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The Structure of a Lie Algebra Attached to a Unit Form
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Abstract Let n ≥ 4. The complex Lie algebra, which is attached to the unit form q(x1, x2, . . . , xn)

=
∑n

i=1 x
2
i − (

∑n−1
i=1 xixi+1)+x1xn and defined by generators and generalized Serre relations, is

proved to be a finite-dimensional simple Lie algebra of type Dn, and realized by the Ringel-Hall

Lie algebra of a Nakayama algebra. As its application of the realization, we give the roots and

a Chevalley basis of the simple Lie algebra.

Keywords Nakayama algebras; finite dimensional simple Lie algebras; Ringel-Hall Lie algebras

2000 Mathematics Subject Classification: 16G20; 17B20

1. Introduction

There are a lot of papers studying the relationship between the representation theories with

Kac-Moody algebras or elliptic algebras. An important tool used in the studying is Ringel-

Hall Lie algebra. Here we recall some background on the Ringel-Hall Lie algebras. Let A be

an associative algebra over a finite field and M,N and L finite A-modules. Let FL
M,N be the

number of submodules V of L such that V ≃ N and L/V ≃ M . By the definition in [1], the

Ringel-Hall algebra of A is an associative ring with a Z-basis, indexed by the isoclasses [M ]

of all finite A-modules M , and the multiplication: [M ] · [N ] =
∑

[L] F
L
M,N [L]. In case A is

hereditary of finite type, Ringel [1–3] showed that the subring of the degenerate Ringel-Hall

algebra with a Z-basis indexed by isoclasses of all indecomposable A-modules is a Lie subalgebra

under the Lie multiplication of commutators, and over complex numbers it is isomorphic to the

positive part of the corresponding complex semisimple Lie algebras such that the isoclasses of all

indecomposable A-modules correspond to a Chevalley basis. Such Lie subalgebra is called the

Ringel-Hall Lie algebra. To realize the whole (not only the positive part) of a Kac-Moody Lie

algebra, the Ringel-Hall Lie algebras of 2-period triangulated categories have been constructed

in [4, 5]. Here the Ringel-Hall numbers are related to triangles instead of short exact sequences.

Then any symmetrizable Kac-Moody Lie algebra can be realized by the Ringel-Hall Lie algebra

of the root category of the corresponding hereditary algebra A (see [5]). Here the root category

is the orbit category R(A) = Db(A)/T 2, where Db(A) is the derived category of A and T is the

shift functor. Lin and Peng [6] proved that the elliptic Lie algebra of type D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 ,
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E
(1,1)
8 is isomorphic to the Ringel-Hall Lie algebra of the root category of the tubular algebra

with type T(2, 2, 2, 2),T(3, 3, 3),T(4, 4, 2),T(6, 3, 2).
Recently, the authors in [7] built a relationship between the representation theory of a

Nakayama algebra and a Lie algebra attached to a unit form. The kind of Lie algebras are

introduced by Barot, Kussin and Lenzing in [8], and they are defined by generators and gen-

eralized Serre relations. These generalized Serre relations are different from the Serre rela-

tions in the definitions of Kac-Moody algebras. The root systems of the Lie algebras in [8]

associated with a root space decomposition are different to determine. In [7] the authors de-

termined the root system and a Chevalley basis of a complex Lie algebra attached to the u-

nit form q(x1, x2, . . . , xn) =
∑n

i=1 x
2
i +

∑
1≤i<j≤n(−1)j−ixixj via the Ringel-Hall Lie algebra

of root category of some Nakayama algebra. In this paper, in a similar way, we determine

the root system and a Chevalley basis of the complex Lie algebra attached to the unit form

q(x1, x2, . . . , xn) =
∑n

i=1 x
2
i − (

∑n−1
i=1 xixi+1) + x1xn via the representation theory of a different

Nakayama algebra.

