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Abstract For a graph G, a path cover is a set of vertex disjoint paths covering all the vertices
of G, and a path cover number of G, denoted by p(G), is the minimum number of paths in a
path cover among all the path covers of G. In this paper, we prove that if G is a K 4-free graph
of order n and o14+1(G) > n —k, then p(G) < k, where 0%11(G) = min{}_ _gd(v) : S is an
independent set of G with |S| =k + 1}.
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1. Introduction

In this paper, only finite and simple graphs are considered. Readers can refer to [1] for
notation and terminology not defined here. A graph G is K ,-free, if G' contains no induced
subgraph isomorphic to K ., where r > 3. Let a(G) denote the independent number of a graph
G, i.e., the cardinality of a maximum independent set in G. For S C V(G), G[S] denotes the
subgraph of G induced by S. For a vertex v of G, N(v) denotes both the set of vertices adjacent
to v and the induced subgraph G[N(v)]. Let Ng(v) denote the set of all vertices in S adjacent to
v and dg(v) = |Ng(v)|. In particular, the degree of v is denoted by dg(v) = |[Ng(v)| and briefly
denoted by d(v). We use §(G) to denote the minimum degree of a graph G. For a subgraph H
of a graph G, G — H denotes the subgraph induced by V(G) — V(H). We define 0;41(G) =
min{}_ .gd(v) : S is an independent set of G with |S| = k + 1} if k + 1 < a(G), otherwise,
0k+1(G) = +o00. For a graph G and A, B C V(QG), let E(A,B) ={uv € E(G) : u € A,v € B}.

Given a positive orientation of a path P, Pla,b] (or aPb) denotes a path from a to b along
the positive orientation, and P(a,b) denotes the path Pla,b] — {a,b}. For a path Pla,b], if
x,y € V(P), zPy denotes a subpath of P[a,b] from z to y along the positive orientation, and
yP~x denotes the subpath from y to x along its negative orientation. For a graph G, a path
cover of GG is a spanning subgraph consisting of some vertex disjoint paths in G. For a graph G,
the path cover number p(G) = min{|B| : P is a path cover of G}. If P is a path cover of G with
I'B| = p(G), then P is called a minimum path cover of G.
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Dirac [2] in 1952 showed that any graph G with order n > 3 and 6(G) > % is hamiltonian,
and G contains a hamilton path if 6(G) > "T_l Since then, there are a lot of results about
the sufficient conditions for graphs to have a hamiton cycle (or path). It is well known that
it is NP-hard to justify whether a graph contains a hamilton cycle (or path). As a result, the

hamiltonicity of some special graphs, especially, K ,-free graphs are largely studied.

Theorem 1.1 ([3]) Let G be a k-connected K 3-free graph of order n such that k > 2 and

0k4+1 > n — k. Then G is hamiltonian.

Theorem 1.2 ([4]) For any k-connected K 4-free graph G of order n > 3, if o341(G) > n+k,
then G is hamiltonian.

Clearly, the upper bound of the path cover number of a given graph is a generalization of
justifying if a graph contains a hamilton path. Thus, there are some results on the upper bound

of the path cover number of general graphs as follows.
Theorem 1.3 ([5]) For a graph G of order n, the path cover number p(G) < n — o3(G).

Theorem 1.4 ([6]) For a graph G with connectivity k(G), if a(G) > k(G), then p(G) <
a(G) — k(G), otherwise, p(G) < a(G).

Inspired by the above results, there are some results about the path cover number of regular
graphs [8-10]. In this paper, we give the following sufficient conditions for K 4-free graphs on

the degree sum of vertices in an independent set with k + 1 vertices.

Theorem 1.5 For a positive integer k, if G is a K; 4-free graph of order n and o4+1(G) > n—k,
then p(G) < k.

Figure 1 A K a-free graph G with o5(G) =n — 3.

Clearly, in Theorem 1.5, if k = 1, then 02(G) > n—1, and G contains a hamilton path which
confirms the conclusion Ore [7] proposed that if a graph G with 02(G) > n — 1, then G contains
a hamilton path. Figure 1 shows that the lower bound of oj11(G) in Theorem 1.5 is not best

possible for k = 2, since 03(G) =n — 3 in Figure 1 and the path cover number is 2.

