Journal of Mathematical Research with Applications May, 2019, Vol. 39, No. 3, pp. 315–320 DOI:10.3770/j.issn:2095-2651.2019.03.011 Http://jmre.dlut.edu.cn

Path Cover in $K_{1,4}$ -Free Graphs

Mingda LIU¹, Xiaodong CHEN^{1,*}, Mingchu LI²

1. College of Science, Liaoning University of Technology, Liaoning 121001, P. R. China;

2. School of Softsware, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract For a graph G, a path cover is a set of vertex disjoint paths covering all the vertices of G, and a path cover number of G, denoted by p(G), is the minimum number of paths in a path cover among all the path covers of G. In this paper, we prove that if G is a $K_{1,4}$ -free graph of order n and $\sigma_{k+1}(G) \ge n-k$, then $p(G) \le k$, where $\sigma_{k+1}(G) = \min\{\sum_{v \in S} d(v) : S \text{ is an independent set of } G \text{ with } |S| = k+1\}.$

Keywords path cover; path cover number; $K_{1,4}$ -free graph; non-insertable vertex

MR(2010) Subject Classification 68R10

1. Introduction

In this paper, only finite and simple graphs are considered. Readers can refer to [1] for notation and terminology not defined here. A graph G is $K_{1,r}$ -free, if G contains no induced subgraph isomorphic to $K_{1,r}$, where $r \geq 3$. Let $\alpha(G)$ denote the independent number of a graph G, i.e., the cardinality of a maximum independent set in G. For $S \subseteq V(G)$, G[S] denotes the subgraph of G induced by S. For a vertex v of G, N(v) denotes both the set of vertices adjacent to v and the induced subgraph G[N(v)]. Let $N_S(v)$ denote the set of all vertices in S adjacent to v and $d_S(v) = |N_S(v)|$. In particular, the degree of v is denoted by $d_G(v) = |N_G(v)|$ and briefly denoted by d(v). We use $\delta(G)$ to denote the minimum degree of a graph G. For a subgraph H of a graph G, G - H denotes the subgraph induced by V(G) - V(H). We define $\sigma_{k+1}(G) =$ $\min\{\sum_{v \in S} d(v) : S$ is an independent set of G with $|S| = k + 1\}$ if $k + 1 \leq \alpha(G)$, otherwise, $\sigma_{k+1}(G) = +\infty$. For a graph G and $A, B \subseteq V(G)$, let $E(A, B) = \{uv \in E(G) : u \in A, v \in B\}$.

Given a positive orientation of a path P, P[a, b] (or aPb) denotes a path from a to b along the positive orientation, and P(a, b) denotes the path $P[a, b] - \{a, b\}$. For a path P[a, b], if $x, y \in V(P)$, xPy denotes a subpath of P[a, b] from x to y along the positive orientation, and $yP^{-}x$ denotes the subpath from y to x along its negative orientation. For a graph G, a path cover of G is a spanning subgraph consisting of some vertex disjoint paths in G. For a graph G, the path cover number $p(G) = \min\{|\mathfrak{P}| : \mathfrak{P} \text{ is a path cover of } G\}$. If \mathfrak{P} is a path cover of G with $|\mathfrak{P}| = p(G)$, then \mathfrak{P} is called a minimum path cover of G.

Received July 17, 2018; Accepted October 26, 2018

Supported by the Joint Fund of Liaoning Provincial Natural Science Foundation (Grant No. SY2016012). * Corresponding author

E-mail address: xiaodongchen74@126.com (Xiaodong CHEN)

Dirac [2] in 1952 showed that any graph G with order $n \ge 3$ and $\delta(G) \ge \frac{n}{2}$ is hamiltonian, and G contains a hamilton path if $\delta(G) \ge \frac{n-1}{2}$. Since then, there are a lot of results about the sufficient conditions for graphs to have a hamilton cycle (or path). It is well known that it is NP-hard to justify whether a graph contains a hamilton cycle (or path). As a result, the hamiltonicity of some special graphs, especially, $K_{1,r}$ -free graphs are largely studied.

Theorem 1.1 ([3]) Let G be a k-connected $K_{1,3}$ -free graph of order n such that $k \geq 2$ and $\sigma_{k+1} \geq n-k$. Then G is hamiltonian.

Theorem 1.2 ([4]) For any k-connected $K_{1,4}$ -free graph G of order $n \ge 3$, if $\sigma_{k+1}(G) \ge n+k$, then G is hamiltonian.

