yP−x denotes the subpath from y to x along its negative orientation. For a graph G, a path

cover of G is a spanning subgraph consisting of some vertex disjoint paths in G. For a graph G,

the path cover number p(G) = min{|P| : P is a path cover of G}. If P is a path cover of G with

|P| = p(G), then P is called a minimum path cover of G.
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Dirac [2] in 1952 showed that any graph G with order n ≥ 3 and δ(G) ≥ n
2 is hamiltonian,

and G contains a hamilton path if δ(G) ≥ n−1
2 . Since then, there are a lot of results about

the sufficient conditions for graphs to have a hamiton cycle (or path). It is well known that

it is NP-hard to justify whether a graph contains a hamilton cycle (or path). As a result, the

hamiltonicity of some special graphs, especially, K1,r-free graphs are largely studied.

Theorem 1.1 ([3]) Let G be a k-connected K1,3-free graph of order n such that k ≥ 2 and

σk+1 ≥ n− k. Then G is hamiltonian.

Theorem 1.2 ([4]) For any k-connected K1,4-free graph G of order n ≥ 3, if σk+1(G) ≥ n+ k,

then G is hamiltonian.

Clearly, the upper bound of the path cover number of a given graph is a generalization of

justifying if a graph contains a hamilton path. Thus, there are some results on the upper bound

of the path cover number of general graphs as follows.

Theorem 1.3 ([5]) For a graph G of order n, the path cover number p(G) ≤ n− σ2(G).

Theorem 1.4 ([6]) For a graph G with connectivity k(G), if α(G) > k(G), then p(G) ≤
α(G)− k(G), otherwise, p(G) ≤ α(G).

Inspired by the above results, there are some results about the path cover number of regular

graphs [8–10]. In this paper, we give the following sufficient conditions for K1,4-free graphs on

the degree sum of vertices in an independent set with k + 1 vertices.

Theorem 1.5 For a positive integer k, if G is a K1,4-free graph of order n and σk+1(G) ≥ n−k,

then p(G) ≤ k.

Figure 1 A K1,4-free graph G with σ3(G) = n− 3.

Clearly, in Theorem 1.5, if k = 1, then σ2(G) ≥ n−1, and G contains a hamilton path which

confirms the conclusion Ore [7] proposed that if a graph G with σ2(G) ≥ n− 1, then G contains

a hamilton path. Figure 1 shows that the lower bound of σk+1(G) in Theorem 1.5 is not best

possible for k = 2, since σ3(G) = n− 3 in Figure 1 and the path cover number is 2.

2. Proof of Theorem 1.5

Suppose that a graph G satisfies the assumption of Theorem 1.5 with p(G) = t, and to the

contrary, t > k. Then t ≥ 2. Let P = {P1, P2, . . . , Pt} be a minimum path cover of G. Assume any

path Pi inP is given a positive direction, and Pi := ui1ui2 · · ·ui|V (Pi)|, where ui1, ui2, . . . , ui|V (Pi)|

are all the vertices of Pi in order along its positive direction, 1 ≤ i ≤ t. For a vertex v in Pi,

if uv,wv ∈ E(G) for two vertices u,w with uw ∈ E(Pj) in some path Pj ∈ P \ {Pi}, then v is
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called an insertable vertex, and u,w are called a pair of acceptors of v in Pj . Clearly, for any

vertex x ∈ V (G), there is exact one path Pi in P containing x, and in the following proof, we

use x− and x+ to denote the predecessor and successor of x according to the orientation of Pi,

respectively. By the definition of insertable vertex and the minimality of |P|, we can get Claims

1 and 2 as follows.

Claim 1 For each Pi in P, Pi contains a non-insertable vertex.

Proof To the contrary, suppose for some Pi, any vertex in Pi is an insertable vertex. If

|V (Pi)| = 1, i.e., Pi = ui1, then clearly, ui1 can be inserted between its one pair of acceptors

in some path Pj ∈ P \ {Pi}, and then we can get a path cover consisting of t − 1 paths, a

contradiction. Suppose |V (Pi)| ≥ 2, and assume uis is the last vertex along the positive direction

of Pi with the same one pair of acceptors u,w as ui1 in some path Pj ∈ P \ {Pi}, then all the

vertices in Pi[ui1, uis] can be inserted between u and w by the path uui1Piuisw. Similarly, any

other vertex in Pi can be inserted between corresponding one pair of acceptors in some path in

P \ {Pi}. Thus we can get a path cover of G consisting of t− 1 paths, a contradiction. �
By Claim 1, for any path Pi in P, we denote by vi the first non-insertable vertex in Pi. In

the following proof, let S = {v1, v2, . . . , vt}, i.e., S consists of the first non-insertable vertex in

each path of P. Since vi is the first non-insertable vertex in Pi, any vertex in Pi[ui1, vi) is an

insertable vertex if ui1 ̸= vi. By the proof of Claim 1, any vertex in Pi[ui1, vi) can be inserted

between corresponding one pair of acceptors in some path Pj ∈ P \ {Pi}.