A square matrix C = (Cij)n×n with integral coefficients is called a quasi-Cartan matrix if it

is symmetrizable and Cii = 2 for all i. A quasi-Cartan matrix C is called a Cartan matrix if it

is positive definite and Cij ≤ 0 for all i ̸= j. Let Zn be the set of the integral n-dimensional row

vectors, and ϵ1, ϵ2, . . . , ϵn the canonical basis of Zn. A unit form is a quadratic form q : Zn → Z,
q(x) =

∑n
i=1 x

2
i +

∑
i<j qijxixj , with integral coefficients qij ∈ Z. Each unit form q : Zn → Z has

an associated symmetric quasi-Cartan matrix C = C(q) given by Cij = q(ϵi + ϵj)− q(ϵi)− q(ϵj).

A unit form is called positive definite if q(x) > 0 for each 0 ̸= x ∈ Zn. We associate with any

unit form q a bigraph B(q), which has vertices 1, 2, . . . , n and |qij | solid (resp., dotted) lines

between i and j if qij < 0 (resp., qij > 0). A unit form q is connected if so is B(q). If C(q)

is a Cartan matrix, then B(q) is a graph (there are no broken edges) Γ, which by the Cartan-

Killing classification is a disjoint union of Dynkin diagrams Am (m ≥ 1), Dm (m ≥ 4) and

Em (m = 6, 7, 8). In this case, we write q = qΓ and call Γ the Dynkin type of q.

Given a unit form q, set C = C(q) and let g4(q) be the complex Lie algebra defined by the

generators ei, e−i, hi (1 ≤ i ≤ n) which are homogeneous of degree ϵi, −ϵi and 0, respectively,

and subject to the following relations:

(R1) [hi, hj ] = 0, for all i and j,

(R2) [hi, eδj ] = δCijeδj , for all i, j and δ = ±1,

(R3) [eδi, e−δi] = δhi, for all i and δ = ±1,

(R4) (ad eδi)
1+m(eγj) = 0, where m = max{0,−δγCij}, for δ, γ ∈ {1,−1} and 1 ≤ i, j ≤ n.

If q is a positive definite unit form such that its quasi-Cartan matrix is a Cartan matrix, then

by [9], g4(q) is a semisimple finite dimensional Lie algebra. Note that in general, when A is not

necessarily a Cartan matrix, the relations (R4) are a subset of the relations

(R∞) [eδ1i1 , eδ2i2 , . . . , eδtit ] = 0, whenever q(
∑t

j=1 δjϵij ) > 1 for δj = ±1,

where the multibrackets are defined inductively by

[x1, x2, . . . , xt] = [x1, [x2, . . . , xt]].
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Let g∞(q) be the Lie algebra defined by the generators ei, e−i, hi (1 ≤ i ≤ n) and by the relations

(R1), (R2), (R3), (R∞). We recall that any positive definite unit form has a unique associated

Dynkin type Γ such that q is equivalent to qΓ, that is q = qΓ ◦ T for some Z-invertible integral

matrix T . In this case, it is denoted by q ∼ qΓ. By [8], if q is positive definite of Dynkin type Γ,

then g∞(q) is isomorphic to g4(qΓ).

In this paper, we will study the complex Lie algebra g∞(q) attached to the following unit

form

q(x1, x2, . . . , xn) =
n∑

i=1

x2i −
( n−1∑

i=1

xixi+1

)
+ x1xn, n ≥ 4.

We will show that the above unit form q is positive definite and connected, and so the attached

Lie algebra g∞(q) is a finite dimensional simple Lie algebra. Next we determine the graph Γ

satisfying that g∞(q) ≃ g4(qΓ), and a Chevalley basis of g∞(q). To achieve this aim, we prove

that the Lie algebra g∞(q) is isomorphic to the Ringel-Hall Lie algebra g of a Nakayama algebra,

and so g∞(q) is a simple Lie algebra of type Dn. As its application of the realization, we give

the roots, a root space decomposition and a Chevalley basis of the simple Lie algebra.