Clearly, the upper bound of the path cover number of a given graph is a generalization of justifying if a graph contains a hamilton path. Thus, there are some results on the upper bound of the path cover number of general graphs as follows.

Theorem 1.3 ([5]) For a graph G of order n, the path cover number $p(G) \leq n - \sigma_2(G)$.

Theorem 1.4 ([6]) For a graph G with connectivity k(G), if $\alpha(G) > k(G)$, then $p(G) \le \alpha(G) - k(G)$, otherwise, $p(G) \le \alpha(G)$.

Inspired by the above results, there are some results about the path cover number of regular graphs [8–10]. In this paper, we give the following sufficient conditions for $K_{1,4}$ -free graphs on the degree sum of vertices in an independent set with k + 1 vertices.

Theorem 1.5 For a positive integer k, if G is a $K_{1,4}$ -free graph of order n and $\sigma_{k+1}(G) \ge n-k$, then $p(G) \le k$.

Figure 1 A $K_{1,4}$ -free graph G with $\sigma_3(G) = n - 3$.

Clearly, in Theorem 1.5, if k = 1, then $\sigma_2(G) \ge n-1$, and G contains a hamilton path which confirms the conclusion Ore [7] proposed that if a graph G with $\sigma_2(G) \ge n-1$, then G contains a hamilton path. Figure 1 shows that the lower bound of $\sigma_{k+1}(G)$ in Theorem 1.5 is not best possible for k = 2, since $\sigma_3(G) = n-3$ in Figure 1 and the path cover number is 2.

2. Proof of Theorem 1.5

Suppose that a graph G satisfies the assumption of Theorem 1.5 with p(G) = t, and to the contrary, t > k. Then $t \ge 2$. Let $\mathfrak{P} = \{P_1, P_2, \ldots, P_t\}$ be a minimum path cover of G. Assume any path P_i in \mathfrak{P} is given a positive direction, and $P_i := u_{i1}u_{i2}\cdots u_{i|V(P_i)|}$, where $u_{i1}, u_{i2}, \ldots, u_{i|V(P_i)|}$ are all the vertices of P_i in order along its positive direction, $1 \le i \le t$. For a vertex v in P_i , if $uv, wv \in E(G)$ for two vertices u, w with $uw \in E(P_j)$ in some path $P_j \in \mathfrak{P} \setminus \{P_i\}$, then v is

called an insertable vertex, and u, w are called a pair of acceptors of v in P_j . Clearly, for any vertex $x \in V(G)$, there is exact one path P_i in \mathfrak{P} containing x, and in the following proof, we use x^- and x^+ to denote the predecessor and successor of x according to the orientation of P_i , respectively. By the definition of insertable vertex and the minimality of $|\mathfrak{P}|$, we can get Claims 1 and 2 as follows.

Claim 1 For each P_i in \mathfrak{P} , P_i contains a non-insertable vertex.

Proof To the contrary, suppose for some P_i , any vertex in P_i is an insertable vertex. If $|V(P_i)| = 1$, i.e., $P_i = u_{i1}$, then clearly, u_{i1} can be inserted between its one pair of acceptors in some path $P_j \in \mathfrak{P} \setminus \{P_i\}$, and then we can get a path cover consisting of t - 1 paths, a contradiction. Suppose $|V(P_i)| \ge 2$, and assume u_{is} is the last vertex along the positive direction of P_i with the same one pair of acceptors u, w as u_{i1} in some path $P_j \in \mathfrak{P} \setminus \{P_i\}$, then all the vertices in $P_i[u_{i1}, u_{is}]$ can be inserted between u and w by the path $uu_{i1}P_iu_{is}w$. Similarly, any other vertex in P_i can be inserted between corresponding one pair of acceptors in some path in $\mathfrak{P} \setminus \{P_i\}$. Thus we can get a path cover of G consisting of t - 1 paths, a contradiction. \Box

By Claim 1, for any path P_i in \mathfrak{P} , we denote by v_i the first non-insertable vertex in P_i . In the following proof, let $S = \{v_1, v_2, \ldots, v_i\}$, i.e., S consists of the first non-insertable vertex in each path of \mathfrak{P} . Since v_i is the first non-insertable vertex in P_i , any vertex in $P_i[u_{i1}, v_i)$ is an insertable vertex if $u_{i1} \neq v_i$. By the proof of Claim 1, any vertex in $P_i[u_{i1}, v_i)$ can be inserted between corresponding one pair of acceptors in some path $P_j \in \mathfrak{P} \setminus \{P_i\}$.

