Path Cover in $K_{1,4}$-Free Graphs

Mingda LIU ${ }^{1}$, Xiaodong CHEN ${ }^{1, *}$, Mingchu LI 2
1. College of Science, Liaoning University of Technology, Liaoning 121001, P. R. China;
2. School of Softsware, Dalian University of Technology, Liaoning 116024, P . R . China

Abstract

For a graph G, a path cover is a set of vertex disjoint paths covering all the vertices of G, and a path cover number of G, denoted by $p(G)$, is the minimum number of paths in a path cover among all the path covers of G. In this paper, we prove that if G is a $K_{1,4}$-free graph of order n and $\sigma_{k+1}(G) \geq n-k$, then $p(G) \leq k$, where $\sigma_{k+1}(G)=\min \left\{\sum_{v \in S} \mathrm{~d}(v): S\right.$ is an independent set of G with $|S|=k+1\}$.

Keywords path cover; path cover number; $K_{1,4}$-free graph; non-insertable vertex
MR(2010) Subject Classification 68R10

1. Introduction

In this paper, only finite and simple graphs are considered. Readers can refer to [1] for notation and terminology not defined here. A graph G is $K_{1, r}$-free, if G contains no induced subgraph isomorphic to $K_{1, r}$, where $r \geq 3$. Let $\alpha(G)$ denote the independent number of a graph G, i.e., the cardinality of a maximum independent set in G. For $S \subseteq V(G), G[S]$ denotes the subgraph of G induced by S. For a vertex v of $G, N(v)$ denotes both the set of vertices adjacent to v and the induced subgraph $G[N(v)]$. Let $N_{S}(v)$ denote the set of all vertices in S adjacent to v and $d_{S}(v)=\left|N_{S}(v)\right|$. In particular, the degree of v is denoted by $d_{G}(v)=\left|N_{G}(v)\right|$ and briefly denoted by $d(v)$. We use $\delta(G)$ to denote the minimum degree of a graph G. For a subgraph H of a graph $G, G-H$ denotes the subgraph induced by $V(G)-V(H)$. We define $\sigma_{k+1}(G)=$ $\min \left\{\sum_{v \in S} \mathrm{~d}(v): S\right.$ is an independent set of G with $\left.|S|=k+1\right\}$ if $k+1 \leq \alpha(G)$, otherwise, $\sigma_{k+1}(G)=+\infty$. For a graph G and $A, B \subseteq V(G)$, let $E(A, B)=\{u v \in E(G): u \in A, v \in B\}$.

Given a positive orientation of a path $P, P[a, b]$ (or $a P b$) denotes a path from a to b along the positive orientation, and $P(a, b)$ denotes the path $P[a, b]-\{a, b\}$. For a path $P[a, b]$, if $x, y \in V(P), x P y$ denotes a subpath of $P[a, b]$ from x to y along the positive orientation, and $y P^{-} x$ denotes the subpath from y to x along its negative orientation. For a graph G, a path cover of G is a spanning subgraph consisting of some vertex disjoint paths in G. For a graph G, the path cover number $p(G)=\min \{|\mathfrak{P}|: \mathfrak{P}$ is a path cover of $G\}$. If \mathfrak{P} is a path cover of G with $|\mathfrak{P}|=p(G)$, then \mathfrak{P} is called a minimum path cover of G.

[^0]Dirac [2] in 1952 showed that any graph G with order $n \geq 3$ and $\delta(G) \geq \frac{n}{2}$ is hamiltonian, and G contains a hamilton path if $\delta(G) \geq \frac{n-1}{2}$. Since then, there are a lot of results about the sufficient conditions for graphs to have a hamiton cycle (or path). It is well known that it is NP-hard to justify whether a graph contains a hamilton cycle (or path). As a result, the hamiltonicity of some special graphs, especially, $K_{1, r}$-free graphs are largely studied.

Theorem 1.1 ([3]) Let G be a k-connected $K_{1,3}$-free graph of order n such that $k \geq 2$ and $\sigma_{k+1} \geq n-k$. Then G is hamiltonian.

Theorem 1.2 ([4]) For any k-connected $K_{1,4}$-free graph G of order $n \geq 3$, if $\sigma_{k+1}(G) \geq n+k$, then G is hamiltonian.