Let us give a brief view on the content of this article. In Section 2, we study some properties

of the given unit form and the related Lie algebra defined by generators and generalized Serre

relations. In Section 3, we show some properties of a class of Nakayama algebras, which will be

applied to realize the above Lie algebra. In Section 4, we recall the Ringel-Hall Lie algebra of the

above Nakayama algebra, and prove that it is isomorphic to the above simple Lie algebra. As an

application of the isomorphism theorem, Section 5 shows that there is a bijection between the set

of the indecomposable objects of the root category of the Nakayama algebra and the set of the

roots of the positive definite unit form, and give the Dynkin type, a root space decomposition

and a Chevalley basis of the above simple Lie algebra.

2. A positive definite unit form

The following lemma gives some properties of the unit form

q(x) =
n∑

i=1

x2i −
( n−1∑

i=1

xixi+1

)
+ x1xn.

Lemma 2.1 Let ∆ = {(x1, x2, . . . , xn) ∈ Zn|q(x1, x2, . . . , xn) = 1}. Then
(i) The associated Cartan matrix C = C(q) is

2 −1 0 · · · 0 0 1

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

1 0 0 · · · 0 −1 2


.
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(ii) q(x1, x2, . . . , xn) =
1
2 [(

∑n−1
i=1 (xi−xi+1)

2+(x1+xn)
2], and q is connected positive definite.

(iii) ∆ = {±ϵi|1 ≤ i ≤ n} ∪ {±(
∑j

k=i ϵk)|1 < i < j ≤ n} ∪ {±(
∑i

k=1 ϵk)|1 < i < n} ∪
{±(

∑i
k=1 ϵk −

∑n
k=j+1 ϵk)|1 ≤ i < j ≤ n− 1}, and |∆| = 2n2 − 2n.

Proof (i) For 1 ≤ i ≤ n, Cii = q(2ϵi)−2q(ϵi) = 4−2 = 2. For 1 ≤ i ≤ n−1, Ci,i+1 = q(ϵi+ϵi+1)−
q(ϵi)−q(ϵi+1) = −1. For 1 ≤ i ≤ n−2, 1 < j < n, Ci,i+j = q(ϵi+ ϵi+j)−q(ϵi)−q(ϵi+j) = 0. For

1 < i ≤ n, Ci−1,i = q(ϵi−1+ϵi)−q(ϵi−1)−q(ϵi) = −1. C1n = Cn1 = q(ϵ1+ϵn)−q(ϵ1)−q(ϵn) = 1.

So (i) holds.

(ii) We prove it by induction on n. For n = 2,

q = x21 + x22 − x1x2 + x1x2 =
1

2
[(x1 − x2)

2 + (x1 + x2)
2].

Assume it holds for n− 1, i.e.,

q(x1, x2, . . . , xn−1) =
1

2

[ n−2∑
i=1

(xi − xi+1)
2 + (x1 + xn−1)

2
]
.

Then

q(x1, x2, . . . , xn) = q(x1, x2, . . . , xn−1) + x2n − xn−1xn + x1xn − x1xn−1

=
1

2

n−2∑
i=1

(xi − xi+1)
2 +

1

2
x21 +

1

2
x2n−1 + x1xn−1 + x2n − xn−1xn + x1xn − x1xn−1

=
1

2

n−2∑
i=1

(xi − xi+1)
2 +

1

2
(x1 + xn)

2 +
1

2
(xn−1 − xn)

2

=
1

2

[ n−1∑
i=1

(xi − xi+1)
2 + (x1 + xn)

2
]
≥ 0.

If q(x1, x2, . . . , xn) =
1
2 [
∑n−1

i=1 (xi − xi+1)
2 + (x1 + xn)

2] = 0, we have x1 = x2 = · · · = xn = 0.

So q is positive definite. By the definition of the bigraph B(q), we have

n•

�
�
�
�

n−1•

AA
AA

AA
AA

1•

::
::

::
::

n−3•

}}
}}
}}
}}

2• n−2•
Figure 1 Bigraph B(q) of q

It is easy to see that the bigraph B(q) of q is connected.

