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1. Preliminary and main result

Throughout this paper, we will adopt the same notation of Henrici [1]. For instance, we will

use C[[x]] to denote the ring of formal power series (in short, fps) over the complex number field

C and for any f(x) =
∑

n≥0 anx
n ∈ C[[x]], the coefficient functional

[xn]f(x) = an, n = 0, 1, 2, . . . .

For our convenience, define

L0 =
{ ∞∑

n=0

anx
n|a0 ̸= 0

}
, L1 =

{ ∞∑
n=0

anx
n|a0 = 0, a1 ̸= 0

}
.

Moreover, for f(x), g(x) ∈ C[[x]], g(x) is said to be the multiplicative inverse of f(x) if f(x)g(x) =

1 while g(x) is said to be the composite inverse of f(x) if (f ◦ g)(x) = (g ◦ f)(x) = x, here ◦ is

the usual composite operation. Hereafter, we employ f ⟨−1⟩(x) to denote the composite inverse

of f(x). Obviously, if f(x) =
∑

n≥0 anx
n, then its multiplicative inverse g(x) is denoted by∑

n≥0 ānx
n. As such, we have ¯̄an = an.

Proposition 1.1 Given f(x) ∈ C[[x]], f(x) has the multiplicative (resp., composite) inverse if

and only if f(x) ∈ L0 (resp., L1).

It is well known to us that the Bell polynomials play a very important role in Analysis,

Combinatorics, and Number theory. In this paper, we will focus on the following (refined) Bell

polynomials (Comtet [2, p.136, Remark] or Riordan [3]).
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Definition 1.2 (Refined Bell polynomials) For integers n ≥ k ≥ 0 and infinite many variables

{xn}n≥1, the sum ∑
σk(n)

k!

i1!i2! · · · in−k+1!
xi11 x

i2
2 · · ·xin−k+1

n−k+1 (1.1)

is called the refined Bell polynomial in x1, x2, . . . , xn−k+1, where σk(n) denotes the set of partition

of n with k part, namely, all nonnegative integers i1, i2, . . . , in−k+1 subject to{
i1 + i2 + · · ·+ in−k+1 = k,

i1 + 2i2 + · · ·+ (n− k + 1)in−k+1 = n.
(1.2)

We denote (1.1) by Bn,k(x1, x2, . . . , xn−k+1).

It should be pointed out that the above Bell polynomials are in agreement with the classical

Bell polynomials [2, p. 133, Definition] in the case that xn → xn/n! and then multiplied by n!/k!.

As a basic property, the refined Bell polynomials also satisfy

Proposition 1.3 ([2]) For any fps f(x) =
∑

n≥1 anx
n, it always holds

fk(x) =
∑
n≥k

Bn,k(a1, a2, . . . , an−k+1)x
n. (1.3)

Based on this fact, it is reasonable to introduce

Definition 1.4 (Bell matrix) For any fps f(x) =
∑

n≥1 anx
n, then the infinite-dimensional

lower-triangular matrix with the (n, k)th entry Bn,k(a1, a2, . . . , an−k+1) is called the Bell matrix

given by f(x). As a custom, we denote such matrix by

B(f) = (Bn,k(a1, a2, . . . , an−k+1))n≥k≥1. (1.4)

In the study of the Bell polynomials, the inverse relation of the Bell polynomials is one of

the most interesting problems first posed and solved by J. Riordan in his book [3], afterward

re-investigated by L. C. Hsu et al. in [4] (see Lemma 3.4 and the comment afterwards). We

would like to refer the reader to [3, Section 5.3] for further details. The aim of the present paper

is to attack a similar problem, that is to find the matrix inverse of B(f). As usual, the matrix

inverse in the context of Combinatorial Analysis can be defined as follows.

Definition 1.5 ([2]) Let F = (An,k)n≥k≥1 and G = (Bn,k)n≥k≥1 be two infinite-dimensional

lower-triangular matrices over C, which means An,k = Bn,k = 0 unless n ≥ k. If there holds∑
n≥i≥k

An,iBi,k =
∑

n≥i≥k

Bn,iAi,k = δn,k for all n ≥ k ≥ 1, (1.5)

where δn,k denotes the usual Kronecker symbol, then F together with G is called a matrix

inversion.

As usual, the inverse matrix G is denoted by F−1. Sometimes, F and G is called a pair of

inverse (reciprocal) series relations, because it can be applied to summation and transformation

of hypergeometric series.