2. Proof of Theorem 1.5

Suppose that a graph G satisfies the assumption of Theorem 1.5 with p(G) = t, and to the
contrary, t > k. Thent > 2. Let ‘B = {P;, P, ..., P;} be a minimum path cover of G. Assume any
path P; in *J is given a positive direction, and P; := u;1u;2 - - UGV (P where u;1, U;2, . . - s Ui |V (Py))|
are all the vertices of P; in order along its positive direction, 1 < ¢ < t. For a vertex v in P;,
if wv,wv € E(G) for two vertices u,w with uw € E(P;) in some path P; € P\ {P;}, then v is
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called an insertable vertex, and u,w are called a pair of acceptors of v in P;. Clearly, for any
vertex € V(G), there is exact one path P; in 8 containing z, and in the following proof, we
use 2~ and 7 to denote the predecessor and successor of x according to the orientation of P;,
respectively. By the definition of insertable vertex and the minimality of 3|, we can get Claims

1 and 2 as follows.
Claim 1 For each P; in 3, P; contains a non-insertable vertex.

Proof To the contrary, suppose for some P;, any vertex in P; is an insertable vertex. If
[V(P)| =1, i.e., P; = w;, then clearly, u;; can be inserted between its one pair of acceptors
in some path P; € P\ {F;}, and then we can get a path cover consisting of ¢ — 1 paths, a
contradiction. Suppose |V (FP;)| > 2, and assume u;; is the last vertex along the positive direction
of P; with the same one pair of acceptors u,w as u;; in some path P; € 9\ {P;}, then all the
vertices in P;[u;1,u;s] can be inserted between u and w by the path wu;; Pyu;sw. Similarly, any
other vertex in P; can be inserted between corresponding one pair of acceptors in some path in
B\ {P;}. Thus we can get a path cover of G consisting of ¢ — 1 paths, a contradiction. OJ

By Claim 1, for any path P; in 33, we denote by v; the first non-insertable vertex in P;. In
the following proof, let S = {v1,va,...,v:}, i.e., S consists of the first non-insertable vertex in
each path of 9. Since v; is the first non-insertable vertex in P;, any vertex in P;[u;1,v;) is an
insertable vertex if u;; # v;. By the proof of Claim 1, any vertex in P;[u;1,v;) can be inserted

between corresponding one pair of acceptors in some path P; € B\ {P;}.

Claim 2 Let P; and P; be two distinct paths in P and let p = |V(FP;)|,¢ = |V(P;)|. For any
vertex u € P;[u;1,v;] and any vertex v € Pj[u;1,v,], 1 < 4,7 <t, the following properties hold.

(a) wv ¢ E(G);

(b) If ¢t > 3, then u,v have no common pair of acceptors in P\ {F;, P;};

(c) Assume t > 3, P, € P\ {P;, P;}. Then for any vertex € V(P,), if uz € E(G), then
v, xtv ¢ E(G); By symmetry, if vz € E(G), then 2~ u, z7u ¢ E(G);

(d) For any vertex = € P;(v;,uip), if uz € E(G), then z7v ¢ E(G); By symmetry, if
x € Pj(vj,ujq] and vz € E(G), then 2~ u ¢ E(G);

(e) For any vertex z in P, U P;(vi, uip) U Pj(vj,ujq), z~at ¢ E(G) if uz,zv € E(G), where
P e P\ {P, P}

Proof We prove (a), (b), (c), (d), (e) by contradiction, respectively. In the following proof, to
the contrary, assume u = ;5 € P;[ui1,v;],v = ujm € Pj[uj1,v;] are the pair of vertices with the
minimum subscript sum s + m which are not satisfying (a), (b), (c), (d), (e), respectively.

(a) To the contrary, suppose uv € E(G). Clearly, ujru;1 ¢ E(G), i.e., u # wj1 or v # uj,
otherwise, there exists a path cover consisting of t — 1 paths, a contradiction. By the minimality
of the subscript sum of u,v, E(P;[u;1,u), Pj[uj1,v)) = 0. It follows that there is no vertex in
P;[u;1,u] has a pair of acceptors v~ and v; Similarly, there is no vertex in P;[u;1,v] has a pair of
acceptors v~ and u. We replace P;[u, u;p] U Pj[v, ujq] by Pij := wipP; uvPjuj,. Then we insert

every vertex in P;[u;1,u)UP;j[uj1,v) between its corresponding one pair of acceptors in some path
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in (B\{P;, P;})U{P;;}. Then we can get a path cover consisting of ¢ — 1 paths, a contradiction.

