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Abstract The generalized product bi-conjugate gradient (GPBiCG(m, l)) method has been

recently proposed as a hybrid variant of the GPBiCG and the BiCGSTAB methods to solve

the linear system Ax = b with non-symmetric coefficient matrix, and its attractive convergence

behavior has been authenticated in many numerical experiments. By means of the Kronecker

product and the vectorization operator, this paper aims to develop the GPBiCG(m, l) method

to solve the general matrix equation

p∑

i=1

si∑

j=1

AijXiBij = C,

and the general discrete-time periodic matrix equations

p∑

i=1

si∑

j=1

(Ai,j,kXi,kBi,j,k + Ci,j,kXi,k+1Di,j,k) = Mk, k = 1, 2, . . . , t,

which include the well-known Lyapunov, Stein, and Sylvester matrix equations that arise in a

wide variety of applications in engineering, communications and scientific computations. The

accuracy and efficiency of the extended GPBiCG(m, l) method assessed against some existing

iterative methods are illustrated by several numerical experiments.

Keywords GPBiCG(m, l) method; Krylov Subspace method; matrix equations; Kronecker

product; vectorization operator
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1. Introduction

In this paper, we first concern with the iterative solution of the general matrix equation

p
∑

i=1

si∑

j=1

AijXiBij = C, (1.1)
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where Aij ∈ Rl×mi , Bij ∈ Rni×r, C ∈ Rl×r, for j = 1, 2, . . . , si, i = 1, 2, . . . , p, with the relation

lr =
∑p

i=1
mini are known matrices in which Aij and Bij are sparse matrices and Xi ∈ Rmi×ni ,

i = 1, 2, . . . , p, are the matrices to be identified. Second, we discuss the iterative solution of the

general discrete-time periodic matrix equations

p
∑

i=1

si∑

j=1

(Ai,j,kXi,kBi,j,k + Ci,j,kXi,k+1Di,j,k) = Mk, k = 1, 2, . . . , t, (1.2)

in which the coefficient matrices Ai,j,k, Ci,j,k ∈ Rl×mi , Bi,j,k, Di,j,k ∈ Rni×r, Mk ∈ Rl×r and

the unknown matrices Xi,k ∈ Rmi×ni are λ-cyclic matrices for j = 1, 2, . . . , si, i = 1, 2, . . . , p,

with the relation lr =
∑p

i=1
mini and Ai,j,k, Bi,j,k, Ci,j,k and Di,j,k are sparse matrices. A λ-

cyclic matrix is distinguished by repeating itself in a sequence of matrices every λ th time, e.g.,

Ai,j,λ+1 = Ai,j,1, Ai,j,λ+2 = Ai,j,2, etc.

The linear matrix equations have a wide range of applications in engineering, scientific com-

putations, and communications such as system theory, stability theory, control theory, image

filtering and restoration, signal processing, model reduction methods, and block diagonalization

of matrices [1–10]. The discrete-time periodic matrix equations as a special case are encountered

in many applications in design and analysis of many engineering and mechanical problems [3,

11–13].

Owing to these several applications, finding the solutions of various matrix equations have

attracted much researchers’ attention through many direct and iterative methods. As instance

of the direct methods, the Sylvester matrix equation was studied using the Bartels-Stewart [14],

the Hessenberg-Schur [15], and the Hessenberg [8,16] methods. Also, Penzl [17] proposed two

algorithms for solving the generalized Lyapunov matrix equations. Hu and Cheng [18] presented

a polynomial matrix method for solving the Sylvester matrix equation. Furthermore, Duan and

Zhou [19] introduced explicit solutions to the second-order generalized Sylvester matrix equation

and the generalized Sylvester matrix equation [20,21].

The iterative methods are one of the most important techniques for solving matrix equations.

For instance, the gradient-based iterative (GI) method is a popular approach to solve matrix

equations and was presented based on the hierarchical identification principle that considers the

unknown matrix as the system parameter matrix to be determined [22–28].

Moreover, the GI method was developed to obtain some constrained solutions such as reflex-

ive, anti-reflexive, symmetric, skew-symmetric, centro-symmetric solutions, and bisymmetric for

the matrix equations [29–31].

Recently, many Krylov subspace methods that were initially presented to solve the linear

systems have been developed to solve several forms of matrix equations. For instance, the

conjugate gradient (CG) method has been generalized to construct iterative algorithms to deal

with many forms of matrix equations over common, symmetric, skew-symmetric, reflexive and

anti-reflexive, centro-symmetric, central anti-symmetric, and bisymmetric solutions [32–45].

More recently, the conjugate gradients squared (CGS), the bi-conjugate gradient stabilized

(Bi-CGSTAB) [46], the quasi-minimal residual variant of the Bi-CGSTAB (QMRCGSTAB) [47],
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the generalized product bi-conjugate gradient (GPBiCG) [48] methods, the conjugate direction

(CD)[49], the biconjugate residual (BCR) [50], and the generalized product-type BiCOR (GPBi-

COR) [51] methods have been extended to obtain common and constrained solutions for many

forms of linear matrix equations.

Moreover, the least-squares QR-factorization [52], the QMRCGSTAB [53], the CGS method

[54,55], the GPBiCG [56,57], the biconjugate A-orthogonal residual (BiCOR) and the conjugate

A-orthogonal residual squared (CORS) [58] methods have been developed to deal with several

coupled matrix equations.

Furthermore, the discrete-time periodic matrix equations have been considered through some

iterative methods such as the CG [59], the Bi-CGSTAB, the CGS [46], the CGLS method [60],

the GI [61], the BCR [62], and the generalized product-type BiCOR (GPBiCOR)[51] methods.

Additionally, the QMRCGSTAB [53], the conjugate gradient method on the normal equations

(CGNE) [63], the Bi-COR and the CORS [58], and the BCR method [64] methods have been

developed for solving some types of the periodic discrete-time coupled matrix equations.

The main idea of the above approach is to transform the matrix equation into a matrix-vector

form by applying the vectorization operator and the Kronecker product, then the vectorization

operator is used again to express the matrix-vector multiplications in the form of matrix-matrix

multiplications. Thus, the extended iterative methods may have the same advantages of the

corresponding Krylov subspace iterative methods. However, they may have their disadvantages

such as the possibility of breakdown and stagnation. It also can be derived that the extended

CG and the extended CR families still have the same main differences.

Recently, the generalized product bi-conjugate gradient (GPBiCG(m, l)) method as a hybrid

variant of the GPBiCG and the BiCGSTAB methods has been proposed by Fujino [65] to solve

the linear system Ax = b with non-symmetric coefficient matrix. The accuracy and efficiency of

the GPBiCG(m, l) method have been approved in many applications compared to some other

existing methods.

The objective of this paper is to develop the GPBiCG(m, l) method using the Kronecker

product and the vectorization operator to solve the general matrix equations (1.1) and the

general discrete-time periodic matrix equations (1.2). It should be indicated that these two

forms of the matrix equations include many types of matrix equations.

The paper is organized as follows. We firstly give a brief review of the GPBiCG(m, l) method

in Section 2. Then, we construct a matrix form of the GPBiCG(m, l) method to compute the

solution of the general matrix equation (1.1) in Section 3. Moreover, we derive a matrix form of

the GPBiCG(m, l) method to solve the general discrete-time periodic matrix equations (1.2) in

Section 4. To investigate the convergence behaviors of the proposed methods assessed against

some other existing methods, we provide some numerical examples in Section 5. Finally, we offer

some concluding remarks in Section 6.