Claim 2 Let Pi and Pj be two distinct paths in P and let p = |V (Pi)|, q = |V (Pj)|. For any

vertex u ∈ Pi[ui1, vi] and any vertex v ∈ Pj [uj1, vj ], 1 ≤ i, j ≤ t, the following properties hold.

(a) uv /∈ E(G);

(b) If t ≥ 3, then u, v have no common pair of acceptors in P \ {Pi, Pj};
(c) Assume t ≥ 3, Pr ∈ P \ {Pi, Pj}. Then for any vertex x ∈ V (Pr), if ux ∈ E(G), then

x−v, x+v /∈ E(G); By symmetry, if vx ∈ E(G), then x−u, x+u /∈ E(G);

(d) For any vertex x ∈ Pi(vi, uip], if ux ∈ E(G), then x−v /∈ E(G); By symmetry, if

x ∈ Pj(vj , ujq] and vx ∈ E(G), then x−u /∈ E(G);

(e) For any vertex x in Pr ∪ Pi(vi, uip) ∪ Pj(vj , ujq), x
−x+ /∈ E(G) if ux, xv ∈ E(G), where

Pr ∈ P \ {Pi, Pj}.

Proof We prove (a), (b), (c), (d), (e) by contradiction, respectively. In the following proof, to

the contrary, assume u = uis ∈ Pi[ui1, vi], v = ujm ∈ Pj [uj1, vj ] are the pair of vertices with the

minimum subscript sum s+m which are not satisfying (a), (b), (c), (d), (e), respectively.

(a) To the contrary, suppose uv ∈ E(G). Clearly, ui1uj1 /∈ E(G), i.e., u ̸= ui1 or v ̸= uj1,

otherwise, there exists a path cover consisting of t− 1 paths, a contradiction. By the minimality

of the subscript sum of u, v, E(Pi[ui1, u), Pj [uj1, v)) = ∅. It follows that there is no vertex in

Pi[ui1, u] has a pair of acceptors v− and v; Similarly, there is no vertex in Pj [uj1, v] has a pair of

acceptors u− and u. We replace Pi[u, uip] ∪ Pj [v, ujq] by Pij := uipP
−
i uvPjujq. Then we insert

every vertex in Pi[ui1, u)∪Pj [uj1, v) between its corresponding one pair of acceptors in some path
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in (P \ {Pi, Pj})∪{Pij}. Then we can get a path cover consisting of t− 1 paths, a contradiction.

(b) To the contrary, u and v have a common pair of acceptors urg, ur(g+1) in Pr ∈ P \
{Pi, Pj}, 1 ≤ g < |V (Pr)|. Let Pir := uipP

−
i uurgP

−
r ur1, Pjr := urfP

−
r ur(g+1)vPjujq, where

f = |V (Pr)|. Then by the minimality of subscript sum of u and v, no pair of vertices uih ∈
Pi[ui1, u), ujl ∈ Pj [uj1, v) have common pair of acceptors in any path of P \ {Pi, Pj}, 1 ≤ h <

s, 1 ≤ l < m. By (a), no vertex in Pi[ui1, u) has a pair of acceptors in Pj [uj1, v). Likewise, no

vertex in Pj [uj1, v) has a pair of acceptors in Pi[ui1, u). Then we insert each vertex in Pi[ui1, u)∪
Pj [uj1, v) into corresponding pair of acceptors in (P \ {Pi, Pj}) ∪ {Pir, Pjr} as the operation in

the proof of Claim 1, and replace Pi[u, uip] ∪ Pr ∪ Pj [v, ujq] by Pir ∪ Pjr. Clearly, by the above

two operations, we can get a path cover with t− 1 paths, a contradiction.

(c) Suppose ux ∈ E(G), and to the contrary, vx− ∈ E(G). By the minimality of the subscript

sum of u, v, there is no vertex in Pi[ui1, u) adjacent to x, which implies no vertex in Pi[ui1, u)

has a pair of acceptors x−, x in Pr. Likewise, there is no vertex in Pj [uj1, v) adjacent to x−, and

then no vertex in Pj [uj1, v) has a pair of acceptors x−, x in Pr. By (a), no vertex in Pi[ui1, u) has

a pair of acceptors in Pj [uj1, v), and no vertex in Pj [uj1, v) has a pair of acceptors in Pi[ui1, u).