In the context of Definition 1.5, we now present the main result of this paper.
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Theorem 1.6 For any sequences {an}n≥1 with a1 ̸= 0,

(Bn,k(a1, a2, . . . , an−k+1))
−1
n≥k≥1 = (

k

n
B2n−k,n(ā1, ā2, . . . , ān−k+1))n≥k≥1, (1.6)

where ā1 = 1/a1 and for n ≥ 2,

ān =
n−1∑
k=1

(−1)ka−k−1
1 Bn−1,k(a2, a3, . . . , an−k+1). (1.7)

Before proceeding further, let us give some comments on Theorem 1.6.

Remark 1.7 It should be mentioned that in a series of papers [5–8], M. Mihoubi and R. Mahdid

investigated the role of binomial-type sequences in establishment of combinatorial identities and

inverse relations with Bell polynomials involved. To our best knowledge, the matrix inversion

given by Theorem 1.6 is different from [7, 8] in that all inverse relations given by Mihoubi and

Mahdid are nonlinear connecting the coefficients of the inverse functions

f(t) =
∞∑

n=1

ant
n and f ⟨−1⟩(t) =

∞∑
n=1

bnt
n.

By contrast, Theorem 1.6 can be regarded as a general solution to the functional equation

fk(t) =
∞∑

n=k

A(n, k)tn, (f ⟨−1⟩(t))k =
∞∑

n=k

B(n, k)tn, k ≥ 1.

Obviously, the matrix inverse relation (A(n, k))−1 = (B(n, k)) is essentially two-dimensional and

linear, and it usually plays a role in the following linear transformation formula:

xn =
n∑

k=1

A(n, k)yk ⇐⇒ yn =
n∑

k=1

B(n, k)xk.

Our paper is organized as follows. The full proof of Theorem 1.6 will be given in Section

2. Some applications including a closed-form inverse of arbitrary Bell matrix associated with

binomial-type sequence and an inverse form of the Faà di Bruno formula will be presented in

Section 3.

2. Proof of Theorem 1.6

Instead of Riordan’s umbral method used in [3], our main argument is based on the following

well-known Lagrange inversion formula. As of today, the Lagrange inversion formula is a basic

but useful tool of finding of the composite inverse of fps.

Lemma 2.1 ([2, p.150, Theorem C, Theorem D]) Let ϕ(x) ∈ L0. Then for any fps F (x), it

always holds that

F (x) =
∞∑

n=0

an(
x

ϕ(x)
)n, (2.1)
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where

an =
1

n
[xn−1]F ′(x)ϕn(x). (2.2)

Now we are in a good position to show Theorem 1.6.

Proof It suffices to define the fps f(x) =
∑

n≥1 anx
n ∈ L1. In light of Definition 1.4, it is easily

verified that the B(f) is invertible. Thus we assume temporarily

(Bn,k(a1, a2, . . . , an−k+1))
−1 = (An,k).

Then by Proposition 1.3, we see

fk(x) =
∑
n≥k

Bn,k(a1, a2, . . . , an−k+1)x
n. (2.3)

Recall that (An,k) and (Bn,k) are inverses of each other. Upon inverting (2.3), we immediately

obtain

xk =
∑
n≥k

An,kf
n(x). (2.4)

In view of the definition before Proposition 1.1, we reformulate f(x) by

f(x) =
x

ϕ(x)
,

where

ϕ(x) =
1

a1 + a2x+ · · ·+ anxn−1 + · · ·
(2.5)

= ā1 + ā2x+ · · ·+ ānx
n−1 + · · · ∈ L0. (2.6)

Then (2.4) turns out to

xk =
∑
n≥k

An,k(
x

ϕ(x)
)n.

In this form, we are able to apply Lemma 2.1 to find

An,k =
1

n
[xn−1](xk)′ϕn(x)

=
k

n
[xn−k]ϕn(x). (2.7)

Recalling the definition of the Bell polynomials and (2.6), we have

(xϕ(x))n =
∑
m≥n

Bm,n(ā1, ā2, . . . , ām−n+1)x
m,

ϕn(x) =
∑
m≥n

Bm,n(ā1, ā2, . . . , ām−n+1)x
m−n. (2.8)

Inserting (2.8) into (2.7) leads to

An,k =
k

n
[xn−k]

∑
m≥n

Bm,n(ā1, ā2, . . . , ām−n+1)x
m−n
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=
k

n
B2n−k,n(ā1, ā2, . . . , ān−k+1).