Throughout this paper, the following notations are utilized. Let Rm×n denote the set of

all m × n real matrices. AT and tr(A) denote the transpose and the trace of the matrix A,

respectively. For any matrices A and B with the same dimensions, the inner product of A and B
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is defined as 〈A,B〉 = tr(BTA). The matrix norm of A induced by the inner product is known

as Frobenius norm and referred to as ‖A‖. A⊗B refers to the Kronecker product of matrices A

and B. The vectorization operator vec(A) is defined as the column vector obtained by stacking

up the columns of A. The vectorization is commonly applied with the Kronecker product to

represent matrix multiplication as a linear transformation on matrices; for matrices A,B, and

X with suitable dimensions, the following relation represents such transformation

vec(AXB) = (BT ⊗A)vec(X). (1.3)

2. The GPBiCG(m, l) method for solving linear systems

In this section, we give a brief review of the GPBiCG(m, l) method which is one of the

efficient iterative methods to determine the solution x of the linear system

Ax = b, (2.1)

in which A is a given n× n matrix, b is a given n-vector, and x is an unknown n-vector.

It is well known that if the coefficient matrix A is Hermitian positive definite, the conjugate

gradient (CG) method [66] is an effective tool for solving (2.1). However, the CG hardly obtains

a solution if A is a large nonsymmetric matrix. The Bi-CG method, the nonsymmetric variant

of the CG method by Fletcher [67], is considered a distinguished non-optimal Krylov subspace

method for solving non-Hermitian systems. However, the BiCG method suffers some difficulties

such as breakdowns of the first and second kind and the irregular convergence behavior in some

practical applications.

Numerous variants of the BiCG method were presented to improve its behavior such as the

conjugate gradient squared (CGS) method by Sonneveld [68], the biconjugate gradient stabilized

(BiCGSTAB) method by van der Vorst [69], the BiCGSTAB2 method by Gutknecht [70], the

BiCGSTAB(l) method by Sleijpen and Fokkema [71], and the generalized product-type method

based on BiCG (GPBiCG) method by Zhang [72].

Although the CGS method is considerably faster than the BiCG method, the convergence

behavior is much more irregular due to squaring the BiCG polynomial which affects the accuracy

and the final convergence rate of the solution. The BiCGSTAB method converges rather smoothly

and faster than the BiCG and CGS method. However, parameters’ choice may lead to some

practical problems such as stagnation or breakdown. The BiCGSTAB2 and the BiCGSTAB(l)

methods employ both first and second (or higher) degree auxiliary polynomials to improve the

convergence behavior of the BiCGSTAB method. On the other hand, the GPBiCG method uses

only second degree auxiliary polynomials. Thus, the computational time per each iteration step

in the GPBiCG method can be more expensive as compared with the other product-type iterative

methods. However, the idea behind the GPBiCG method led to further hybridized variants by

shifting between the product-type iterative methods through the choice of the parameters in a

consecutive way to reduce the cost of implementing the algorithm. Motivated by this possibility,

Fujino [65] proposed the GPBiCG(m, l) method as a hybrid variant of the GPBiCG and the
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BiCGSTAB methods.
Algorithm 1 Algorithm of the GPBiCG method

1: Select initial guess x0 and compute r0 = b− Ax0;

2: Choose r∗0 = r0 such that〈r∗0 , r0〉 6= 0;

Set t−1 = w−1 = 0, β−1 = 0;

3: for n = 0, 1, . . . , until convergence do

4: pn = rn + βn−1(pn−1 − un−1); qn = Apn

5: αn =
〈r∗0 ,rn〉
〈r∗

0
,qn〉

;

6: tn = rn − αnqn; yn = tn−1 − tn − αnwn−1; sn = Atn;

7: ζn = 〈yn, yn〉〈sn, tn〉−〈yn, tn〉〈sn, yn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

; ηn = 〈sn, sn〉〈yn, tn〉−〈yn, sn〉〈sn, tn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

;

8: un = ζnqn+ηn(tn−1−rn+βn−1un−1); zn = ζnrn+ηnzn−1−αnun; rn+1 = tn−ηnyn−ζnsn;

9: if n = 0 then

10: ζn = 〈sn, tn〉
〈sn, sn〉

; ( Hint: ηn = 0)

11: un = ζnqn; zn = ζnrn − αnun; rn+1 = tn − ζnsn;

12: end if

13: βn = αn

ζn
·

〈r∗0 ,rn+1〉
〈r∗

0
,rn〉

;

14: xn+1 = xn + αnpn + zn; wn = sn + βnqn;

15: end for

Algorithm 2 Algorithm of the GPBiCG(m, l) method

1: Select initial guess x0 and compute r0 = b− Ax0;

2: Choose r∗0 = r0 such that〈r∗0 , r0〉 6= 0;

Set t−1 = w−1 = 0, β−1 = 0;

3: for n = 0, 1, . . . , until convergence do

4: pn = rn + βn−1(pn−1 − un−1); qn = Apn;

5: αn =
〈r∗0 ,rn〉
〈r∗

0
,qn〉

;

6: tn = rn − αnqn; yn = tn−1 − tn − αnwn−1; sn = Atn
7: if mod(n,m+ l) < m or n = 0) then

8: ζn = 〈sn, tn〉
〈sn, sn〉

; ( Hint: ηn = 0)

9: un = ζnqn; zn = ζnrn − αnun; rn+1 = tn − ζnsn;

10: else

11: ζn = 〈yn, yn〉〈sn, tn〉−〈yn, tn〉〈sn, yn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

; ηn = 〈sn, sn〉〈yn, tn〉−〈yn, sn〉〈sn, tn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

;

12: un = ζnqn + ηn(tn−1 − rn + βn−1un−1); zn = ζnrn + ηnzn−1 − αnun; rn+1 = tn −

ηnyn − ζnsn;

13: end if

14: βn = αn

ζn
·

〈r∗0 ,rn+1〉
〈r∗

0
,rn〉

;

15: xn+1 = xn + αnpn + zn; wn = sn + βnqn;

16: end for

In the GPBiCG(m, l) method, the parameters are computed by the BiCGSTAB method at

successive m iteration steps and afterward, the parameters of the GPBiCG method are used

in the subsequence. Thus, the method takes advantage of the low computational cost of the

BiCGSTAB method and the good convergence behavior of the GPBiCG method. The GPBiCG

and the GPBiCG(m, l) methods are presented in Algorithms 1 and 2, respectively [65,72,73]. Ta-

ble 1 shows the choice of the parameters ηk and ζk of the BiCGSTAB, GPBiCG, BiCGSTAB2,

and GPBiCG(m, l) methods. It can be noted that the GPBiCG(1, 0), GPBiCG(0, 1), and GP-

BiCG(1, 1) methods are corresponding to the BiCGSTAB, GPBiCG, and BiCGSTAB2 methods,
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respectively [65]. Also, the GPBiCG(m, l) method can be considered as a development of the

BiCGSTAB2 method. It should be referred that the parameters m and l of the GPBiCG(m, l)

method can be chosen regarding the difficulty of the problem.

Method Choice of parameters ζk and ηk

BiCGSTAB ζn = 〈sn, tn〉
〈sn, sn〉

, ηn = 0

GPBiCG ζn = 〈yn, yn〉〈sn, tn〉−〈yn, tn〉〈sn, yn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

, ηn = 〈sn, sn〉〈yn, tn〉−〈yn, sn〉〈sn, tn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

BiCGSTAB2 at even iteration step:

ζn = 〈sn, tn〉
〈sn, sn〉

, ηn = 0

at odd iteration step:

ζn = 〈yn, yn〉〈sn, tn〉−〈yn, tn〉〈sn, yn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

, ηn = 〈sn, sn〉〈yn, tn〉−〈yn, sn〉〈sn, tn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

GPBiCG(m, l) at consecutive m iteration steps:

ζn = 〈sn, tn〉
〈sn, sn〉

, ηn = 0

afterwards at consecutive iteration steps:

ζn = 〈yn, yn〉〈sn, tn〉−〈yn, tn〉〈sn, yn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

, ηn = 〈sn, sn〉〈yn, tn〉−〈yn, sn〉〈sn, tn〉
〈sn, sn〉〈yn, yn〉−〈yn, sn〉〈sn, yn〉

Table 1 Choice of parameters ηk and ζk of some product-type iterative methods

In many applications, the GPBiCG(m, l) method is indeed a considerable variant for solving

large-scale problems. Based on these findings, we shall develop this method to solve the general

matrix equation (1.1) and the general discrete-time periodic matrix equations (1.2) in the next

two sections.