(iii) Let (x1, x2, . . . , xn) ∈ ∆, where xi ∈ Z, 1 ≤ i ≤ n. Then
∑n−1

i=1 (xi−xi+1)
2+(x1+xn)

2 =

2. Let x1 − x2 = a1, x2 − x3 = a2, . . . , xn−2 − xn−1 = an−2, xn−1 − xn = an−1, x1 + xn = an.

Then for 2 ≤ j ≤ n− 1,

x1 =
1

2

n∑
i=1

ai, x1 + xi =
n∑

j=i

aj , x1 + xn = an. (∗)
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In the set {a1, a2, a3, . . . , an}, there are only two elements with absolute value 1, and the others

are zero. Assume that |ai| = |aj | = 1 for 1 ≤ i < j ≤ n. We prove (iii) in the following cases.

Case 1 i = 1.

In this case a1 = ±1.

Case 1.1 a1 = 1, aj = ±1, j = 2, 3, . . . , n.

If j = n, aj = 1, then an = 1, al = 0 for 2 ≤ l < n. By the equalities (∗) we have

x1 = 1, x2 = x3 = · · · = xn = 0. Then (x1, x2, . . . , xn) = ϵ1. If 2 ≤ j ≤ n − 1, aj = 1, then

a2 = a3 = · · · = aj−1 = aj+1 = · · · = an = 0. By the equalities (∗) we have x1 = 1, x2 =

x3 = · · · = xj = 0, xj+1 = · · · = xn−1 = xn = −1. Then (x1, x2, . . . , xn) = ϵ1 −
∑n

k=j+1 ϵk.

If j = 2, aj = −1, then x1 = 0, x2 = −1, x3 = x4 = · · · = xn = 0. So (x1, x2, . . . , xn) = −ϵ2.
If 2 < j ≤ n, aj = −1, then x1 = 0, x2 = x3 = · · · = xj = −1, xj+1 · · · = xn = 0. So

(x1, x2, . . . , xn) = −
∑j

k=2 ϵk.

Case 1.2 a1 = −1, aj = ±1, j = 2, 3, . . . , n.

By computations similar to those in Case 1.1, if j = n, aj = −1, then (x1, x2, . . . , xn) = −ϵ1.
And if 2 ≤ j ≤ n− 1, aj = −1, then (x1, x2, . . . , xn) = −ϵ1 +

∑n
k=j+1 ϵk. And if j = 2, aj = 1,

then (x1, x2, . . . , xn) = ϵ2. And if 2 < j ≤ n, aj = 1, then (x1, x2, . . . , xn) =
∑j

k=2 ϵk.

Case 2 1 < i < n.

In this case ai = ±1.

Case 2.1 ai = 1, aj = ±1, j = i+ 1, . . . , n.

If j = n, aj = 1, and the others are zero, then x1 = x2 = · · · = xi = 1, xi+1 = xi+2 =

· · · = xn = 0. So (x1, x2, . . . , xn) =
∑i

k=1 ϵk. If i + 1 ≤ j ≤ n − 1, aj = 1, and the others are

zero, then x1 = x2 = · · · = xi = 1, xi+1 = xi+2 = · · · = xj = 0, xj+1 = · · · = xn = −1. Then

(x1, x2, . . . , xn) =
∑i

k=1 ϵk −
∑n

k=j+1 ϵk. If j = i + 1, aj = −1, and the others are zero, then

x1 = x2 = · · · = xi = xi+2 = · · · = xn = 0, xi+1 = −1. Therefore, (x1, x2, . . . , xn) = −ϵi+1.

If i + 1 < j ≤ n, aj = −1, then x1 = x2 = · · · = xi = 0, xi+1 = xi+2 = · · · = xj = −1,

xj+1 = xj+2 = · · · = xn = 0. Therefore, (x1, x2, . . . , xn) = −
∑j

k=i+1 ϵk.

Case 2.2 ai = −1, aj = ±1, j = i+ 1, . . . , n.

If j = n, aj = −1, and the others are zero, then (x1, x2, . . . , xn) = −
∑i

k=1 ϵk. If i + 1 ≤
j ≤ n− 1, aj = −1, and the others are zero, then (x1, x2, . . . , xn) = −

∑i
k=1 ϵk +

∑n
k=j+1 ϵk. If

j = i+ 1, aj = 1, then (x1, x2, . . . , xn) = ϵi+1. If i+ 1 < j ≤ n, aj = 1, then (x1, x2, . . . , xn) =∑j
k=i+1 ϵk.