All remains to find ān subject to (2.5)/(2.6). For this, it is clear that

RHS of (2.5) =
1

a1(1 +K(x))
=

1

a1

∞∑
i=0

(−1)iKi(x),

where

K(x) =
∞∑

n=1

an+1

a1
xn.

By the definition of the Bell polynomials and Proposition 1.3, we have

RHS of (2.5) =
1

a1

∞∑
i=0

(−1)i
∞∑
j=i

Bj,i(
a2
a1
,
a3
a1
, . . . ,

aj−i+2

a1
)xj

=
1

a1
+

1

a1

∞∑
j=1

( j∑
i=1

(−1)iBj,i(
a2
a1
,
a3
a1
, . . . ,

aj−i+2

a1
)
)
xj

=
1

a1
+

∞∑
j=1

( j∑
i=1

(−1)i

ai+1
1

Bj,i(a2, a3, . . . , aj−i+2)
)
xj .

Thus (1.7) follows by comparing coefficients of xn−1 in the last expansion. The theorem is

therefore proved. �
Regarding the computation of ān, besides (1.7), we further have

Corollary 2.2 With the same notation as Theorem 1.6. Then

ān =
(−1)n+1

an1

∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 a3 · · · an−1 an

a1 a2 · · · an−2 an−1

0 a1 · · · an−3 an−2

...
...

. . .
...

...

0 0 · · · a1 a2

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.9)

Here, | · | denotes the usual determinant.

Proof It is clear that (2.9) is just a direct application of the Wronski formula [1, Theorem 1.3]

to (2.5)/(2.6). �
More interestingly, once further applying Theorem 1.6 to (1.7), we immediately obtain an

expression for the coefficients of the multiplicative inverse.

Corollary 2.3 With the same notation as Theorem 1.6. Suppose further a2 ̸= 0, ȧ2 = 1/a2,

and for n ≥ 3,

ȧn =
(−1)n

an−1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

a3 a4 · · · an−1 an

a2 a3 · · · an−2 an−1

0 a2 · · · an−3 an−2

...
...

. . .
...

...

0 0 · · · a2 a3

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.10)
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Then, for n ≥ 1,

(−1)nnan+1
1 =

n∑
k=1

kak+1B2n−k,n(ȧ2, ȧ3, . . . , ȧn−k+2). (2.11)

Proof It only needs to change the index n to n+ 1 in (1.7). We have

an+1 =
n∑

k=1

(−1)k

ak+1
1

Bn,k(a2, a3, . . . , an−k+2). (2.12)

Note that a2 ̸= 0. It allows us to apply Theorem 1.6 to (2.12), yielding

(−1)n

an+1
1

=
n∑

k=1

k

n
ak+1B2n−k,n(ȧ2, ȧ3, . . . , ȧn−k+2),

where, analogous to the above derivations of Theorem 1.6, we may write

1

a2 + a3x+ a4x2 + · · ·
=

∞∑
n=2

ȧnx
n−2

and see that ȧn are given by (2.10). Finally we have

(−1)nnan+1
1 =

n∑
k=1

kak+1B2n−k,n(ȧ2, ȧ3, . . . , ȧn−k+2).

The corollary is proved. �

Remark 2.4 It should be pointed out that although formulas (1.7) and (2.9) are two ways of

calculating the multiplicative inverse g(x) =
∑

n≥1 ānx
n−1 of f(x) =

∑
n≥1 anx

n−1, we think

that in practice it seems more convenient to do so by use of the recurrence relation directly{
ā1 = 1/a1,

āk = −ā1(a2āk−1 + a3āk−2 + · · ·+ akā1).
(2.13)

3. Applications

In this section, we proceed to examine some specific applications of Theorem 1.6.

3.1. Bell matrix inversion in closed form

Evidently, the requirement that f(x)g(x) = 1 is key to Theorem 1.6. One of the simplest

cases occurs when f(x) = F a(x), g(x) = F−a(x). In other words, f(x) and g(x) are generating

functions of certain binomial-type sequences. In this situation, Theorem 1.6 takes a closed form

as follows

Corollary 3.1 For any binomial-type sequence {xm(a)}m≥1 with x1(a) ̸= 0, namely, there

exists a fps F (x) such that

F a(x) =
∞∑

m=1

xm(a)xm−1, (3.1)

we have

(xn−k+1(ak))
−1
n≥k≥1 = (

k

n
xn−k+1(−an))n≥k≥1. (3.2)
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Proof By Proposition 1.3 on the Bell polynomials, it is obvious that

(xF a(x))k =
∞∑

n=k

Bn,k(x1(a), x2(a), . . . , xn−k+1(a))x
n.