3. Matrix form of the GPBiCG(m, l) method for solving the general
matrix equation

In this section, we develop an iterative algorithm based on the GPBiCG(m, l) method to

obtain the solution of the general matrix equation (1.1) which can be expressed in the form

s1∑

j=1

A1,jX1B1,j +

s2∑

j=1

A2,jX2B2,j + · · ·+

sp∑

j=1

Ap,jXpBp,j = C. (3.1)

The GPBiCG(m, l) method can be applied to determine the solutions of the general matrix

equation (1.1), but first we must transform it to a linear system. By means of the vectorization

operator and the Kronecker product, the general matrix equation (1.1) can be rewritten in the

form of the linear system Ax = b as follows

vec
( s1∑

j=1

A1,jX1B1,j +

s2∑

j=1

A2,jX2B2,j + · · ·+

sp∑

j=1

Ap,jXpBp,j

)

= vec(C), (3.2)
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[
s1∑

j=1

BT
1,j ⊗A1,j

s2∑

j=1

BT
2,j ⊗A2,j · · ·

sp∑

j=1

BT
p,j ⊗Ap,j

]

︸ ︷︷ ︸

A










vec(X1)

vec(X2)
...

vec(Xp)










︸ ︷︷ ︸
x

= vec(C)
︸ ︷︷ ︸

b

, (3.3)

where A ∈ Rlr×u, x, b ∈ Ru and u =
∑p

i=1
mini.

It can be noticed that the dimension of the associate matrix A of the above system is

large when the size of the matrices of (1.1) is large. Hence, applying Algorithm 2 of the

GPBiCG(m, l) method directly to solve the above system will cause some computational dif-

ficulties due to the excessive computer memory and CPU time needed to obtain the solution.

To overcome this problem, we utilize the vectorization operator again to express the vectors

rn, r∗0 , pn, qn, tn, yn, sn, un, zn, xn and wn of Algorithm 2 as follows:

r∗0 = vec(R∗
0), (3.4)

rn = vec(Rn) =










vec(R1,n)

vec(R2,n)
...

vec(Rp,n)










, qn = vec(Qn) =










vec(Q1,n)

vec(Q2,n)
...

vec(Qp,n)










, (3.5)

sn = vec(Sn) =










vec(S1,n)

vec(S2,n)
...

vec(Sp,n)










, pn =










vec(P1,n)

vec(P2,n)
...

vec(Pp,n)










, (3.6)

tn =










vec(T1,n)

vec(T2,n)
...

vec(Tp,n)










, yn =










vec(Y1,n)

vec(Y2,n)
...

vec(Yp,n)










, un =










vec(U1,n)

vec(U2,n)
...

vec(Up,n)










, (3.7)

zn =










vec(Z1,n)

vec(Z2,n)
...

vec(Zp,n)










, xn =










vec(X1,n)

vec(X2,n)
...

vec(Xp,n)










, wn =










vec(W1,n)

vec(W2,n)
...

vec(Wp,n)










, (3.8)

where R∗
0, Rn, Qn, and Sn ∈ Rl×r and Ri,n, Qi,n, Si,n, Pi,n, Ti,n, Yi,n, Ui,n, Zi,n, Xi,n and Wi,n ∈

Rmi×ni for i = 1, 2, . . . , p.

By considering the linear system (3.3) and the definitions (3.4)–(3.8), the vectors r0, qn, and

sn of Algorithm 3 can be obtained as

r0 = b−Ax0 → R0 = C −

p
∑

i=1

si∑

j=1

AijXi,0Bij , (3.9)
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qn = Apn → Qn =

p
∑

i=1

si∑

j=1

AijPi,nBij , (3.10)

sn = Atn → Sn =

p
∑

i=1

si∑

j=1

AijTi,nBij . (3.11)

Also, the parameters ζn and ηn can be derived as

ζn =
〈yn, yn〉〈sn, tn〉 − 〈yn, tn〉〈sn, yn〉

〈sn, sn〉〈yn, yn〉 − 〈yn, sn〉〈sn, yn〉

=

p∑

i=1

〈Yi,n, Yi,n〉
p∑

i=1

〈Si,n, Ti,n〉 −
p∑

i=1

〈Yi,n, Ti,n〉
p∑

i=1

〈Si,n, Yi,n〉

p∑

i=1

〈Si,n, Si,n〉
p∑

i=1

〈Yi,n, Yi,n〉 −
p∑

i=1

〈Yi,n, Si,n〉
p∑

i=1

〈Si,n, Yi,n〉

, (3.12)

ηn =
〈sn, sn〉〈yn, tn〉 − 〈yn, sn〉〈sn, tn〉

〈sn, sn〉〈yn, yn〉 − 〈yn, sn〉〈sn, yn〉

=

p∑

i=1

〈Si,n, Si,n〉
p∑

i=1

〈Yi,n, Ti,n〉 −
p∑

i=1

〈Yi,n, Si,n〉
p∑

i=1

〈Si,n, Ti,n〉

p∑

i=1

〈Si,n, Si,n〉
p∑

i=1

〈Yi,n, Yi,n〉 −
p∑

i=1

〈Yi,n, Si,n〉
p∑

i=1

〈Si,n, Yi,n〉

. (3.13)

While αn and βn take the forms

αn =
〈R∗

0, Rn〉

〈R∗
0, Qn〉

, (3.14)

βn =
αn

ζn
·
〈R∗

0, Rn+1〉

〈R∗
0, Rn〉

. (3.15)

Here, by considering the definitions of the vectors (3.4)–(3.8), Eqs. (3.9)–(3.15), and Algo-

rithm 2, we can construct Algorithm 3 as a matrix form of the GPBiCG(m, l) method for solving

(1.1).

4. Matrix form of the GPBiCG(m, l) method for solving the general

discrete-time periodic matrix equations

In this section, we generalize a matrix form of the GPBiCG(m, l) method to solve the general

discrete-time periodic matrix equations (1.2). First, we show how Eq. (1.2) can be rewritten in

the form of the general matrix equation, then we either transform it to a linear system and use

Algorithm 2 to solve it, or transform it to a form of Eq. (1.1) and apply Algorithm 3 to solve it.

Second, we extend Algorithm 2 directly to obtain the solutions of Eq. (1.2).

We can rewrite Eq. (1.2) in the form

s1∑

j=1

(A1,j,kX1,kB1,j,k + C1,j,kX1,k+1D1,j,k) +

s2∑

j=1

(A2,j,kX2,kB2,j,k + C2,jkX2,k+1D2,j,k) + · · ·+

sp∑

j=1

(Ap,j,kXp,kBp,j,k + Cp,j,kXp,k+1Dp,j,k) = Mk, k = 1, 2, . . . , t. (4.1)
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Algorithm 3 Algorithm of matrix form of the GPBiCG(m, l) method for solving the general

matrix equation

1: Select initial guess Xi,0 ∈ Rmi×ni , for i = 1, 2, . . . , p and compute R0 = C −
p∑

i=1

si∑

j=1

AijXi,0Bij , R0 ∈ Rl×r

2: Choose R∗
0 = R0 such that 〈R∗

0, R0〉 6= 0.

Set Ti,−1 = Wi,−1 = 0, for i = 1, 2, . . . , p and β−1 = 0.