We replace Pr ∪Pi[u, uip]∪Pj [v, ujq] by Pir := uipP
−
i uxPrurl and Prj := ur1Prx

−vPjujq, where

l = |V (Pr)|; By (b) and the proof of Claim 1, we insert every vertex in Pi[ui1, u) ∪ Pj [uj1, v)

between corresponding one pair of acceptors in some path in (P \ {Pi, Pj , Pr}) ∪ {Pir, Prj}.
Then we can get a path cover consisting of t − 1 paths, a contradiction. Thus x−v /∈ E(G).

Similarly, x+v /∈ E(G). By symmetry, for any vertex x in V (G)− V (Pi ∪ Pj), x
−u, x+u /∈ E(G)

if vx ∈ E(G).

(d) Suppose x ∈ Pi(vi, uip], and to the contrary, x−v ∈ E(G). By the minimality of the

subscript sum of u, v, there is no vertex in Pj [uj1, v) adjacent to x−, which implies no vertex in

Pj [uj1, v) has a pair of acceptors x−, x. By (a), no vertex in Pi[ui1, u] has a pair of acceptors

in Pj [uj1, v], and no vertex in Pj [uj1, v] has a pair of acceptors in Pi[ui1, u]. Then we replace

Pi[u, uip] and Pj [v, ujq] by Pij := uipP
−
i xuPix

−vPjujq; We insert each vertex in Pi[ui1, u) ∪
Pj [uj1, v) between corresponding one pair of acceptors in some path in (P \ {Pi, Pj}) ∪ {Pij}.
Then we can get a path cover consisting of t − 1 paths, a contradiction. By symmetry, if

x ∈ Pj(vj , ujq] and xv ∈ E(G), then x−u /∈ E(G).

(e) Suppose x ∈ Pi(vi, uip], ux, vx ∈ E(G), and to the contrary, x−x+ ∈ E(G). By the choice

of u, v, there is no vertex in Pj [uj1, v) adjacent to x, which implies no vertex in Pj [uj1, v) has a

pair of acceptors x−, x or x, x+. By (a), no vertex in Pi[ui1, u) has a pair of acceptors in Pj [uj1, v),

and no vertex in Pj [uj1, v) has a pair of acceptors in Pi[ui1, u). Then we replace Pi[u, uip] and

Pj [v, ujq] by Pij := uipP
−
i x+x−P−

i uxvPjujq; We insert each vertex in Pi[ui1, u) ∪ Pj [uj1, v)

between corresponding one pair of acceptors in (P \ {Pi, Pj}) ∪ {Pij}. Then we can get a path

cover consisting of t− 1 paths, a contradiction. Similarly, if x ∈ Pj(vj , uiq], and ux, vx ∈ E(G),

then x−x+ /∈ E(G).

Suppose t ≥ 3, x ∈ V (Pr), Pr ∈ P \ {Pi, Pj}, xv, xu ∈ E(G), and to the contrary, x−x+ ∈
E(G). By the choice of u, v, there is no vertex in Pi[ui1, u) ∪ Pj [uj1, v) adjacent to x, which

implies no vertex in Pi[ui1, u) ∪ Pj [uj1, v) has a pair of acceptors x−, x, or x+, x. By (a), no
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vertex in Pi[ui1, u) has a pair of acceptors in Pj [uj1, v), and no vertex in Pj [uj1, v) has a pair

of acceptors in Pi[ui1, u). We replace Pr ∪ Pi[u, uip] ∪ Pj [v, ujq] by P ′
r := urlP

−
r x+x−P−

r ur1 and

Pij := uipP
−
i uxvPjujq, where l = |V (Pr)|; We insert each vertex in Pi[ui1, u)∪Pj [uj1, v) between

corresponding one pair of acceptors in some path in (P \ {Pi, Pj , Pr}) ∪ {P ′
r, Pij}. Then we can

get a path cover consisting of t− 1 paths, a contradiction. �

Recall that S = {v1, v2, . . . , vt} is the vertex set consisting of the first non-insertable vertex

of each path in P. By Claim 2(a), we can get the following results.

Claim 3 S is an independent set of G.

Claim 4 For any path Pi ∈ P, and any vertex u ∈ Pi[ui1, vi], NS(u) ⊆ {vi}, 1 ≤ i ≤ t.