Clearly, the upper bound of the path cover number of a given graph is a generalization of justifying if a graph contains a hamilton path. Thus, there are some results on the upper bound of the path cover number of general graphs as follows.

Theorem 1.3 ([5]) For a graph G of order n, the path cover number $p(G) \leq n-\sigma_{2}(G)$.
Theorem $1.4([6])$ For a graph G with connectivity $k(G)$, if $\alpha(G)>k(G)$, then $p(G) \leq$ $\alpha(G)-k(G)$, otherwise, $p(G) \leq \alpha(G)$.

Inspired by the above results, there are some results about the path cover number of regular graphs [8-10]. In this paper, we give the following sufficient conditions for $K_{1,4}$-free graphs on the degree sum of vertices in an independent set with $k+1$ vertices.

Theorem 1.5 For a positive integer k, if G is a $K_{1,4}$-free graph of order n and $\sigma_{k+1}(G) \geq n-k$, then $p(G) \leq k$.

Figure 1 A $K_{1,4}$-free graph G with $\sigma_{3}(G)=n-3$.
Clearly, in Theorem 1.5, if $k=1$, then $\sigma_{2}(G) \geq n-1$, and G contains a hamilton path which confirms the conclusion Ore [7] proposed that if a graph G with $\sigma_{2}(G) \geq n-1$, then G contains a hamilton path. Figure 1 shows that the lower bound of $\sigma_{k+1}(G)$ in Theorem 1.5 is not best possible for $k=2$, since $\sigma_{3}(G)=n-3$ in Figure 1 and the path cover number is 2 .

2. Proof of Theorem 1.5

Suppose that a graph G satisfies the assumption of Theorem 1.5 with $p(G)=t$, and to the contrary, $t>k$. Then $t \geq 2$. Let $\mathfrak{P}=\left\{P_{1}, P_{2}, \ldots, P_{t}\right\}$ be a minimum path cover of G. Assume any path P_{i} in \mathfrak{P} is given a positive direction, and $P_{i}:=u_{i 1} u_{i 2} \cdots u_{i\left|V\left(P_{i}\right)\right|}$, where $u_{i 1}, u_{i 2}, \ldots, u_{i\left|V\left(P_{i}\right)\right|}$ are all the vertices of P_{i} in order along its positive direction, $1 \leq i \leq t$. For a vertex v in P_{i}, if $u v, w v \in E(G)$ for two vertices u, w with $u w \in E\left(P_{j}\right)$ in some path $P_{j} \in \mathfrak{P} \backslash\left\{P_{i}\right\}$, then v is
called an insertable vertex, and u, w are called a pair of acceptors of v in P_{j}. Clearly, for any vertex $x \in V(G)$, there is exact one path P_{i} in \mathfrak{P} containing x, and in the following proof, we use x^{-}and x^{+}to denote the predecessor and successor of x according to the orientation of P_{i}, respectively. By the definition of insertable vertex and the minimality of $|\mathfrak{P}|$, we can get Claims 1 and 2 as follows.

Claim 1 For each P_{i} in \mathfrak{P}, P_{i} contains a non-insertable vertex.
Proof To the contrary, suppose for some P_{i}, any vertex in P_{i} is an insertable vertex. If $\left|V\left(P_{i}\right)\right|=1$, i.e., $P_{i}=u_{i 1}$, then clearly, $u_{i 1}$ can be inserted between its one pair of acceptors in some path $P_{j} \in \mathfrak{P} \backslash\left\{P_{i}\right\}$, and then we can get a path cover consisting of $t-1$ paths, a contradiction. Suppose $\left|V\left(P_{i}\right)\right| \geq 2$, and assume $u_{i s}$ is the last vertex along the positive direction of P_{i} with the same one pair of acceptors u, w as $u_{i 1}$ in some path $P_{j} \in \mathfrak{P} \backslash\left\{P_{i}\right\}$, then all the vertices in $P_{i}\left[u_{i 1}, u_{i s}\right]$ can be inserted between u and w by the path $u u_{i 1} P_{i} u_{i s} w$. Similarly, any other vertex in P_{i} can be inserted between corresponding one pair of acceptors in some path in $\mathfrak{P} \backslash\left\{P_{i}\right\}$. Thus we can get a path cover of G consisting of $t-1$ paths, a contradiction.