3: for n = 0, 1, . . . , until convergence do

4: Pi,n = Ri,n + βn−1(Pi,n−1 − Ui,n−1), for i = 1, 2, . . . , p

5: Qn =
p∑

i=1

si∑

j=1

AijPi,nBij

6: αn =
〈R∗

0 , Rn〉
〈R∗

0
, Qn〉

7: Ti,n = Ri,n − αnQi,n, for i = 1, 2, . . . , p

8: Yi,n = Ti,n−1 − Ti,n − αnWi,n−1, for i = 1, 2, . . . , p

9: Si,n =
p∑

i=1

si∑

j=1

AijTi,nBij

10: if mod(n,m+ l) < m or n = 0) then

11: ζn =

p∑

i=1

〈Si,n, Ti,n〉

p∑

i=1

〈Si,n, Si,n〉
(Hint: ηn = 0)

12: Ui,n = ζnQi,n, for i = 1, 2, . . . , p

13: Zi,n = ζnRi,n − αnUi,n, for i = 1, 2, . . . , p

14: Ri,n+1 = Ti,n − ζnSi,n, for i = 1, 2, . . . , p

15: else

16: ζn =

p∑

i=1

〈Yi,n, Yi,n〉
p∑

i=1

〈Si,n, Ti,n〉−
p∑

i=1

〈Yi,n, Ti,n〉
p∑

i=1

〈Si,n, Yi,n〉

p∑

i=1

〈Si,n, Si,n〉
p∑

i=1

〈Yi,n, Yi,n〉−
p∑

i=1

〈Yi,n, Si,n〉
p∑

i=1

〈Si,n, Yi,n〉

17: ηn =

p∑

i=1

〈Si,n, Si,n〉
p∑

i=1

〈Yi,n, Ti,n〉−
p∑

i=1

〈Yi,n, Si,n〉
p∑

i=1

〈Si,n, Ti,n〉

p∑

i=1

〈Si,n, Si,n〉
p∑

i=1

〈Yi,n, Yi,n〉−
p∑

i=1

〈Yi,n, Si,n〉
p∑

i=1

〈Si,n, Yi,n〉

18: Ui,n = ζnQi,n + ηn(Ti,n−1 −Ri,n + βn−1Ui,n−1), for i = 1, 2, . . . , p

19: Zi,n = ζnRi,n + ηnZi,n−1 − αnUi,n, for i = 1, 2, . . . , p

20: Ri,n+1 = Ti,n − ηnYi,n − ζnSi,n, for i = 1, 2, . . . , p

21: end if

22: βn = αn

ζn
·

〈R∗

0 ,Rn+1〉
〈R∗

0
,Rn〉

23: Xi,n+1 = Xi,n + αnPi,n + Zi,n, for i = 1, 2, . . . , p

24: Wi,n = Si,n + βnQi,n, for i = 1, 2, . . . , p

25: end for
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By defining the block matrices, we can transform Eq. (4.1) into the below general matrix

equation
s1∑

j=1

(A1,jX1B1,j + C1,jX1D1,j) +

s2∑

j=1

(A2,jX2B2,j + C2,jX2D2,j) + · · ·+

sp∑

j=1

(Ap,jXpBp,j + Cp,jXpDp,j) = M, (4.2)

where

Ai,j =










0 · · · 0 Ai,j,1

Ai,j,2 0

. . .
...

0 Ai,j,λ 0










, Bi,j =










0 Bi,j,2 0
...

. . . 0

0 Bi,j,λ

Bi,j,1 0 · · · 0










,

Ci,j = diag( Ci,j,1, Ci,j,2, . . . , Ci,j,λ), Di,j = diag( Di,j,1, Di,j,2, . . . , Di,j,λ),

M = diag( M1, M2, . . . , Mλ), Xi = diag( Xi,2, Xi,3, . . . , Xi,λ, Xi,1),

Ai,j , Ci,j ∈ Rλl×λmi ,Bi,j,Di,j ∈ Rλni×λr,M ∈ Rλl×λr and Xi ∈ Rλmi×λni for i = 1, 2, . . . , p.

Consequently, Eq. (1.2) takes the form

p
∑

i=1

si∑

j=1

(Ai,jXiBi,j + Ci,jXiDi,j) = M. (4.3)

Here, by using the Kronecker product and the vectorization operator we can convert Eq. (4.3)

into the nonsymmetric linear system

Ax = b, (4.4)

with

A =
[

A1 A2 · · · Ap

]

,

where

Ai =

si∑

j=1

(BT
i,j ⊗Ai,j +DT

i,j ⊗ Ci,j) for i = 1, 2, . . . , p, (4.5)

and

x =
[

vec(X1)
T , vec(X2)

T , . . . , vec(Xp)
T

]T

, b = vec(M), (4.6)

where A ∈ Rλ2lr×λ2u, x ∈ Rλ2u, b ∈ Rλ2lr and u =
∑p

i=1
mini.

Therefore, we can utilize Algorithm 2 for the system (4.4) to determine the solutions of (1.2).

Also, we can easily transform Eq. (4.3) into the following block matrix form

p
∑

i=1

si∑

j=1

[

Ai,j Ci,j

]
[

Xi 0

0 Xi

][

Bi,j

Di,j

]

= M, (4.7)

which is converted to the form of Eq. (1.1). Consequently, we can implement Algorithm 3 to find

the solutions. In these both ways Eqs. (3.3)–(3.8) can be concluded as below

R0 = M−

p
∑

i=1

si∑

j=1

(Ai,jXi,0Bi,j + Ci,jXi,0Di,j), (4.8)



418 Basem I. Selim, Lei DU, Bo YU and et al.

Qn =

p
∑

i=1

si∑

j=1

(Ai,jPi,nBi,j + Ci,jPi,nDi,j), (4.9)

Sn =

p
∑

i=1

si∑

j=1

(Ai,jTi,nBi,j + Ci,jTi,nDi,j). (4.10)

Although the solutions of the general discrete-time periodic matrix equations (1.2) can be

identified through the above two ways, the large size of the coefficient matrices will need more

CPU time and excessive memory space.

To avoid these difficulties, we use the following approach to generalize Algorithm 2 of the

GPBiCG(m, l) method to find the solutions of Eq. (1.2).

By using the vectorization operator and the Kronecker product, Eq. (4.1) can be transformed

into the nonsymmetric linear system

Ax = b, (4.11)

with a coefficient matrix A of the form







M11 N11 0 · · · 0 M21 N21 0 · · · 0 M31 · · · MP,1 NP,1 0 . . . 0

0 M12 N12

.

.

. 0 M22 N22

.

.

. 0 · · · 0 MP,2 NP,2

.

.

.

.

.

.

.
.
.

.
.
. 0

.

.

.

.
.
.

.
.
. 0

.

.

.

.
.
.

.

.

.

.
.
.

.
.
. 0

0 · · · 0 M1,λ−1 N1,λ−1 0 M2,λ−1 N2,λ−1 0 · · · 0 · · · 0 Mp,λ−1 Np,λ−1

N1,λ 0 · · · 0 M1,λ N2,λ 0 · · · 0 M2,λ N3,λ · · · NP,λ 0 · · · 0 MP,λ







,

and

x =
[

vec(X11)
T , . . . , vec(X1λ)

T , . . . , vec(Xp1)
T , . . . , vec(Xpλ)

T

]T

,

b =
[

vec(M1)
T , . . . , vec(Mλ)

T

]T

, (4.12)

where

Mi,k =

si∑

j=1

BT
i,j,k ⊗Ai,j,k, Ni,k =

si∑

j=1

DT
i,j,k ⊗ Ci,j,k, Xi,λ+1 = Xi,1, i = 1, 2, . . . , p, k = 1, 2, . . . , λ,

Mi,k, Ni,k ∈ Rlr×mini , A ∈ Rλlr×λu, x ∈ Rλu, b ∈ Rλlrand u =

p
∑

i=1

mini.