In view of the known condition (3.1), it follows that

(xF a(x))k =
∞∑

m=1

xm(ak)xm+k−1.

A comparison of both identities yields

Bn,k(x1(a), x2(a), . . . , xn−k+1(a)) = xn−k+1(ak).

A similar derivation gives

B2n−k,n(x1(−a), x2(−a), . . . , xn−k+1(−a)) = xn−k+1(−an).

Taking these into (1.6) leads us to the claimed. �
This result brings us back to Ma’s paper [9], wherein he considered the expansion

h(x)(xψ(x))k =

∞∑
n=k

An,k(
x

ϕ(x)
)n (3.3)

and showed by using the Lagrange inversion formula that

Lemma 3.2 ([9, Theorem 4.1]) Let An,k be given by (3.3). Then

(An,k)n≥k≥1 = ([xn−k](1−∆(ϕ(x)))ϕn(x)ψk(x)h(x))n≥k≥1, (3.4)

(An,k)
−1
n≥k≥1 = ([xn−k](1 + ∆(ψ(x)))ϕ−k(x)ψ−n(x)h−1(x))n≥k≥1, (3.5)

where ∆(ϕ(x)) = xϕ′(x)/ϕ(x).

Taking all these into account, we immediately extend Corollary 3.1 to the following

Corollary 3.3 With the same notation as in Corollary 3.1. Then

(
ak + bk + c

ak + bn+ c
xn−k+1(ak + bn+ c))−1

n≥k≥1

= (
ak + bk + c

an+ bk + c
xn−k+1(−an− bk − c))n≥k≥1. (3.6)

Proof According to Lemma 3.2, we set ϕ(x) = F b(x), ψ(x) = F a(x), h(x) = F c(x) and then

compute directly

An,k = [xn−k](1− bx
F ′(x)

F (x)
)F ak+bn+c(x)

=
ak + bk + c

ak + bn+ c
[xn−k]F ak+bn+c(x) =

ak + bk + c

ak + bn+ c
xn−k+1(ak + bn+ c).

Note that the last equality results from (3.1). Accordingly, the right-hand side of (3.5) turns out

to be

[xn−k](1 + ax
F ′(x)

F (x)
)F−an−bk−c(x)
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=
ak + bk + c

an+ bk + c
[xn−k]F−an−bk−c(x) =

ak + bk + c

an+ bk + c
xn−k+1(−an− bk − c).

This completes the proof of the theorem. �

3.2. Inverse form of the Faà di Bruno formula

It is well known that the classical Faà di Bruno formula is a powerful tool to calculate the

high derivatives of composite fps. We refer the reader to [2, p. 137, Section 3.4, Theorem A] for

further details.

Lemma 3.4 (The Faà di Bruno formula) For any two fps

f(x) =
∑
n≥0

fnx
n, g(x) =

∑
n≥1

gnx
n, (3.7a)

assume that

h(x) =
∑
n≥0

hnx
n = (f ◦ g)(x). (3.7b)

Then the coefficient h0 = f0 and for n ≥ 1,

hn =
n∑

k=1

fkBn,k(g1, g2, . . . , gn−k+1). (3.7c)

As already mentioned before, inverse relations related to the Bell polynomials in [3, Eqs.

(6)/(7)] discovered by Riordan and those given by Hsu et al. are immediate consequences of

applying the Faà di Bruno formula to the composite relation h(x) = (f ◦ g)(x) and its equivalent

form f(x) = (h◦ g⟨−1⟩)(x) if g(x) is invertible or g(x) = (f ⟨−1⟩ ◦h)(x) if f(x) is invertible. A full

study on this topic can be found in two papers [7, 8] by Mihoubi and Mahdid. Being different

from them, we now use B−1(g) to set up.

Theorem 3.5 (Inverse form of the Faà di Bruno formula) With the same assumption as in

Lemma 3.4. Then, for g1 ̸= 0,

fn =
1

n

n∑
k=1

khkB2n−k,n(ḡ1, ḡ2, . . . , ḡn−k+1), (3.8)

where ḡn is given by (1.7) or (2.9).