By Claim 1, for any path P_{i} in \mathfrak{P}, we denote by v_{i} the first non-insertable vertex in P_{i}. In the following proof, let $S=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$, i.e., S consists of the first non-insertable vertex in each path of \mathfrak{P}. Since v_{i} is the first non-insertable vertex in P_{i}, any vertex in $P_{i}\left[u_{i 1}, v_{i}\right)$ is an insertable vertex if $u_{i 1} \neq v_{i}$. By the proof of Claim 1, any vertex in $P_{i}\left[u_{i 1}, v_{i}\right)$ can be inserted between corresponding one pair of acceptors in some path $P_{j} \in \mathfrak{P} \backslash\left\{P_{i}\right\}$.

Claim 2 Let P_{i} and P_{j} be two distinct paths in \mathfrak{P} and let $p=\left|V\left(P_{i}\right)\right|, q=\left|V\left(P_{j}\right)\right|$. For any vertex $u \in P_{i}\left[u_{i 1}, v_{i}\right]$ and any vertex $v \in P_{j}\left[u_{j 1}, v_{j}\right], 1 \leq i, j \leq t$, the following properties hold.
(a) $u v \notin E(G)$;
(b) If $t \geq 3$, then u, v have no common pair of acceptors in $\mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}$;
(c) Assume $t \geq 3, P_{r} \in \mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}$. Then for any vertex $x \in V\left(P_{r}\right)$, if $u x \in E(G)$, then $x^{-} v, x^{+} v \notin E(G) ;$ By symmetry, if $v x \in E(G)$, then $x^{-} u, x^{+} u \notin E(G)$;
(d) For any vertex $x \in P_{i}\left(v_{i}, u_{i p}\right]$, if $u x \in E(G)$, then $x^{-} v \notin E(G)$; By symmetry, if $x \in P_{j}\left(v_{j}, u_{j q}\right]$ and $v x \in E(G)$, then $x^{-} u \notin E(G)$;
(e) For any vertex x in $P_{r} \cup P_{i}\left(v_{i}, u_{i p}\right) \cup P_{j}\left(v_{j}, u_{j q}\right), x^{-} x^{+} \notin E(G)$ if $u x, x v \in E(G)$, where $P_{r} \in \mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}$.