It is obvious that the size of the associate matrix A of the linear system (4.11) is large once

the size of the matrices of (1.2) is large. Therefore, applying Algorithm 2 of the GPBiCG(m, l)

method directly to solve this system will cause some computational difficulties. To avoid this

issue, we utilize the vectorization operator to rewrite the vectors r∗0 , rn, pn, un, qn, tn, yn, sn, zn,

and wn of Algorithm 2 in the forms:

r∗0 =
[

vec(R∗
1,0)

T , vec(R∗
2,0)

T , . . . , vec(R∗
λ,0)

T

]T

, (4.13)
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rn =







vec(R1,n)
...

vec(Rλ,n)






=



















vec(R1,1,n)
...

vec(R1,λ,n)
...

vec(Rp,1,n)
...

vec(Rp,λ,n)



















, qn =







vec(Q1,n)
...

vec(Qλ,n)






=



















vec(Q1,1,n)
...

vec(Q1,λ,n)
...

vec(Qp,1,n)
...

vec(Qp,λ,n)



















, (4.14)

sn =







vec(S1,n)
...

vec(Sλ,n)






=



















vec(S1,1,n)
...

vec(S1,λ,n)
...

vec(Sp,1,n)
...

vec(Sp,λ,n)



















, pn =



















vec(P1,1,n)
...

vec(P1,λ,n)
...

vec(Pp,1,n)
...

vec(Pp,λ,n)



















, tn =



















vec(T1,1,n)
...

vec(T1,λ,n)
...

vec(Tp,1,n)
...

vec(Tp,λ,n)



















, (4.15)

yn =



















vec(Y1,1,n)
...

vec(Y1,λ,n)
...

vec(Yp,1,n)
...

vec(Yp,λ,n)



















, un =



















vec(U1,1,n)
...

vec(U1,λ,n)
...

vec(Up,1,n)
...

vec(Up,λ,n)



















, zn =



















vec(Z1,1,n)
...

vec(Z1,λ,n)
...

vec(Zp,1,n)
...

vec(Zp,λ,n)



















, wn =



















vec(W1,1,n)
...

vec(W1,λ,n)
...

vec(Wp,1,n)
...

vec(Wp,λ,n)



















, (4.16)

whereR∗
k,0, Rk,n, Qk,n, and Sk,n ∈ Rl×r andRi,k,n, Qi,k,n, Si,k,n, Pi,k,n, Ti,k,n, Yi,k,n, Ui,k,n, Zi,k,n,

and Wi,k,n ∈ Rmi×ni , i = 1, 2, . . . , p, k = 1, 2, . . . , λ.

Hence, by considering the linear system (4.11) and the definitions above in Eqs. (4.12)– (4.16),

we can conclude the vectors r0, qn, and sn of Algorithm 2 as below

r0 = b−Ax0 → Rk,0 = Mk −

p
∑

i=1

si∑

j=1

(Ai,j,kXi,k,0Bi,j,k + Ci,j,kXi,k+1,0Di,j,k), (4.17)

qn = Apn → Qk,n =

p
∑

i=1

si∑

j=1

(Ai,j,kPi,k,nBi,j,k + Ci,j,kPi,k+1,nDi,j,k), (4.18)

sn = Atn → Sk,n =

p
∑

i=1

si∑

j=1

(Ai,j,kTi,k,nBi,j,k + Ci,j,kTi,k+1,nDi,j,k). (4.19)
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Moreover, the parameters αn and βn can be concluded as

αn =
〈r∗0 , rn〉

〈r∗0 , qn〉
=

〈










vec(R∗
1,0)

vec(R∗
2,0)

...

vec(R∗
λ,0)










,










vec(R1,n)

vec(R2,n)
...

vec(Rλ,n)










〉/〈










vec(R∗
1,0)

vec(R∗
2,0)

...

vec(R∗
λ,0)










,










vec(Q1,n)

vec(Q2,n)
...

vec(Qλ,n)










〉

=

λ∑

k=1

〈R∗
k,0, Rk,n〉

/ λ∑

k=1

〈R∗
k,0, Qk,n〉, (4.20)

βn =
αn

ζn
·
〈r∗0 , rn+1〉

〈r∗
0
, rn〉

=
αn

ζn
·

λ∑

k=1

〈R∗
k,0, Rk,n+1〉

λ∑

k=1

〈R∗
k,0, Rk,n〉

. (4.21)

In addition, for the parameters ζn, ηn, we have

ζn =
〈yn, yn〉〈sn, tn〉 − 〈yn, tn〉〈sn, yn〉

〈sn, sn〉〈yn, yn〉 − 〈yn, sn〉〈sn, yn〉

=

p∑
i=1

λ∑
k=1

〈Yi,k,n, Yi,k,n〉
p∑

i=1

λ∑
k=1

〈Si,k,n, Ti,k,n〉 −
p∑

i=1

λ∑
k=1

〈Yi,k,n, Ti,k,n〉
p∑

i=1

λ∑
k=1

〈Si,k,n, Yi,k,n〉

p∑
i=1

λ∑
k=1

〈Si,k,n, Si,k,n〉
p∑

i=1

λ∑
k=1

〈Yi,k,n, Yi,k,n〉 −
p∑

i=1

λ∑
k=1

〈Yi,k,n, Si,k,n〉
p∑

i=1

λ∑
k=1

〈Si,k,n, Yi,k,n〉

, (4.22)

ηn =
〈sn, sn〉〈yn, tn〉 − 〈yn, sn〉〈sn, tn〉

〈sn, sn〉〈yn, yn〉 − 〈yn, sn〉〈sn, yn〉

=

p∑
i=1

λ∑
k=1

〈Si,k,n, Si,k,n〉
p∑

i=1

λ∑
k=1

〈Yi,k,n, Ti,k,n〉 −
p∑

i=1

λ∑
k=1

〈Yi,k,n, Si,k,n〉
p∑

i=1

λ∑
k=1

〈Si,k,n, Ti,k,n〉

p∑
i=1

λ∑
k=1

〈Si,k,n, Si,k,n〉
p∑

i=1

λ∑
k=1

〈Yi,k,n, Yi,k,n〉 −
p∑

i=1

λ∑
k=1

〈Yi,k,n, Si,k,n〉
p∑

i=1

λ∑
k=1

〈Si,k,n, Yi,k,n〉

. (4.23)

From the relations (4.17)–(4.23), Algorithm 2 can be generalized to construct a matrix form of

the GPBiCG(m, l) method for the solutions of Eq. (1.2) as shown in Algorithm 4.

5. Numerical results

In this section, the following experiments are presented to illustrate some properties of the

extended GPBiCG(m, l) method (GPBiCG(m, l) M) when applied to solve seven test problems.

For comparison, we consider the extended GPBiCG (GPBiCG M), the extended BiCGSTAB

(BiCGSTAB M), the extended BiCGSTAB2 (BiCGSTAB2 M), the extended CGS (CGS M), the

extended CORS (CORS M), and the extended BiCOR (BiCOR M) methods. We should refer to

that the GPBiCG(0,1) M, GPBiCG(1,0) M, and GPBiCG(1,1) M methods are corresponding to

the GPBiCG M, BiCGSTAB M, and BiCGSTAB2 M methods, respectively. The experiments

aim to show the potential of the proposed method to solve efficiently sparse matrix equations.

The experiments have been carried out using MATLAB 2017b with a Windows (64 bit) on

PC-Intel(R) Core(TM) i7-3612QM CPU 2.10 GHz, 8 GB of RAM. The performance is examined

in four aspects: number of iterations (referred to as Iters), CPU time in seconds (referred to as
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Algorithm 4 Algorithm of matrix form of the GPBiCG(m, l) method for solving the general

discrete-time periodic matrix equations

1: Select initial guess Xi,k,0 ∈ Rmi×ni and set Xi,λ+1,0 = Xi,1,0, for i = 1, 2, . . . , p, and k =

1, . . . , λ.