(b) To the contrary, v and v have a common pair of acceptors ug, uy(g4+1y in P € P\
{P;, Pj},1 < g < |V(P)]. Let Py := Py wtyg P w1, Pjr i= g P tp(g41)vPju g, where
f = |V(P.)|]. Then by the minimality of subscript sum of u and v, no pair of vertices w;, €
Piluj,u),uj € Pjluji,v) have common pair of acceptors in any path of P\ {F;, P}, 1 < h <
5,1 <1 < m. By (a), no vertex in P;[u;1,u) has a pair of acceptors in Pj[ujq,v). Likewise, no
vertex in Pjluj1,v) has a pair of acceptors in P;[u;1, u). Then we insert each vertex in P;[u;1,u)U
Pj[u;1,v) into corresponding pair of acceptors in (P \ {F;, P;}) U {P;, Pjr} as the operation in
the proof of Claim 1, and replace P;[u, u;p] U P, U Pjlv, ujq] by Pir U Pj,. Clearly, by the above
two operations, we can get a path cover with ¢t — 1 paths, a contradiction.

(¢) Suppose ux € E(G), and to the contrary, va~ € E(G). By the minimality of the subscript
sum of u, v, there is no vertex in P;[u;1,u) adjacent to x, which implies no vertex in P;[u;1, u)
has a pair of acceptors 2, x in P,. Likewise, there is no vertex in P;[u;1,v) adjacent to ™, and
then no vertex in P;[u;1,v) has a pair of acceptors ™,z in P,. By (a), no vertex in P;[u;1, u) has
a pair of acceptors in Pj[uj1,v), and no vertex in P;[u;1,v) has a pair of acceptors in P;[u;1,u).
We replace P, U P;u, uip| U Pjv, ujq] by Pir = wip P, urPruyy and Prj := up Pra~ vPjujq, where
I = |V(P,)|; By (b) and the proof of Claim 1, we insert every vertex in P;u;1,w) U Pj[u;1,v)
between corresponding one pair of acceptors in some path in (P \ {P;, P;, P.}) U {P;, P}
Then we can get a path cover consisting of ¢ — 1 paths, a contradiction. Thus z7v ¢ E(G).
Similarly, zTv ¢ E(G). By symmetry, for any vertex z in V(G) — V(P,UP;), 2~ u,z"u ¢ E(G)
if vz € E(G).

(d) Suppose z € P;(v;, uip], and to the contrary, z~v € E(G). By the minimality of the
subscript sum of u, v, there is no vertex in Pj[u;ji,v) adjacent to 2~ , which implies no vertex in
Pj[uj1,v) has a pair of acceptors 7, z. By (a), no vertex in P;[u,1,u] has a pair of acceptors
in Pjuj1,v], and no vertex in Pj[u,1,v] has a pair of acceptors in P;u;1, u]. Then we replace
P;[u,u;p] and Pj[v,ujq| by Pij = w;p P, auP;z~vPjujq; We insert each vertex in Pjlu;i,u) U
Pj[uj1,v) between corresponding one pair of acceptors in some path in (B \ {F;, P;j}) U {P;;}.
Then we can get a path cover consisting of ¢ — 1 paths, a contradiction. By symmetry, if
x € P;j(vj,ujq] and zv € E(G), then 2~ u ¢ E(G).

(e) Suppose z € P;(v;, uip], uz, vz € E(G), and to the contrary, - 2% € E(G). By the choice
of u, v, there is no vertex in P;[u;1,v) adjacent to x, which implies no vertex in Pj[ujq,v) has a
pair of acceptors z, z or z,z". By (a), no vertex in P;[u;1,u) has a pair of acceptors in P;[u;1,v),
and no vertex in Pj[uj,v) has a pair of acceptors in P;[u;1,u). Then we replace P;[u,u;p] and
Pjlv,ujq] by P;j = up P, xTa™ P uzvPjuj,; We insert each vertex in Piuii,u) U Pjluji,v)
between corresponding one pair of acceptors in (P \ {P;, P;}) U{P;;}. Then we can get a path
cover consisting of ¢ — 1 paths, a contradiction. Similarly, if x € P;(vj, u;q], and ux, vz € E(G),
then 2~z ¢ FE(G).

Suppose t > 3,z € V(P,), P, € P\ {P;, P;},zv,zu € E(G), and to the contrary, z-z" €
E(G). By the choice of u,v, there is no vertex in P;lu;1,u) U Pjluj1,v) adjacent to x, which

implies no vertex in P;[u;1,u) U Pjlu;1,v) has a pair of acceptors ™~ ,z, or ¥, z. By (a), no
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vertex in P;[u;1,u) has a pair of acceptors in Pj[uj1,v), and no vertex in Pj[uji,v) has a pair
of acceptors in P;[u;1,u). We replace P, U P;[u, u;p] U Pj[v,ujq) by Pl :=u P a2t 2™ P u,q and
P;j := ujp P, uxvPjujq, where [ = |V (P,)|; We insert each vertex in P;[u;1, w)UP;j[u;1,v) between
corresponding one pair of acceptors in some path in (B \ {P;, P;, P.}) U{P/, P;;}. Then we can

get a path cover consisting of ¢ — 1 paths, a contradiction. (J

Recall that S = {vy,va,..., v} is the vertex set consisting of the first non-insertable vertex

of each path in B. By Claim 2(a), we can get the following results.