Claim 2 Let P_i and P_j be two distinct paths in \mathfrak{P} and let $p = |V(P_i)|, q = |V(P_j)|$. For any vertex $u \in P_i[u_{i1}, v_i]$ and any vertex $v \in P_j[u_{j1}, v_j], 1 \leq i, j \leq t$, the following properties hold. (a) $uv \notin E(G)$;

(b) If $t \geq 3$, then u, v have no common pair of acceptors in $\mathfrak{P} \setminus \{P_i, P_i\}$;

(c) Assume $t \geq 3, P_r \in \mathfrak{P} \setminus \{P_i, P_j\}$. Then for any vertex $x \in V(P_r)$, if $ux \in E(G)$, then $x^-v, x^+v \notin E(G)$; By symmetry, if $vx \in E(G)$, then $x^-u, x^+u \notin E(G)$;

(d) For any vertex $x \in P_i(v_i, u_{ip}]$, if $ux \in E(G)$, then $x^-v \notin E(G)$; By symmetry, if $x \in P_j(v_j, u_{jq}]$ and $vx \in E(G)$, then $x^-u \notin E(G)$;

(e) For any vertex x in $P_r \cup P_i(v_i, u_{ip}) \cup P_j(v_j, u_{jq}), x^-x^+ \notin E(G)$ if $ux, xv \in E(G)$, where $P_r \in \mathfrak{P} \setminus \{P_i, P_j\}$.

Proof We prove (a), (b), (c), (d), (e) by contradiction, respectively. In the following proof, to the contrary, assume $u = u_{is} \in P_i[u_{i1}, v_i], v = u_{jm} \in P_j[u_{j1}, v_j]$ are the pair of vertices with the minimum subscript sum s + m which are not satisfying (a), (b), (c), (d), (e), respectively.

(a) To the contrary, suppose $uv \in E(G)$. Clearly, $u_{i1}u_{j1} \notin E(G)$, i.e., $u \neq u_{i1}$ or $v \neq u_{j1}$, otherwise, there exists a path cover consisting of t-1 paths, a contradiction. By the minimality of the subscript sum of $u, v, E(P_i[u_{i1}, u), P_j[u_{j1}, v)) = \emptyset$. It follows that there is no vertex in $P_i[u_{i1}, u]$ has a pair of acceptors v^- and v; Similarly, there is no vertex in $P_j[u_{j1}, v]$ has a pair of acceptors u^- and u. We replace $P_i[u, u_{ip}] \cup P_j[v, u_{jq}]$ by $P_{ij} := u_{ip}P_i^-uvP_ju_{jq}$. Then we insert every vertex in $P_i[u_{i1}, u) \cup P_j[u_{j1}, v)$ between its corresponding one pair of acceptors in some path in $(\mathfrak{P} \setminus \{P_i, P_j\}) \cup \{P_{ij}\}$. Then we can get a path cover consisting of t-1 paths, a contradiction.

(b) To the contrary, u and v have a common pair of acceptors $u_{rg}, u_{r(g+1)}$ in $P_r \in \mathfrak{P} \setminus \{P_i, P_j\}, 1 \leq g < |V(P_r)|$. Let $P_{ir} := u_{ip}P_i^-u_{rg}P_r^-u_{r1}, P_{jr} := u_{rf}P_r^-u_{r(g+1)}vP_ju_{jq}$, where $f = |V(P_r)|$. Then by the minimality of subscript sum of u and v, no pair of vertices $u_{ih} \in P_i[u_{i1}, u), u_{jl} \in P_j[u_{j1}, v)$ have common pair of acceptors in any path of $\mathfrak{P} \setminus \{P_i, P_j\}, 1 \leq h < s, 1 \leq l < m$. By (a), no vertex in $P_i[u_{i1}, u)$ has a pair of acceptors in $P_j[u_{j1}, v)$. Likewise, no vertex in $P_j[u_{j1}, v)$ has a pair of acceptors in $P_i[u_{i1}, u)$. Then we insert each vertex in $P_i[u_{i1}, u) \cup P_j[u_{j1}, v)$ into corresponding pair of acceptors in $(\mathfrak{P} \setminus \{P_i, P_j\}) \cup \{P_{ir}, P_{jr}\}$ as the operation in the proof of Claim 1, and replace $P_i[u, u_{ip}] \cup P_r \cup P_j[v, u_{jq}]$ by $P_{ir} \cup P_{jr}$. Clearly, by the above two operations, we can get a path cover with t - 1 paths, a contradiction.