Compute Rk,0 = Mk −
p∑

i=1

si∑

j=1

(Ai,j,kXi,k,0Bi,j,k + Ci,j,kXi,k+1,0Di,j,k), Rk,0 ∈ Rl×r for k =

1, . . . , λ,

and set Ri,λ+1,0 = Ri,1,0, for i = 1, 2, . . . , p.

2: Choose R∗
k,0 = Rk,0 such that

〈

R∗
k,0, Rk,0

〉

6= 0,

and set Ti,k,−1 = Wi,k,−1 = 0, β−1 = 0, for i = 1, 2, . . . , p, and k = 1, . . . , λ

3: for n = 0, 1, . . . , until convergence do

4: Pi,k,n = Ri,k,n + βn−1(Pi,k,n−1 − Ui,k,n−1), for i = 1, 2, . . . , p, and k = 1, . . . , λ

5: Qk,n =
p∑

i=1

si∑

j=1

(Ai,j,kPi,k,nBi,j,k + Ci,j,kPi,k+1,nDi,j,k), for k = 1, . . . , λ,

6: αn =

λ∑

k=1

〈R∗

k,0,Rk,n〉

λ∑

k=1

〈R∗

k,0
,Qk,n〉

7: Ti,k,n = Ri,k,n − αnPi,k,n, for i = 1, 2, . . . , p, and k = 1, . . . , λ

8: Yi,k,n = Ti,k,n−1 − Ti,k,n − αnWi,k,n−1, for i = 1, 2, . . . , p, and k = 1, . . . , λ

9: Sk,n =
p∑

i=1

si∑

j=1

(Ai,j,kTi,k,nBi,j,k + Ci,j,kTi,k+1,nDi,j,k)

10: if mod(n,m+ l) < m or n = 0) then

11: ζn =

p∑

i=1

λ∑

k=1

〈Si,k,n, Ti,k,n〉

p∑

i=1

λ∑

k=1

〈Si,k,n, Si,k,n〉

(Hint: ηn = 0)

12: Ui,k,n = ζnQi,k,n, for i = 1, 2, . . . , p, and k = 1, . . . , λ

13: Zi,k,n = ζnRi,k,n − αnUi,k,n, for i = 1, 2, . . . , p, and k = 1, . . . , λ

14: Ri,k,n+1 = Ti,k,n − ζnSi,k,n and set Ri,λ+1,n+1 = Ri,1,n+1, for i = 1, 2, . . . , p, and

k = 1, . . . , λ

15: else

16: ζn =

p∑

i=1

λ∑

k=1

〈Yi,k,n, Yi,k,n〉
p∑

i=1

λ∑

k=1

〈Si,k,n, Ti,k,n〉−
p∑

i=1

λ∑

k=1

〈Yi,k,n, Ti,k,n〉
p∑

i=1

λ∑

k=1

〈Si,k,n, Yi,k,n〉

p∑

i=1

λ∑

k=1

〈Si,k,n, Si,k,n〉
p∑

i=1

λ∑

k=1

〈Yi,k,n, Yi,k,n〉−
p∑

i=1

λ∑

k=1

〈Yi,k,n, Si,k,n〉
p∑

i=1

λ∑

k=1

〈Si,k,n, Yi,k,n〉

17: ηn =

p∑

i=1

λ∑

k=1

〈Si,k,n, Si,k,n〉
p∑

i=1

λ∑

k=1

〈Yi,k,n, Ti,k,n〉−
p∑

i=1

λ∑

k=1

〈Yi,k,n, Si,k,n〉
p∑

i=1

λ∑

k=1

〈Si,k,n, Ti,k,n〉

p∑

i=1

λ∑

k=1

〈Si,k,n, Si,k,n〉
p∑

i=1

λ∑

k=1

〈Yi,k,n, Yi,k,n〉−
p∑

i=1

λ∑

k=1

〈Yi,k,n, Si,k,n〉
p∑

i=1

λ∑

k=1

〈Si,k,n, Yi,k,n〉

18: Ui,k,n = ζnQi,k,n + ηn(Ti,k,n−1 − Ri,k,n + βn−1Ui,k,n−1), for i = 1, 2, . . . , p, and k =

1, . . . , λ

19: Zi,k,n = ζnRi,k,n + ηnZi,k,n−1 − αnUi,k,n, for i = 1, 2, . . . , p, and k = 1, . . . , λ

20: Ri,k,n+1 = Ti,k,n−ηnYi,k,n−ζnSi,k,n and set Ri,λ+1,n+1 = Ri,1,n+1, for i = 1, 2, . . . , p,

and k = 1, . . . , λ

21: end if

22: βn = αn

ζn
·

λ∑

k=1

〈R∗

k,0,Rk,n+1〉

λ∑

k=1

〈R∗

k,0
,Rk,n〉

23: Xi,k,n+1 = Xi,k,n + αnPi,k,n + Zi,k,n and set Xi,λ+1,n+1 = Xi,1,n+1, for i = 1, 2, . . . , p,

and k = 1, . . . , λ

24: Wi,k,n = Si,k,n + βnQi,k,n, for i = 1, 2, . . . , p, and k = 1, . . . , λ

25: end for
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Time), log10 of the updated and final true relative residual Frobenius norms (referred to as Relres

and TRR). The CPU time is computed as the time average of implementing the algorithms for one

hundred times. Relres and TRR are defined, respectively, for Algorithm 3 as

√
p∑

i=1

‖Ri,n‖2
/

‖C‖

and ‖C−
p∑

i=1

si∑

j=1

AijXi,nBij‖/‖C‖, and for Algorithm 4 as

√
p∑

i=1

λ∑

k=1

‖Ri,k,n‖2
/
√

λ∑

k=1

‖Mk‖2 and

√
λ∑

k=1

‖Mk −
p∑

i=1

si∑

j=1

(Ai,j,kXi,k,nBi,j,k + Ci,j,kXi,k+1,nDi,j,k)‖2
/
√

λ∑

k=1

‖Mk‖2.

In all examples, we take the zero matrix as an initial guess and the stopping criterion for

successful convergence is that the Relres is less than a given tolerance, referred to as TOL, which

is set as TOL = 10−10. The maximal number of iterations referred to as MAXIT, which is taken

as MAXIT = 5000. The computational results are reported in Tables 2 and 3 and are displayed

in Figures 1–8 which indicate the iteration number on the horizontal axis versus the Frobenius

norms of the relative residuals on the vertical axis. A symbol “max” refers to that the method

did not meet the required TOL before MAXIT.

Example 1 First, we study the Sylvester matrix equation AX+XB = C for the next two cases

Case 1.1 Refer to [57], where the parameters have been modified to take the forms

A = triu(rand(n), 1) + diag(3 + diag(rand(n))),

B = tril(rand(n), 1) + diag(2 + diag(rand(n))), C = rand(n),

where n = 500. The numerical results of the stated iterative algorithms are reported in Table

2. It can be seen that the GPBiCG(1,2) M and the GPBiCG(1,1) M methods are more efficient

than the other methods regarding the number of Iters and the CPU time. Also, it can be noticed

that the BiCOR M method is more expensive regarding the number of Iters and the CPU time

while the GPBiCG(4,1) M method is more expensive regarding the CPU time. The accuracy

of all the obtained solutions regarding TRR is roughly identical to the tolerance value as a

stopping criterion. In addition, Figure 1 shows the convergence behavior of some of the iterative

solvers. It can be seen that the CORS M and the CGS M methods show irregular (oscillating)

convergence curve, while the convergence behavior of the remaining methods shows reasonably

smooth decreasing residual.