Proof We prove (a), (b), (c), (d), (e) by contradiction, respectively. In the following proof, to the contrary, assume $u=u_{i s} \in P_{i}\left[u_{i 1}, v_{i}\right], v=u_{j m} \in P_{j}\left[u_{j 1}, v_{j}\right]$ are the pair of vertices with the minimum subscript sum $s+m$ which are not satisfying (a), (b), (c), (d), (e), respectively.
(a) To the contrary, suppose $u v \in E(G)$. Clearly, $u_{i 1} u_{j 1} \notin E(G)$, i.e., $u \neq u_{i 1}$ or $v \neq u_{j 1}$, otherwise, there exists a path cover consisting of $t-1$ paths, a contradiction. By the minimality of the subscript sum of $u, v, E\left(P_{i}\left[u_{i 1}, u\right), P_{j}\left[u_{j 1}, v\right)\right)=\emptyset$. It follows that there is no vertex in $P_{i}\left[u_{i 1}, u\right]$ has a pair of acceptors v^{-}and v; Similarly, there is no vertex in $P_{j}\left[u_{j 1}, v\right]$ has a pair of acceptors u^{-}and u. We replace $P_{i}\left[u, u_{i p}\right] \cup P_{j}\left[v, u_{j q}\right]$ by $P_{i j}:=u_{i p} P_{i}^{-} u v P_{j} u_{j q}$. Then we insert every vertex in $P_{i}\left[u_{i 1}, u\right) \cup P_{j}\left[u_{j 1}, v\right)$ between its corresponding one pair of acceptors in some path
in $\left(\mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}\right) \cup\left\{P_{i j}\right\}$. Then we can get a path cover consisting of $t-1$ paths, a contradiction.
(b) To the contrary, u and v have a common pair of acceptors $u_{r g}$, $u_{r(g+1)}$ in $P_{r} \in \mathfrak{P} \backslash$ $\left\{P_{i}, P_{j}\right\}, 1 \leq g<\left|V\left(P_{r}\right)\right|$. Let $P_{i r}:=u_{i p} P_{i}^{-} u u_{r g} P_{r}^{-} u_{r 1}, P_{j r}:=u_{r f} P_{r}^{-} u_{r(g+1)} v P_{j} u_{j q}$, where $f=\left|V\left(P_{r}\right)\right|$. Then by the minimality of subscript sum of u and v, no pair of vertices $u_{i h} \in$ $P_{i}\left[u_{i 1}, u\right), u_{j l} \in P_{j}\left[u_{j 1}, v\right)$ have common pair of acceptors in any path of $\mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}, 1 \leq h<$ $s, 1 \leq l<m$. By (a), no vertex in $P_{i}\left[u_{i 1}, u\right)$ has a pair of acceptors in $P_{j}\left[u_{j 1}, v\right)$. Likewise, no vertex in $P_{j}\left[u_{j 1}, v\right)$ has a pair of acceptors in $P_{i}\left[u_{i 1}, u\right)$. Then we insert each vertex in $P_{i}\left[u_{i 1}, u\right) \cup$ $P_{j}\left[u_{j 1}, v\right)$ into corresponding pair of acceptors in $\left(\mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}\right) \cup\left\{P_{i r}, P_{j r}\right\}$ as the operation in the proof of Claim 1, and replace $P_{i}\left[u, u_{i p}\right] \cup P_{r} \cup P_{j}\left[v, u_{j q}\right]$ by $P_{i r} \cup P_{j r}$. Clearly, by the above two operations, we can get a path cover with $t-1$ paths, a contradiction.
(c) Suppose $u x \in E(G)$, and to the contrary, $v x^{-} \in E(G)$. By the minimality of the subscript sum of u, v, there is no vertex in $P_{i}\left[u_{i 1}, u\right)$ adjacent to x, which implies no vertex in $P_{i}\left[u_{i 1}, u\right)$ has a pair of acceptors x^{-}, x in P_{r}. Likewise, there is no vertex in $P_{j}\left[u_{j 1}, v\right)$ adjacent to x^{-}, and then no vertex in $P_{j}\left[u_{j 1}, v\right)$ has a pair of acceptors x^{-}, x in P_{r}. By (a), no vertex in $P_{i}\left[u_{i 1}, u\right)$ has a pair of acceptors in $P_{j}\left[u_{j 1}, v\right)$, and no vertex in $P_{j}\left[u_{j 1}, v\right)$ has a pair of acceptors in $P_{i}\left[u_{i 1}, u\right)$. We replace $P_{r} \cup P_{i}\left[u, u_{i p}\right] \cup P_{j}\left[v, u_{j q}\right]$ by $P_{i r}:=u_{i p} P_{i}^{-} u x P_{r} u_{r l}$ and $P_{r j}:=u_{r 1} P_{r} x^{-} v P_{j} u_{j q}$, where $l=\left|V\left(P_{r}\right)\right| ;$ By (b) and the proof of Claim 1, we insert every vertex in $P_{i}\left[u_{i 1}, u\right) \cup P_{j}\left[u_{j 1}, v\right)$ between corresponding one pair of acceptors in some path in $\left(\mathfrak{P} \backslash\left\{P_{i}, P_{j}, P_{r}\right\}\right) \cup\left\{P_{i r}, P_{r j}\right\}$. Then we can get a path cover consisting of $t-1$ paths, a contradiction. Thus $x^{-} v \notin E(G)$. Similarly, $x^{+} v \notin E(G)$. By symmetry, for any vertex x in $V(G)-V\left(P_{i} \cup P_{j}\right), x^{-} u, x^{+} u \notin E(G)$ if $v x \in E(G)$.
(d) Suppose $x \in P_{i}\left(v_{i}, u_{i p}\right]$, and to the contrary, $x^{-} v \in E(G)$. By the minimality of the subscript sum of u, v, there is no vertex in $P_{j}\left[u_{j 1}, v\right)$ adjacent to x^{-}, which implies no vertex in $P_{j}\left[u_{j 1}, v\right)$ has a pair of acceptors x^{-}, x. By (a), no vertex in $P_{i}\left[u_{i 1}, u\right]$ has a pair of acceptors in $P_{j}\left[u_{j 1}, v\right]$, and no vertex in $P_{j}\left[u_{j 1}, v\right]$ has a pair of acceptors in $P_{i}\left[u_{i 1}, u\right]$. Then we replace $P_{i}\left[u, u_{i p}\right]$ and $P_{j}\left[v, u_{j q}\right]$ by $P_{i j}:=u_{i p} P_{i}^{-} x u P_{i} x^{-} v P_{j} u_{j q}$; We insert each vertex in $P_{i}\left[u_{i 1}, u\right) \cup$ $P_{j}\left[u_{j 1}, v\right)$ between corresponding one pair of acceptors in some path in $\left(\mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}\right) \cup\left\{P_{i j}\right\}$. Then we can get a path cover consisting of $t-1$ paths, a contradiction. By symmetry, if $x \in P_{j}\left(v_{j}, u_{j q}\right]$ and $x v \in E(G)$, then $x^{-} u \notin E(G)$.
(e) Suppose $x \in P_{i}\left(v_{i}, u_{i p}\right], u x, v x \in E(G)$, and to the contrary, $x^{-} x^{+} \in E(G)$. By the choice of u, v, there is no vertex in $P_{j}\left[u_{j 1}, v\right)$ adjacent to x, which implies no vertex in $P_{j}\left[u_{j 1}, v\right)$ has a pair of acceptors x^{-}, x or x, x^{+}. By (a), no vertex in $P_{i}\left[u_{i 1}, u\right)$ has a pair of acceptors in $P_{j}\left[u_{j 1}, v\right)$, and no vertex in $P_{j}\left[u_{j 1}, v\right)$ has a pair of acceptors in $P_{i}\left[u_{i 1}, u\right)$. Then we replace $P_{i}\left[u, u_{i p}\right]$ and $P_{j}\left[v, u_{j q}\right]$ by $P_{i j}:=u_{i p} P_{i}^{-} x^{+} x^{-} P_{i}^{-} u x v P_{j} u_{j q}$; We insert each vertex in $P_{i}\left[u_{i 1}, u\right) \cup P_{j}\left[u_{j 1}, v\right)$ between corresponding one pair of acceptors in $\left(\mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}\right) \cup\left\{P_{i j}\right\}$. Then we can get a path cover consisting of $t-1$ paths, a contradiction. Similarly, if $x \in P_{j}\left(v_{j}, u_{i q}\right]$, and $u x, v x \in E(G)$, then $x^{-} x^{+} \notin E(G)$.