(c) Suppose $ux \in E(G)$, and to the contrary, $vx^- \in E(G)$. By the minimality of the subscript sum of u, v, there is no vertex in $P_i[u_{i1}, u)$ adjacent to x, which implies no vertex in $P_i[u_{i1}, u)$ has a pair of acceptors x^-, x in P_r . Likewise, there is no vertex in $P_j[u_{j1}, v)$ adjacent to x^- , and then no vertex in $P_j[u_{j1}, v)$ has a pair of acceptors x^-, x in P_r . By (a), no vertex in $P_i[u_{i1}, u)$ has a pair of acceptors in $P_j[u_{j1}, v)$, and no vertex in $P_j[u_{j1}, v)$ has a pair of acceptors in $P_i[u_{i1}, u)$. We replace $P_r \cup P_i[u, u_{ip}] \cup P_j[v, u_{jq}]$ by $P_{ir} := u_{ip}P_i^-uxP_ru_{rl}$ and $P_{rj} := u_{r1}P_rx^-vP_ju_{jq}$, where $l = |V(P_r)|$; By (b) and the proof of Claim 1, we insert every vertex in $P_i[u_{i1}, u) \cup P_j[u_{j1}, v)$ between corresponding one pair of acceptors in some path in $(\mathfrak{P} \setminus \{P_i, P_j, P_r\}) \cup \{P_{ir}, P_{rj}\}$. Then we can get a path cover consisting of t - 1 paths, a contradiction. Thus $x^-v \notin E(G)$. Similarly, $x^+v \notin E(G)$. By symmetry, for any vertex x in $V(G) - V(P_i \cup P_j), x^-u, x^+u \notin E(G)$ if $vx \in E(G)$.

(d) Suppose $x \in P_i(v_i, u_{ip}]$, and to the contrary, $x^-v \in E(G)$. By the minimality of the subscript sum of u, v, there is no vertex in $P_j[u_{j1}, v)$ adjacent to x^- , which implies no vertex in $P_j[u_{j1}, v)$ has a pair of acceptors x^-, x . By (a), no vertex in $P_i[u_{i1}, u]$ has a pair of acceptors in $P_j[u_{j1}, v]$, and no vertex in $P_j[u_{j1}, v]$ has a pair of acceptors in $P_i[u_{i1}, u]$. Then we replace $P_i[u, u_{ip}]$ and $P_j[v, u_{jq}]$ by $P_{ij} := u_{ip}P_i^-xuP_ix^-vP_ju_{jq}$; We insert each vertex in $P_i[u_{i1}, u) \cup P_j[u_{j1}, v)$ between corresponding one pair of acceptors in some path in $(\mathfrak{P} \setminus \{P_i, P_j\}) \cup \{P_{ij}\}$. Then we can get a path cover consisting of t - 1 paths, a contradiction. By symmetry, if $x \in P_j(v_j, u_{jq}]$ and $xv \in E(G)$, then $x^-u \notin E(G)$.

(e) Suppose $x \in P_i(v_i, u_{ip}]$, $ux, vx \in E(G)$, and to the contrary, $x^-x^+ \in E(G)$. By the choice of u, v, there is no vertex in $P_j[u_{j1}, v)$ adjacent to x, which implies no vertex in $P_j[u_{j1}, v)$ has a pair of acceptors x^-, x or x, x^+ . By (a), no vertex in $P_i[u_{i1}, u)$ has a pair of acceptors in $P_j[u_{j1}, v)$, and no vertex in $P_j[u_{j1}, v)$ has a pair of acceptors in $P_i[u_{i1}, u)$. Then we replace $P_i[u, u_{ip}]$ and $P_j[v, u_{jq}]$ by $P_{ij} := u_{ip}P_i^-x^+x^-P_i^-uxvP_ju_{jq}$; We insert each vertex in $P_i[u_{i1}, u) \cup P_j[u_{j1}, v)$ between corresponding one pair of acceptors in $(\mathfrak{P} \setminus \{P_i, P_j\}) \cup \{P_{ij}\}$. Then we can get a path cover consisting of t-1 paths, a contradiction. Similarly, if $x \in P_j(v_j, u_{iq}]$, and $ux, vx \in E(G)$, then $x^-x^+ \notin E(G)$.