Case 1.2 Here, another case is also considered after some adjustments in the parameters stated

in [74]

A = M + rN +
100

(n+ 1)2
I, B = M + 3rN +

100

(n+ 1)2
I, C = rand(n),

where M = tridiag(−1, 2,−1), N = tridiag(0.5, 0,−0.5), for n = 500 and r = 1.5. Through

implementing the above methods for acquiring the approximations, we obtain the computational

results that are shown in Table 2. It can be recognized that most of the GPBiCG(m, l) M

converges faster than the other methods. On contrary, the BiCGSTAB M method shows a high

number of Iters and a high cost in CPU time. While the accuracy of the computed solutions by
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Figure 1 Convergence histories of different iterative methods for Case 1.1(Left) and Case 1.2(Right).

applying most of the iterative solvers (in terms of TRR) is roughly equivalent to the tolerance

value that is taken as a stopping criterion, the CGS M solver exhibits a low accuracy. In Figure

1, the convergence histories of some of the iterative methods are also shown. We can notice the

smooth convergence behavior of most of the plotted methods except for the CGS M and the

BiCGSTAB M methods.
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Figure 2 Convergence histories of different iterative methods for Example 2

Example 2 Next, we test the matrix equation AXB = C, after some minor modifications to

the parameters in [58]

A = triu(rand(n), 1) + diag(3 + diag(rand(n))),

B = tril(rand(n), 1) + diag(8 + diag(rand(n))), C = rand(n),

where n = 500. The numerical results are stated in Table 3 which shows that the GPBiCG(2, 1) M

outperforms the other methods in CPU time and number of Iters. One can notice that the Bi-

COR M method still needs more CPU time and Iters than the other methods followed by the

CGS M, the BiCGSTAB M, and the CORS M methods. The accuracy of the obtained solutions

is roughly identical to the TOL value that was set as a stopping criterion except for the BiCOR M
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Figure 3 Convergence histories of different iterative methods for Case 3.1(Left) and Case 3.2(Right).

solver which reduces to half of the TOL. Moreover, Figure 2 shows the plots of the convergence

histories of some of the iterative methods. The GPBiCG(m, l) M and the GPBiCG M meth-

ods show fairly smooth convergence behaviors. The BiCGSTAB method exhibits some extent

acceptable convergence behaviors, while the CGS M method shows an irregular (oscillating) con-

vergence curve.

Example 3 In this example, we investigate the matrix equation AXB + CXD = E, for the

following two cases

Case 3.1 Consider the parameters below

A = M + 2rN +
100

(n+ 1)2
I, B = M + 3rN +

100

(n+ 1)2
I,

C = M + rN +
100

(n+ 1)2
I, D = M + 3rN +

100

(n+ 1)2
I, E = rand(n),

where M = tridiag(−1, 2, 0.5), N = tridiag(0.5, 0,−0.5), for n = 500 and r = 1.5. Table 2

summarizes the characteristics of the numerical results for the mentioned iterative methods. It

is apparent that the GPBiCG(1, 1) M method converges faster than the other methods in terms

of the CPU time and the number of Iters. It can be seen that the BiCGSTAB M method has

a slow convergence rate concerning the high number of Iters and the CPU time followed by

the BiCOR M method. The accuracy of the approximated solutions concerning TRR is roughly

equal to the tolerance value as a stopping criterion. For simplicity, Figure 3 illustrates plots of the

convergence behaviors to some of the mentioned iterative methods, where the GPBiCG(m, l) M

and the GPBiCG M methods still have fairly smooth convergence behaviors. It is apparent that

the remaining methods show typically erratic convergence behaviors especially the BiCGSTAB M

method.

Case 3.2 Here, we examine the parameters stated in [75] with some slight modifications

A = triu(rand(n), 1) + diag(8 + diag(rand(n))), B = tril(rand(n), 1) + diag(1 + diag(rand(n))),

C = triu(rand(n), 1) + diag(8 + diag(rand(n))), D = tril(rand(n), 1) + diag(1 + diag(rand(n))),
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E = rand(n),

for n = 500. The computational results of different iterative solvers are stated in Table 2. The

GPBiCG(1, 2) M is more efficient than the other methods concerning the smaller number of Iters

and the CPU time. On contrary, the CGS M method needs a high cost of CPU time and a high

number of Iters followed by the CORS M method. one can notice that the BiCGSTAB M and

BiCOR M fail to converge. The accuracy of the obtained approximations concerning TRR by

implementing the iterative methods is reduced to two-thirds of the tolerance value that is chosen

as a stopping criterion, but is still acceptable. The convergence histories to some of the iterative

methods are also shown in Figure 3, where the GPBiCG(m, l) M and the GPBiCG M methods

have preferable convergence behaviors assessed against the other methods which have typically

erratic convergence behaviors.
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Figure 4 Convergence histories of different iterative methods for Example 4

Example 4 Next, we consider the discrete-time periodic Sylvester matrix equations AkXkBk +

Xk+1 = Ek, k = 1, 2, where

A1 = triu(rand(n), 1)+diag(9+diag(rand(n))), A2 = triu(rand(n), 1)+diag(9+diag(rand(n))),

B1 = tril(rand(n), 1)+diag(1+diag(rand(n))), B2 = tril(rand(n), 1)+diag(1+diag(rand(n))),

E1 = rand(n), E2 = rand(n),

for n = 300. We also apply the mentioned methods with the initial matrices Xi = 0, i = 1, 2, 3 to

get the approximations. The numerical outputs are listed in Table 3. It can be observed that the

GPBiCG(2,1) M method converges faster than the other methods regarding the CPU time and

the number of Iters. It is apparent that the accuracy of the obtained approximations by applying

the stated iterative methods regarding TRR is appropriately equal to the tolerance value that

is taken as a stopping criterion except the BiCOR M method which reduces to half of the TOL.

Figure 4 presents typical plots of the convergence histories of some of the stated methods. It can

be seen that the GPBiCG and the GPBiCG(m, l) M methods still have reasonably smooth con-

vergence behaviors. While the BiCGSTAB M solver exhibits somewhat acceptable convergence

behavior, the CGS M and the CORS M solvers exhibit erratic convergence behaviors.
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Method Iters TRR Time (s) Iters TRR Time (s)

Case 1.1 Case 1.2

GPBiCG M 90 -10.1682 3.2480 882 -9.9122 39.3278

BiCGSTAB M 90 -10.7092 3.1910 1795 -9.8190 68.4095

GPBiCG(1, 1) M 82 -10.4009 2.8951 802 -10.2622 37.3127

GPBiCG(1, 2) M 81 -10.1563 2.8867 824 -10.2119 38.6519

GPBiCG(1, 3) M 83 -10.5285 3.5428 777 -9.5408 36.6381

GPBiCG(1, 4) M 85 -10.2910 3.7667 802 -9.2074 37.6052

GPBiCG(1, 5) M 85 -10.0950 3.8858 836 -9.7079 39.1702

GPBiCG(2, 1) M 82 -10.5286 3.7167 810 -10.0644 37.9198

GPBiCG(3, 1) M 82 -10.3187 3.5602 838 -9.9531 38.8946

GPBiCG(4, 1) M 84 -10.1160 4.9719 951 -9.4509 43.8428

GPBiCG(5, 1) M 84 -10.1940 4.1231 888 -7.6950 41.4315

CGS M 103 -10.4126 3.5223 1262 -4.6573 56.7263

CORS M 95 -10.3435 3.4824 1167 -9.0450 54.1815

BiCOR M 154 -10.0163 5.3884 1416 -9.8843 62.4768

Case 3.1 Case 3.2

GPBiCG M 65 -10.1559 5.8609 719 -6.8431 52.7736

BiCGSTAB M 236 -10.0982 20.3152 max 5.2137 485.0885

GPBiCG(1, 1) M 58 -10.1968 4.9507 419 -6.9104 30.9961

GPBiCG(1, 2) M 59 -10.0897 5.2623 403 -6.5491 29.0221

GPBiCG(1, 3) M 60 -10.0830 5.3802 420 -6.4781 30.3230

GPBiCG(1, 4) M 60 -10.2453 4.3017 484 -7.3202 36.8407

GPBiCG(1, 5) M 64 -10.5004 5.4994 486 -5.1670 37.3621

GPBiCG(2, 1) M 60 -10.0044 5.1857 466 -6.7697 35.6664

GPBiCG(3, 1) M 69 -10.2790 6.0241 396 -6.9157 30.8324

GPBiCG(4, 1) M 72 -10.0690 6.2875 449 -6.7088 35.1902

GPBiCG(5, 1) M 78 -10.3402 6.8212 415 -7.3548 31.6364

CGS M 67 -10.1578 5.7652 940 -8.5477 79.9300

CORS M 61 -10.1718 5.1379 838 -8.1346 76.9950

BiCOR M 118 -10.0242 9.6436 max 7.1937 444.8939

Table 2 The numerical results of different iterative solvers for Examples 1, 3.