Suppose $t \geq 3, x \in V\left(P_{r}\right), P_{r} \in \mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}, x v, x u \in E(G)$, and to the contrary, $x^{-} x^{+} \in$ $E(G)$. By the choice of u, v, there is no vertex in $P_{i}\left[u_{i 1}, u\right) \cup P_{j}\left[u_{j 1}, v\right)$ adjacent to x, which implies no vertex in $P_{i}\left[u_{i 1}, u\right) \cup P_{j}\left[u_{j 1}, v\right)$ has a pair of acceptors x^{-}, x, or x^{+}, x. By (a), no
vertex in $P_{i}\left[u_{i 1}, u\right)$ has a pair of acceptors in $P_{j}\left[u_{j 1}, v\right)$, and no vertex in $P_{j}\left[u_{j 1}, v\right)$ has a pair of acceptors in $P_{i}\left[u_{i 1}, u\right)$. We replace $P_{r} \cup P_{i}\left[u, u_{i p}\right] \cup P_{j}\left[v, u_{j q}\right]$ by $P_{r}^{\prime}:=u_{r l} P_{r}^{-} x^{+} x^{-} P_{r}^{-} u_{r 1}$ and $P_{i j}:=u_{i p} P_{i}^{-} u x v P_{j} u_{j q}$, where $l=\left|V\left(P_{r}\right)\right|$; We insert each vertex in $P_{i}\left[u_{i 1}, u\right) \cup P_{j}\left[u_{j 1}, v\right)$ between corresponding one pair of acceptors in some path in $\left(\mathfrak{P} \backslash\left\{P_{i}, P_{j}, P_{r}\right\}\right) \cup\left\{P_{r}^{\prime}, P_{i j}\right\}$. Then we can get a path cover consisting of $t-1$ paths, a contradiction.