Suppose $t \geq 3, x \in V(P_r)$, $P_r \in \mathfrak{P} \setminus \{P_i, P_j\}, xv, xu \in E(G)$, and to the contrary, $x^-x^+ \in E(G)$. By the choice of u, v, there is no vertex in $P_i[u_{i1}, u) \cup P_j[u_{j1}, v)$ adjacent to x, which implies no vertex in $P_i[u_{i1}, u) \cup P_j[u_{j1}, v)$ has a pair of acceptors x^-, x , or x^+, x . By (a), no

vertex in $P_i[u_{i1}, u)$ has a pair of acceptors in $P_j[u_{j1}, v)$, and no vertex in $P_j[u_{j1}, v)$ has a pair of acceptors in $P_i[u_{i1}, u)$. We replace $P_r \cup P_i[u, u_{ip}] \cup P_j[v, u_{jq}]$ by $P'_r := u_{rl}P_r^{-}x^+x^-P_r^{-}u_{r1}$ and $P_{ij} := u_{ip}P_i^{-}uxvP_ju_{jq}$, where $l = |V(P_r)|$; We insert each vertex in $P_i[u_{i1}, u) \cup P_j[u_{j1}, v)$ between corresponding one pair of acceptors in some path in $(\mathfrak{P} \setminus \{P_i, P_j, P_r\}) \cup \{P'_r, P_{ij}\}$. Then we can get a path cover consisting of t - 1 paths, a contradiction. \Box

Recall that $S = \{v_1, v_2, \dots, v_t\}$ is the vertex set consisting of the first non-insertable vertex of each path in \mathfrak{P} . By Claim 2(a), we can get the following results.

Claim 3 S is an independent set of G.

Claim 4 For any path $P_i \in \mathfrak{P}$, and any vertex $u \in P_i[u_{i1}, v_i], N_S(u) \subseteq \{v_i\}, 1 \leq i \leq t$.

Claim 5 For any path $P_i = P_i[u_{i1}, u_{ip}], N_S(u_{ip}) \subseteq \{v_i\}$, where, $p = |V(P_i)|, 1 \le i \le t$.

Proof Suppose to the contrary, $u_{ip}v_j \in E(G), v_j \in S - \{v_i\}$. We replace $P_i[u_{i1}, u_{ip}] \cup P_j[v_j, u_{jq}]$ by $P_{ij} := u_{i1}P_iu_{ip}v_jP_ju_{jq}$, where $q = |V(P_j)|$. Then we insert each vertex in $P_j[u_{j1}, v_j)$ between corresponding one pair of acceptors of some path in $(\mathfrak{P} \setminus \{P_i, P_j\}) \cup \{P_{ij}\}$. Then we can get a path cover consisting of t - 1 paths, a contradiction. \Box

Claim 6 For any path $P_i \in \mathfrak{P}$ and any vertex $u \in V(P_i)$, $d_S(u) \leq 2$, and if $d_S(u) = 2$, then $v_i \in N_S(u), 1 \leq i \leq t$.

Proof To the contrary, suppose there exists some vertex $u \in V(P_i)$ with $d_S(u) \geq 3$. By Claim 4 and Claim 5, $u \in P_i(v_i, u_{ip})$, where $p = |V(P_i)|$. Thus u^- and u^+ exist. Assume $v_j, v_m \in N_S(u) - \{v_i\}$, where $1 \leq j, m \leq t$ and $j \neq m$. By the definition of non-insertable vertex, $v_j u^-, v_j u^+, v_m u^-, v_m u^+ \notin E(G)$. By Claim 2(e), $u^- u^+ \notin E(G)$. It follows that $G[u, u^-, u^+, v_j, v_m]$ $= K_{1,4}$, a contradiction. Thus $d_S(u) \leq 2$. By the previous proof, if $d_S(u) = 2$, and $v_i \notin N_S(u)$, then we can get a contradiction. Thus $v_i \in N_S(u)$. \Box

Claim 7 For any path $P_i \in \mathfrak{P}$, let z_1, z_2, \ldots, z_m be all the vertices in order along the positive direction of P_i with $N_S(z_j) = \emptyset$, $1 \le i \le t, 1 \le j \le m$. If $m \ge 2$, then for any $j \in [1, m - 1]$, any segment $P_i(z_j, z_{j+1})$ contains at most one vertex u with $d_S(u) = 2$, and $u = z_{j+1}^-$ if $d_S(u) = 2$.