Example 5 After considering some slight changes to the parameters in [46], the discrete-time

periodic Sylvester matrix equations Xk + CkXk+1Dk = Ek, k = 1, 2 is also studied with

C1 = triu(rand(n), 1)+diag(50+diag(rand(n))), C2 = triu(rand(n), 1)+diag(50+diag(rand(n))),

D1 = tril(rand(n), 1)+diag(1+diag(rand(n))), D2 = tril(rand(n), 1)+diag(1+diag(rand(n))),
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E1 = rand(n), E2 = rand(n),

for n = 200. The computational results obtained with the initial matrices Xi = 0, i = 1, 2, 3 are

displayed in Table 3. It can be seen that the GPBiCG(1, 3) M methods performs better than

the other methods regarding the smaller number of Iters and the CPU time. It is apparent the

BiCGSTAB M and the CGS M solvers need more Iters and CPU time. The accuracy of the

approximations calculated concerning the TRR values is slightly less than the TOL value that

is set as a stopping criterion and falls to half of the TOL in case of the GPBiCG(1, 2) M and

BiCOR M methods. The results of some of the iterative methods are depicted in Figure 5 where

the GPBiCG(m, l) M and the GPBiCG M methods exhibit somewhat acceptable convergence

behaviors and the CGS M method shows an irregular convergence behavior.
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Figure 5 Convergence histories of different iterative methods for Example 5
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Figure 6 Convergence histories of different iterative methods for Example 6
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Method Iters TRR Time (s) Iters TRR Time (s)

Example 2 Example 4

GPBiCG M 217 -9.8005 8.1096 311 -8.8653 5.0144

BiCGSTAB M 268 -10.0611 19.5060 282 -10.2224 4.5279

GPBiCG(1, 1) M 175 -8.9137 8.2357 228 -7.4375 3.6334

GPBiCG(1, 2) M 183 -9.0456 8.4352 230 -9.0614 3.7989

GPBiCG(1, 3) M 182 -8.9671 8.4225 245 -9.8697 3.9361

GPBiCG(1, 4) M 198 -9.7652 9.0272 246 -10.2205 3.9938

GPBiCG(1, 5) M 191 -9.5658 8.5559 232 -9.5446 3.6835

GPBiCG(2, 1) M 171 -8.9795 7.7013 214 -9.6084 3.4358

GPBiCG(3, 1) M 178 -8.5294 8.1977 262 -9.8470 4.2266

GPBiCG(4, 1) M 181 -9.3082 8.4152 226 -10.4067 3.5701

GPBiCG(5, 1) M 176 -9.3872 8.1607 228 -9.9946 3.6752

CGS M 346 -8.9476 20.9887 361 -10.0607 4.9810

CORS M 292 -10.3601 18.3857 322 -10.1091 5.1551

BiCOR M 363 -5.5092 21.5462 380 -5.9163 5.5939

Example 5 Example 6

GPBiCG M 812 -7.7253 4.6909 523 -7.3641 18.4198

BiCGSTAB M 896 -8.5606 5.0627 479 -8.0667 12.1076

GPBiCG(1, 1) M 654 -6.7986 3.7031 424 -7.0825 15.1521

GPBiCG(1, 2) M 738 -5.0604 4.1772 417 -7.8694 14.6532

GPBiCG(1, 3) M 614 -8.6150 3.5903 448 -6.5951 15.9368

GPBiCG(1, 4) M 665 -7.5128 3.7525 501 -8.0137 17.8798

GPBiCG(1, 5) M 634 -7.4066 3.5589 474 -8.2086 16.8103

GPBiCG(2, 1) M 674 -6.1781 3.8092 420 -7.3106 14.5930

GPBiCG(3, 1) M 714 -6.9155 3.9762 397 -8.0684 10.7976

GPBiCG(4, 1) M 695 -8.0637 3.9288 417 -7.4675 11.4000

GPBiCG(5, 1) M 747 -7.1971 4.1525 438 -8.4071 12.0270

CGS M 1037 -7.4055 4.8949 706 -4.8637 17.8298

CORS M 773 -7.2565 4.1121 575 -9.3350 15.2128

BiCOR M 903 -4.1335 4.5196 614 -3.7364 15.2135

Table 3 The numerical results of different iterative solvers for Examples 2, 4:6

Example 6 Finally, the discrete-time periodic Sylvester matrix equationsAkXkBk+CkXk+1Dk =

Ek, k = 1, 2, stated in [62], is investigated after considering some changes to the parameters

A1 = triu(rand(n), 1)+diag(8+diag(rand(n))), A2 = triu(rand(n), 1)+diag(8+diag(rand(n))),

B1 = tril(rand(n), 1)+diag(1+diag(rand(n))), B2 = tril(rand(n), 1)+diag(1+diag(rand(n))),
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C1 = triu(rand(n), 1)−diag(1+diag(rand(n))), C2 = triu(rand(n), 1)−diag(1+diag(rand(n))),

D1 = tril(rand(n), 1)+diag(1+diag(rand(n))), D2 = tril(rand(n), 1)+diag(1+diag(rand(n))),

E1 = rand(n), E2 = rand(n),

for n = 300. By applying the stated iterative algorithms with the initial matrices Xi =

0, i = 1, 2, 3, we obtain the numerical results reported in Table 3. One can notice that the

GPBiCG(3, 1) M is more efficient regarding the number of Iters and the CPU time while the

CGS M solver and the GPBiCG(1, 4) M solvers are more expensive than the other solvers. The

accuracy of the approximations, concerning the TRR values by using the BiCOR M and CGS M

methods declines to less than half of the TOL. Figure 6 presents the convergence histories for

some of the mentioned solvers where the GPBiCG(m, l) M and the GPBiCG M methods show

fairly attractive convergence behaviors assessed against the other methods. Also, the remaining

solvers exhibit irregular convergence behaviors, especially the CGS M and the CORS Mmethods.

The above experiments indicated that the proposed GPBiCG(m, l) M method has faster

convergence rate and higher accuracy than the other stated methods. The obtained numerical

results illustrate that Algorithms 3 and 4 are efficient.

6. Conclusions

In summary, by means of the the vectorization operator and the Kronecker product, we have

generalized two matrix forms of the GPBiCG(m, l) method that was initially proposed to solve

the nonsymmetric linear system problems to obtain the solutions of the general matrix equation

(1.1) and the general discrete-time periodic matrix equations (1.2), which include many forms of

matrix equations arising in several applications.

Several numerical examples of common linear matrix equations have been presented to

demonstrate the accuracy and efficiency of the proposed algorithms assessed against some ex-

isting methods. The numerical results have revealed that the proposed method tends to show

smoother convergence behaviors, often faster convergence, and can be competitive with the oth-

er existing methods. These results of the extended GPBiCG(m, l) are in accordance with the

original GPBiCG(m, l) method by Fujino [65] for solving linear systems.
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