Recall that $S=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ is the vertex set consisting of the first non-insertable vertex of each path in \mathfrak{P}. By Claim 2(a), we can get the following results.

Claim $3 S$ is an independent set of G.
Claim 4 For any path $P_{i} \in \mathfrak{P}$, and any vertex $u \in P_{i}\left[u_{i 1}, v_{i}\right], N_{S}(u) \subseteq\left\{v_{i}\right\}, 1 \leq i \leq t$.
Claim 5 For any path $P_{i}=P_{i}\left[u_{i 1}, u_{i p}\right], N_{S}\left(u_{i p}\right) \subseteq\left\{v_{i}\right\}$, where, $p=\left|V\left(P_{i}\right)\right|, 1 \leq i \leq t$.
Proof Suppose to the contrary, $u_{i p} v_{j} \in E(G), v_{j} \in S-\left\{v_{i}\right\}$. We replace $P_{i}\left[u_{i 1}, u_{i p}\right] \cup P_{j}\left[v_{j}, u_{j q}\right]$ by $P_{i j}:=u_{i 1} P_{i} u_{i p} v_{j} P_{j} u_{j q}$, where $q=\left|V\left(P_{j}\right)\right|$. Then we insert each vertex in $P_{j}\left[u_{j 1}, v_{j}\right)$ between corresponding one pair of acceptors of some path in $\left(\mathfrak{P} \backslash\left\{P_{i}, P_{j}\right\}\right) \cup\left\{P_{i j}\right\}$. Then we can get a path cover consisting of $t-1$ paths, a contradiction.

Claim 6 For any path $P_{i} \in \mathfrak{P}$ and any vertex $u \in V\left(P_{i}\right), d_{S}(u) \leq 2$, and if $d_{S}(u)=2$, then $v_{i} \in N_{S}(u), 1 \leq i \leq t$.

Proof To the contrary, suppose there exists some vertex $u \in V\left(P_{i}\right)$ with $d_{S}(u) \geq 3$. By Claim 4 and Claim $5, u \in P_{i}\left(v_{i}, u_{i p}\right)$, where $p=\left|V\left(P_{i}\right)\right|$. Thus u^{-}and u^{+}exist. Assume $v_{j}, v_{m} \in N_{S}(u)-\left\{v_{i}\right\}$, where $1 \leq j, m \leq t$ and $j \neq m$. By the definition of non-insertable vertex, $v_{j} u^{-}, v_{j} u^{+}, v_{m} u^{-}, v_{m} u^{+} \notin E(G)$. By Claim 2(e), $u^{-} u^{+} \notin E(G)$. It follows that $G\left[u, u^{-}, u^{+}, v_{j}, v_{m}\right]$ $=K_{1,4}$, a contradiction. Thus $d_{S}(u) \leq 2$. By the previous proof, if $d_{S}(u)=2$, and $v_{i} \notin N_{S}(u)$, then we can get a contradiction. Thus $v_{i} \in N_{S}(u)$.

Claim 7 For any path $P_{i} \in \mathfrak{P}$, let $z_{1}, z_{2}, \ldots, z_{m}$ be all the vertices in order along the positive direction of P_{i} with $N_{S}\left(z_{j}\right)=\emptyset, 1 \leq i \leq t, 1 \leq j \leq m$. If $m \geq 2$, then for any $j \in[1, m-1]$, any segment $P_{i}\left(z_{j}, z_{j+1}\right)$ contains at most one vertex u with $d_{S}(u)=2$, and $u=z_{j+1}^{-}$if $d_{S}(u)=2$.