In a word

∆ ={±ϵi|1 ≤ i ≤ n} ∪ {±(

j∑
k=i

ϵk)|1 < i < j ≤ n} ∪ {±(

i∑
k=1

ϵk)|1 < i < n}∪

{±(

i∑
k=1

ϵk −
n∑

k=j+1

ϵk)|1 ≤ i < j ≤ n− 1}.
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By simple computation, |∆| = 2n2 − 2n. 2

Each element α in ∆ is called a root of the unit form q. Let N be the set of the natural

numbers. If a root α ∈ Nn, it is called a positive root of q. Since q is a positive definite unit

form, then by [8, Theorem 1.3], we have the following theorem.

Theorem 2.2 The complex Lie algebra g∞(q) attached to the unit form q is finite dimensional

simple Lie algebra.

Next we recall a Zn-graded structure on g∞(q) introduced in [8]. Let H =
⊕n

i=1 Chi, which
is a commutative Lie subalgebra of g∞(q). For any h =

∑n
i=1 λihi, we define r(h) =

∑n
i=1 λiϵi

and ⟨h, α⟩ = r(h)Cαt for α ∈ Cn. For any α ∈ Cn, we set

(g∞(q))α = {x ∈ g∞(q)|[h, x] = ⟨h, α⟩x, for all h ∈ H}.

By [3, Lemma 2.1], the vector space (g∞(q))α is generated by all expressions [eδ1i1 , eδ2i2 , . . . , eδtit ]

with
∑t

j=1 δjϵij = α. Then

g∞(q) = H ⊕
⊕
α∈Zn

(g∞(q))α,

where H is the Cartan subalgebra of g∞(q). If 0 ̸= α ∈ Zn such that (g∞(q))α ̸= 0, then

dimC(g∞(q))α = 1, and α is called a root of the simple Lie algebra g∞(q). The set ∆′ of the

roots of g∞(q) is called a root system of the simple Lie algebra g∞(q). In fact, by the definition

of g∞(q), ∆′ ⊆ ∆. By the following Theorem 5.1, we will see that ∆′ = ∆. A subset Π of ∆′ is

called a base if Π is a maximal linearly independent system of ∆′, and each root β ∈ ∆′ can be

written as β =
∑

α∈Π kαα with integral coefficients kα all nonnegative or all nonpositive. The

roots in Π are called simple roots. The cardinality of Π is n. So the Dynkin diagram Γ related

to the simple roots is defined. By [8, Proposition 6.1], the Lie algebra g∞(q) is isomorphic to

the simple Lie algebra g4(qΓ) of the Dynkin type Γ. We are interested in the Dynkin type of

Γ. To see this, we will first show that g∞(q) can be realized by the Ringel-Hall Lie algebra of

a Nakayama algebra Λ, which is piecewise hereditary of type Dn. Then Γ is proved to be of

Dynkin type Dn.

3. Homological properties of a Nakayama algebra Λ

We consider a special class of Nakayama algebras obtained as follows. The linearly oriented

quiver
−→
An for n ≥ 3 is

1◦ α1−→2◦ α2−→3◦ · · · n−1◦ αn−1−→n◦

Set Λ = k
−→
An/I, where k is a field, I is the ideal generated by the elements α1α2α3 · · ·αn−1.

Then Λ is a Nakayama algebra. By [10, Proposition 1.4], the global dimension g.l.dim Λ = 2.