Proof By Claim 4, $d_S(u) \leq 1$ for any vertex $u \in P_i[u_{i1}, v_i]$. By Claim 3, $d_S(v_i) = 0$ and then $\{z_1, z_2, \ldots, z_m\} \neq \emptyset$. Suppose for some segment $P_i(z_j, z_{j+1})$, u is the first vertex in $P_i(z_j, z_{j+1})$ with $d_S(u) = 2$. Then by Claim 6, assume $N_S(u) = \{v_i, v_h\}$. In order to get $u = z_{j+1}^-$, it suffices to prove $P_i(u, z_{j+1}) = \emptyset$. To the contrary, suppose $P_i(u, z_{j+1}) \neq \emptyset$ and $v = u^+$. Since $v \in P_i(z_j, z_{j+1})$, $N_S(v) \neq \emptyset$. Since $v_i u, v_h u \in E(G)$, $vv_i \notin E(G)$ by Claim 2(d). By Claim 6, $d_S(v) = 1$. Suppose $N_S(v) = \{v_s\}$, $v_s \in S - \{v_i\}$. Clearly, $v^-v_s \notin E(G)$, i.e., $uv_s \notin E(G)$, vv_s , $uv_h \in E(G)$, i.e., $v^-v_h \in E(G)$, we can get a contradiction to Claim 2(c). \Box

Claim 8 If $N_S(u) \neq \emptyset$ for any vertex u in $P_i(v_i, u_{ip}]$, then $N_S(u) = \{v_i\}$ for each path $P_i \in \mathfrak{P}$, where $p = |V(P_i)|, 1 \le i \le t$.

Proof Since $N_S(u_{ip}) \neq \emptyset$, $N_S(u_{ip}) = \{v_i\}$ by Claim 5. Then by $N_S(u) \neq \emptyset$ and Claim 2(d), for any vertex $u \in P_i(v_i, u_{ip})$, $N_S(u) = \{v_i\}$. \Box

By Claims 7 and 8, we can obtain the upper bound of $\sum_{v \in S} d_{P_i}(v)$ for any path $P_i \in \mathfrak{P}$, as follows.

Claim 9 For any path $P \in \mathfrak{P}$, $\sum_{v \in S} d_P(v) = \sum_{u \in V(P)} d_S(u) \le |V(P)| - 1$.

Now, let us complete Theorem 1.5. Clearly, $\sum_{v \in S} d(v) = \sum_{P \in \mathfrak{P}} \sum_{v \in S} d_P(v)$, and then by Claim 9, $\sum_{v \in S} d(v) \leq \sum_{P \in \mathfrak{P}} (|V(P)| - 1) = n - t$. It follows that $\sigma_{k+1} \leq \sigma_t \leq n - t < n - k$ by k < t, which contradicts $\sigma_{k+1}(G) \geq n - k$. Thus Theorem 1.5 holds. \Box

References

- [1] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. American Elsevier, New York, 1976.
- [2] G. A. DIRAC. Some theorems on abstract graphs. Proc. London Math. Soc., 1952, 3(2): 69–81.
- [3] Cunquan ZHANG. Hamilton cycle in claw-free graphs. J. Graph Theory, 1988, 10: 209–216.
- [4] Guantao CHEN, R. SCHELP. Hamiltonicity for $K_{1,r}$ -free graphs. J. Graph Theory, 1995, **20**(4): 423–439.
- [5] O. ORE. Arc coverings of graphs. Ann. Math. Pura Appl., 1961, 4(55): 315–321.
- [6] I. B. HARTMAN. Variations on the Gallai-Milgram theorem. Discrete Math., 1988, 71(2): 95–105.
- [7] O. ORE. Notes on Hamilton circuits. Amer. Math. Monthly, 1960, 67: 55.
- [8] A. V. KOSTOCHKA, B. Y. STODOLSKY. On domination in connected cubic graphs. Discrete Math., 2005, 304: 45–50.
- [9] O. SUIL, D. B. WEST. Matchings, and edge-connectivity in regular graphs. European J. Comb., 2011, 32: 324–329.
- [10] Gexin YU. Covering 2-connected 3-regular graphs with disjoint. J. Graph Theory, 2018, 88(3): 385-401.