Proof By Claim $4, d_{S}(u) \leq 1$ for any vertex $u \in P_{i}\left[u_{i 1}, v_{i}\right]$. By Claim $3, d_{S}\left(v_{i}\right)=0$ and then $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\} \neq \emptyset$. Suppose for some segment $P_{i}\left(z_{j}, z_{j+1}\right), u$ is the first vertex in $P_{i}\left(z_{j}, z_{j+1}\right)$ with $d_{S}(u)=2$. Then by Claim 6, assume $N_{S}(u)=\left\{v_{i}, v_{h}\right\}$. In order to get $u=z_{j+1}^{-}$, it suffices to prove $P_{i}\left(u, z_{j+1}\right)=\emptyset$. To the contrary, suppose $P_{i}\left(u, z_{j+1}\right) \neq \emptyset$ and $v=u^{+}$. Since $v \in P_{i}\left(z_{j}, z_{j+1}\right), N_{S}(v) \neq \emptyset$. Since $v_{i} u, v_{h} u \in E(G), v v_{i} \notin E(G)$ by Claim 2(d). By Claim 6, $d_{S}(v)=1$. Suppose $N_{S}(v)=\left\{v_{s}\right\}, v_{s} \in S-\left\{v_{i}\right\}$. Clearly, $v^{-} v_{s} \notin E(G)$, i.e., uvs $\notin E(G)$, otherwise, v_{s} is an insertable vertex, a contradiction. Thus $v_{s} \neq v_{h}$. Since $v \notin V\left(P_{s} \cup P_{h}\right), v v_{s}$, $u v_{h} \in E(G)$, i.e., $v^{-} v_{h} \in E(G)$, we can get a contradiction to Claim 2(c).

Claim 8 If $N_{S}(u) \neq \emptyset$ for any vertex u in $P_{i}\left(v_{i}, u_{i p}\right]$, then $N_{S}(u)=\left\{v_{i}\right\}$ for each path $P_{i} \in \mathfrak{P}$, where $p=\left|V\left(P_{i}\right)\right|, 1 \leq i \leq t$.

Proof Since $N_{S}\left(u_{i p}\right) \neq \emptyset, N_{S}\left(u_{i p}\right)=\left\{v_{i}\right\}$ by Claim 5. Then by $N_{S}(u) \neq \emptyset$ and Claim 2(d), for any vertex $u \in P_{i}\left(v_{i}, u_{i p}\right), N_{S}(u)=\left\{v_{i}\right\}$.

By Claims 7 and 8 , we can obtain the upper bound of $\sum_{v \in S} d_{P_{i}}(v)$ for any path $P_{i} \in \mathfrak{P}$, as follows.

Claim 9 For any path $P \in \mathfrak{P}, \sum_{v \in S} d_{P}(v)=\sum_{u \in V(P)} d_{S}(u) \leq|V(P)|-1$.
Now, let us complete Theorem 1.5. Clearly, $\sum_{v \in S} d(v)=\sum_{P \in \mathfrak{P}} \sum_{v \in S} d_{P}(v)$, and then by Claim 9, $\sum_{v \in S} d(v) \leq \sum_{P \in \mathfrak{P}}(|V(P)|-1)=n-t$. It follows that $\sigma_{k+1} \leq \sigma_{t} \leq n-t<n-k$ by $k<t$, which contradicts $\sigma_{k+1}(G) \geq n-k$. Thus Theorem 1.5 holds.

References

[1] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. American Elsevier, New York, 1976.
[2] G. A. DIRAC. Some theorems on abstract graphs. Proc. London Math. Soc., 1952, 3(2): 69-81.
[3] Cunquan ZHANG. Hamilton cycle in claw-free graphs. J. Graph Theory, 1988, 10: 209-216.
[4] Guantao CHEN, R. SCHELP. Hamiltonicity for $K_{1, r}$-free graphs. J. Graph Theory, 1995, 20(4): 423-439.
[5] O. ORE. Arc coverings of graphs. Ann. Math. Pura Appl., 1961, 4(55): 315-321.
[6] I. B. HARTMAN. Variations on the Gallai-Milgram theorem. Discrete Math., 1988, 71(2): 95-105.
[7] O. ORE. Notes on Hamilton circuits. Amer. Math. Monthly, 1960, 67: 55.
[8] A. V. KOSTOCHKA, B. Y. STODOLSKY. On domination in connected cubic graphs. Discrete Math., 2005, 304: 45-50.
[9] O. SUIL, D. B. WEST. Matchings, and edge-connectivity in regular graphs. European J. Comb., 2011, 32: 324-329.
[10] Gexin YU. Covering 2-connected 3-regular graphs with disjoint. J. Graph Theory, 2018, 88(3): 385-401.

[^0]: Received July 17, 2018; Accepted October 26, 2018
 Supported by the Joint Fund of Liaoning Provincial Natural Science Foundation (Grant No. SY2016012).

 * Corresponding author

 E-mail address: xiaodongchen74@126.com (Xiaodong CHEN)