Proof It is obvious that (3.7c) in Lemma 3.4 can be reformulated as

α =
(
Bn,k(g1, g2, . . . , gn−k+1)

)
β, (3.9)

where α and β are two infinite column vectors

α = (h1, h2, . . . , hn, . . .)
T , β = (f1, f2, . . . , fn, . . .)

T .

Here the superscript T denotes the transpose of vectors. Multiply both sides of (3.9) by

(Bn,k(g1, g2, . . . , gn−k+1))
−1. Thus we have

β = (Bn,k(g1, g2, . . . , gn−k+1))
−1α.
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Equating the nth components on both sides gives rise to

fn =
1

n

n∑
k=1

khkB2n−k,n(ḡ1, ḡ2, . . . , ḡn−k+1)

with each ḡn being given by (1.7) or (2.9). The theorem is proved. �

Remark 3.6 It is worth pointing out that Henrici observed in [1, Chapter 1]: the Lagrange

inversion formula boils down to a pair of matrix inversions. Indeed, suppose we have the expan-

sion

F (x) =
∞∑

n=0

an

(
x

ϕ(x)

)n

= (f ◦ g)(x)

where

g(x) = x/ϕ(x), ϕ(x) =
∞∑

n=1

gnx
n−1, f(x) =

∞∑
n=0

anx
n.

Then, by the inverse form of the Faà di Bruno formula, i.e., Theorem 3.5, we at once obtain

an =
1

n

n∑
k=1

kB2n−k,n(g1, g2, . . . , gn−k+1)[x
k]F (x)

=
1

n
[xn−1]F ′(x)ϕn(x).

In this sense, we believe in that the Faà di Bruno formula is equivalent to the Lagrange inversion

formula, i.e., Lemma 2.1.

3.3. More relations among the Bell polynomials

Actually, there exists an anti-isomorphic mapping changing the composite of two fps into the

product of two Bell matrices.

Lemma 3.7 For any f(x), g(x) ∈ C[[x]] with f(0) = g(0) = 0, it holds

B(f ◦ g) = B(g)B(f), (3.10)

where B(f) is given by Definition 1.4.

Proof It can be verified directly by the definition of B(f). �
Torrian [10, Theorem 1] described a constructive method for the composite inverse of a given

fps. Using the inverses of the Bell matrices and the above anti-isomorphic relation, we are able

to express the composite inverse in a more clear way.

Theorem 3.8 Let f(x) =
∑

n≥1 fnx
n be the composite inverse of g(x) =

∑
n≥1 gnx

n. Then we

have

Bn,k(f1, f2, . . . , fn−k+1) =
k

n
B2n−k,n(ḡ1, ḡ2, . . . , ḡn−k+1). (3.11)

In particular, for k = 1,

fn =
1

n
B2n−1,n(ḡ1, ḡ2, . . . , ḡn). (3.12)
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Proof We only need to apply Lemma 3.7 to (f ◦ g)(x) = x, obtaining B(g)B(f) = (δn,k). In

view of the definition of B(f), we see

(Bn,k(g1, g2, . . . , gn−k+1))(Bn,k(f1, f2, . . . , fn−k+1)) = (δn,k).

Hence,

(Bn,k(f1, f2, . . . , fn−k+1)) = (Bn,k(g1, g2, . . . , gn−k+1))
−1

= (
k

n
B2n−k,n(ḡ1, ḡ2, . . . , ḡn−k+1)),

where
∑

n≥1 ḡnx
n−1 is the multiplicative inverse of

∑
n≥1 gnx

n−1, each ḡn being given by (1.7)

or (2.9). �
A bit of experimental computation via (3.12) shows that each ḡn can also be expressed in

terms of fn or f̄n, where
∑

n≥1 f̄nx
n−1 denotes the multiplicative inverse of f0(x) =

∑
n≥1 fnx

n−1.

Theorem 3.9 With the same assumption as in Theorem 3.8, for k > n/2,

Bn,k(ḡ1, ḡ2, . . . , ḡn−k+1) =
k

2k − n
Bk,2k−n(f1, f2, . . . , fn−k+1) (3.13)

and for k < n/2,

Bn,k(ḡ1, ḡ2, . . . , ḡn−k+1) =
k

2k − n
B2n−3k,n−2k(f̄1, f̄2, . . . , f̄n−k+1). (3.14)

In particular, when k = 1 and n ≥ 3,

ḡn =
1

2− n
B2n−3,n−2(f̄1, f̄2, . . . , f̄n). (3.15)

Proof As previously, we consider the series expansion

(xψ(x))k =
∑
n≥k

Bn,k(ḡ1, ḡ2, . . . , ḡn−k+1)x
n, (3.16)

where

ψ(x) =
∞∑

n=1

ḡnx
n−1 =

1

g1 + g2x+ · · ·+ gnxn−1 + · · ·
.