Claim 3 S is an independent set of G.

Claim 4 For any path P; € 9, and any vertex u € P;[ui1,v;], No(u) C {v;}, 1 <i <.
Claim 5 For any path P; = P;u;1, wip], Ns(up) C {v;}, where, p = |[V(FP;)|,1 <i<t.

Proof Suppose to the contrary, u;,v; € E(G),v; € S —{v;}. We replace P;[w;1, w;p) U Pj[vj, ujq]
by P;j := uj Piuipv; Pjujq, where ¢ = |V (P;)|. Then we insert each vertex in P;[u;1,v;) between
corresponding one pair of acceptors of some path in (P '\ {F;, P;}) U{P;;}. Then we can get a

path cover consisting of ¢ — 1 paths, a contradiction. O

Claim 6 For any path P; € B and any vertex u € V(F;), ds(u) < 2, and if dg(u) = 2, then
v; € Ng(u),1 <i<Ht.

Proof To the contrary, suppose there exists some vertex u € V(P;) with dg(u) > 3. By

Claim 4 and Claim 5, u € P;(v;,u), where p = |V(FP;)|. Thus v~ and u' exist. Assume

Vj, Um € Ng(u) — {v;}, where 1 < j,m <t and j # m. By the definition of non-insertable vertex,

vju~,vut vpuT, vt ¢ B(G). By Claim 2(e), u”ut ¢ E(G). It follows that Glu, u™, u™, v}, vy,
= K 4, a contradiction. Thus dg(u) < 2. By the previous proof, if dg(u) = 2, and v; ¢ Ng(u),

then we can get a contradiction. Thus v; € Ng(u). O

Claim 7 For any path P; € B, let 21, 22,. .., 2z, be all the vertices in order along the positive
direction of P; with Ng(z;) = 0,1 <i<t,1<j <m.If m > 2, then for any j € [1,m — 1], any

segment Pj(zj, 2j+1) contains at most one vertex u with ds(u) = 2, and u = 2, if ds(u) = 2.

Proof By Claim 4, ds(u) < 1 for any vertex u € P;[u;1,v;]. By Claim 3, dg(v;) = 0 and then
{z1,22,...,2m} # 0. Suppose for some segment P;(z;, zj+1), u is the first vertex in P;(z;, zj41)
with ds(u) = 2. Then by Claim 6, assume Ng(u) = {v;,vp}. In order to get u = z;,, it
suffices to prove P;(u,zj11) = 0. To the contrary, suppose P;(u, zj+1) # 0 and v = u™. Since
v € Pi(zj,2j41), Ng(v) # 0. Since vju,vyu € E(G), vv; ¢ E(G) by Claim 2(d). By Claim 6,
ds(v) = 1. Suppose Ng(v) = {vs}, vs € S — {v;}. Clearly, v-vs ¢ E(G), ie., uvs, ¢ E(G),
otherwise, v, is an insertable vertex, a contradiction. Thus vs # vp,. Since v ¢ V(P U Py,), vvs,

uvp, € E(G), i.e., v-u, € E(G), we can get a contradiction to Claim 2(c). O

Claim 8 If Ng(u) # 0 for any vertex u in P;(v;, u;p), then Ng(u) = {v;} for each path P; € B,
where p = |[V(P)|,1 <i<t.
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Proof Since Ng(u;p) # 0, Ns(uip) = {v;} by Claim 5. Then by Ng(u) # 0 and Claim 2(d), for
any vertex u € P;(v;, uip), Ng(u) = {v;}. O
By Claims 7 and 8, we can obtain the upper bound of ) ¢ dp,(v) for any path P; € B, as

follows.

Claim 9 For any path P € B, >° o dp(v) = 3, cv(pyds(u) < [V(P)| - 1.

Now, let us complete Theorem 1.5. Clearly, 3°,cgd(v) = 3 peg Do yes dp(v), and then by
Claim 9, 3~ 5 d(v) <> pcqp([V(P)] —1) = n—t. It follows that op41 < or <n—t <n—kby
k < t, which contradicts o;41(G) > n — k. Thus Theorem 1.5 holds. O
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