Claim 5 For any path Pi = Pi[ui1, uip], NS(uip) ⊆ {vi}, where, p = |V (Pi)|, 1 ≤ i ≤ t.

Proof Suppose to the contrary, uipvj ∈ E(G), vj ∈ S−{vi}. We replace Pi[ui1, uip]∪Pj [vj , ujq]

by Pij := ui1PiuipvjPjujq, where q = |V (Pj)|. Then we insert each vertex in Pj [uj1, vj) between

corresponding one pair of acceptors of some path in (P \ {Pi, Pj}) ∪ {Pij}. Then we can get a

path cover consisting of t− 1 paths, a contradiction. �

Claim 6 For any path Pi ∈ P and any vertex u ∈ V (Pi), dS(u) ≤ 2, and if dS(u) = 2, then

vi ∈ NS(u), 1 ≤ i ≤ t.

Proof To the contrary, suppose there exists some vertex u ∈ V (Pi) with dS(u) ≥ 3. By

Claim 4 and Claim 5, u ∈ Pi(vi, uip), where p = |V (Pi)|. Thus u− and u+ exist. Assume

vj , vm ∈ NS(u)−{vi}, where 1 ≤ j,m ≤ t and j ̸= m. By the definition of non-insertable vertex,

vju
−, vju

+, vmu−, vmu+ /∈ E(G). By Claim 2(e), u−u+ /∈ E(G). It follows thatG[u, u−, u+, vj , vm]

= K1,4, a contradiction. Thus dS(u) ≤ 2. By the previous proof, if dS(u) = 2, and vi /∈ NS(u),

then we can get a contradiction. Thus vi ∈ NS(u). �

Claim 7 For any path Pi ∈ P, let z1, z2, . . . , zm be all the vertices in order along the positive

direction of Pi with NS(zj) = ∅, 1 ≤ i ≤ t, 1 ≤ j ≤ m. If m ≥ 2, then for any j ∈ [1,m− 1], any

segment Pi(zj , zj+1) contains at most one vertex u with dS(u) = 2, and u = z−j+1 if dS(u) = 2.

Proof By Claim 4, dS(u) ≤ 1 for any vertex u ∈ Pi[ui1, vi]. By Claim 3, dS(vi) = 0 and then

{z1, z2, . . . , zm} ̸= ∅. Suppose for some segment Pi(zj , zj+1), u is the first vertex in Pi(zj , zj+1)

with dS(u) = 2. Then by Claim 6, assume NS(u) = {vi, vh}. In order to get u = z−j+1, it

suffices to prove Pi(u, zj+1) = ∅. To the contrary, suppose Pi(u, zj+1) ̸= ∅ and v = u+. Since

v ∈ Pi(zj , zj+1), NS(v) ̸= ∅. Since viu, vhu ∈ E(G), vvi /∈ E(G) by Claim 2(d). By Claim 6,

dS(v) = 1. Suppose NS(v) = {vs}, vs ∈ S − {vi}. Clearly, v−vs /∈ E(G), i.e., uvs /∈ E(G),

otherwise, vs is an insertable vertex, a contradiction. Thus vs ̸= vh. Since v /∈ V (Ps ∪ Ph), vvs,

uvh ∈ E(G), i.e., v−vh ∈ E(G), we can get a contradiction to Claim 2(c). �

Claim 8 If NS(u) ̸= ∅ for any vertex u in Pi(vi, uip], then NS(u) = {vi} for each path Pi ∈ P,

where p = |V (Pi)|, 1 ≤ i ≤ t.
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Proof Since NS(uip) ̸= ∅, NS(uip) = {vi} by Claim 5. Then by NS(u) ̸= ∅ and Claim 2(d), for

any vertex u ∈ Pi(vi, uip), NS(u) = {vi}. �
By Claims 7 and 8, we can obtain the upper bound of

∑
v∈S dPi(v) for any path Pi ∈ P, as

follows.

Claim 9 For any path P ∈ P,
∑

v∈S dP (v) =
∑

u∈V (P ) dS(u) ≤ |V (P )| − 1.

Now, let us complete Theorem 1.5. Clearly,
∑

v∈S d(v) =
∑

P∈P

∑
v∈S dP (v), and then by

Claim 9,
∑

v∈S d(v) ≤
∑

P∈P(|V (P )| − 1) = n− t. It follows that σk+1 ≤ σt ≤ n− t < n− k by

k < t, which contradicts σk+1(G) ≥ n− k. Thus Theorem 1.5 holds. �
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