Replace x with f(x) = xf0(x) in (3.16). Then we get

(f0(x)x (ψ ◦ f)(x))k =
∑
n≥k

Bn,k(ḡ1, ḡ2, . . . , ḡn−k+1)(x f0(x))
n. (3.17)

Since (g ◦ f)(x) = x, from g(x) = x/ψ(x), it is clear that

x (ψ ◦ f)(x) = xf0(x).

Inserting this relation into (3.17) we immediately obtain

(x f20 (x))
k =

∑
n≥k

Bn,k(ḡ1, ḡ2, . . . , ḡn−k+1)(x f0(x))
n. (3.18)

At this stage, we apply Lemma 2.1 to this expansion, thereby obtaining

Bn,k(ḡ1, ḡ2, . . . , ḡn−k+1) =
1

n
[xn−1]((x f20 (x))

k)′f−n
0 (x)
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=
1

n
[xn−1](kxk−1f2k0 (x) + 2kxkf2k−1

0 (x)f
′

0(x))f
−n
0 (x)

=
k

n
[xn−k] f2k−n

0 (x) +
2k

n(2k − n)
[xn−k−1] (f2k−n

0 (x))
′

= (
k

n
+

2k(n− k)

n(2k − n)
)[xn−k] f2k−n

0 (x)

=
k

2k − n
[xn−k] f2k−n

0 (x).

All remains to compute all coefficients in the last identity according as two cases 2k − n > 0 or

< 0. If 2k − n > 0, then we find

Bn,k(ḡ1, ḡ2, . . . , ḡn−k+1) =
k

2k − n
Bk,2k−n(f1, f2, . . . , fn−k+1).

If 2k − n < 0, then we find

Bn,k(ḡ1, ḡ2, . . . , ḡn−k+1) =
k

2k − n
B2n−3k,n−2k(f̄1, f̄2, . . . , f̄n−k+1).

This completes the proof of the theorem. �
We end this paper by pointing out some algebraic properties of Theorem 3.9.

Remark 3.10 Note that (3.13) may also be derived from (3.11) directly by a linear transfor-

mation. More precisely, for the case 2k − n > 0, we are able to make the replacement(
N

K

)
=

(
2 −1

1 0

)(
n

k

)
in (3.11). Equivalently, (

n

k

)
=

(
0 1

−1 2

)(
N

K

)
.

Under this replacement, (3.11) becomes

BK,2K−N (f1, f2, . . . , fN−K+1) =
2K −N

K
BN,K(ḡ1, ḡ2, . . . , ḡN−K+1).

So the desired identity follows by relabelling (N,K) → (n, k).

In the meantime, we note that (3.14) is symmetric in two sets of variables {f̄1, f̄2, . . . , f̄n−k+1}
and {ḡ1, ḡ2, . . . , ḡn−k+1} under the linear transformation(

n

k

)
=

(
2 −3

1 −2

)(
N

K

)
,

namely, for k < n/2, we have

Bn,k(f̄1, f̄2, . . . , f̄n−k+1) =
k

2k − n
B2n−3k,n−2k(ḡ1, ḡ2, . . . , ḡn−k+1). (3.19)
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[17] W. P. JOHNSON. The curious history of Faà di Bruno’s formula. Amer. Math. Monthly, 2002, 109(3):

217–234.

[18] C. KRATTENTHALER. A new matrix inverse. Proc. Amer. Math. Soc., 1996, 124(1): 47–59.

[19] Xinrong MA. A novel extension of the Lagrange-Burmann expansion formula. Linear Algebra Appl., 2010,

433(11-12): 2152–2160.

[20] D. MERLINI, R. SPRUGNOLI, M. C. VERRI. Lagrange inversion: when and how. Acta Appl. Math., 2006,

94(3): 233–249.

[21] S. C. MILNE, G. BHATNAGAR. A characterization of inverse relations. Discrete Math., 1998, 193(1-3):

235–245.
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