Let mod Λ be the finite-dimensional left Λ-modules. We denote by Si the simple Λ-module

associated with i, by Pi its projective cover and by Ii its injective envelope. Denote by K0(Λ) the

Grothendieck group of an abelian category mod Λ, that is the free abelian group on isomorphism

classes [M ] of objects in mod Λ modulo the relations [M ] = [N ] + [L] for any exact sequence

0 → N → M → L → 0. We identify K0(Λ) with Zn, and denote by pj the image of Pj in the
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Grothendieck group K0(Λ). The Cartan matrix C̄ of Λ is an integral-valued matrix with entries

C̄ij = dimkHomΛ(Pi, Pj), 1 ≤ i, j ≤ n. Thus the j-th column vector of C̄ is ptj , where t denotes

the transpose of a matrix. So C̄ = (ϵt1 + ϵt2 + · · ·+ ϵtn−1, ϵ
t
2 + ϵt3 + · · ·+ ϵtn, . . . , ϵ

t
n−1 + ϵtn, ϵ

t
n), i.e,

C̄ =



1 0 0 · · · 0 0

1 1 0 · · · 0 0

1 1 1 · · · 0 0
...

...
...

. . .
...

...

1 1 1 · · · 1 0

0 1 1 · · · 1 1


.

Let Kb(Λ) be the homotopy category associated with the category of bounded complexes over

mod Λ, andDb(Λ) the bounded derived category ofKb(Λ) by localization with quasi-isomorphisms.

Denote by T the shift functor of complexes in Db(Λ). By [10, Proposition 2.1], Λ is piecewise

hereditary of type Dn, i.e., the derived category Db(Λ) of Λ is isomorphic to the derived category

of a hereditary algebra of type Dn. Similarly to K0(Λ), K0(Db(Λ)) is defined as the free abelian

group on isomorphism classes [X] of complexes in Db(Λ) modulo the relations [X] = [Y ] + [Z]

for any distinguished triangle Y → X → Z → TY . It has been shown in [11, Lemma III.1.2],

we can identify K0(Λ) and the Grothendieck group K0(Db(Λ)). Given an object X in Db(Λ),

we denote by dimX the corresponding element in K0(Db(Λ)) = K0(Λ). Note that there is a

canonical embedding of mod Λ into Db(Λ) (as the full subcategory of complexes concentrated in

degree zero), and the restriction of dim to this full subcategory mod Λ coincides with the usual

dimension vector function.

For any indecomposable object X ∈ Db(Λ), there is an Auslander-Reiten triangle τX →
Y → X → TτX. So there is an autoequivalence τ on Db(Λ) which induces an isomorphism

denoted by Φ on the Grothendieck group K0(Λ), i.e., dim τX = (dimX)Φ. Observe that

(dim Pi)Φ = −dim Ii. Thus Φ = −(C̄−1)tC̄. The following results give some properties of Φ.

Lemma 3.1 Let Φ be an isomorphism on the Grothendieck group K0(Λ). Then

Φ = −(ϵtn−1, ϵ
t
n, ϵ

t
1 − ϵt2 + ϵtn, ϵ

t
1 − ϵt3 + ϵtn, . . . , ϵ

t
1 − ϵtn−1 + ϵtn),

Φi =

{
−(ϵtn−i, . . . , ϵ

t
n, ϵ

t
1 − ϵt2 + ϵtn, . . . , ϵ

t
1 − ϵtn−i + ϵtn), i is odd and 2 ≤ i ≤ n− 1;

(ϵt1 − ϵtn−i + ϵtn, . . . , ϵ
t
1 − ϵtn−1 + ϵtn, ϵ

t
1, . . . , ϵ

t
n−i), i is even and 2 ≤ i ≤ n− 1.

Φn =

{
−(ϵt1 − ϵtn−1 + ϵtn, ϵ

t
1, ϵ

t
2, . . . , ϵ

t
n−1), n is an odd integral;

(ϵtn−1, ϵ
t
n, ϵ

t
1 − ϵt2 + ϵtn, . . . , ϵ

t
1 − ϵtn−1 + ϵtn, ), n is an even integral.

Φ2n−2 = En,

where En is the identity matrix of order n.



476 Yalong YU and Zhengxin CHEN

Proof By simple computation, C̄−1 = (ϵt1 − ϵt2 + ϵtn, ϵ
t
2 + ϵt3, . . . , ϵ

t
i + ϵti+1, . . . , ϵ

t
n), i.e,

C̄−1 =



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

1 0 0 · · · −1 1


.

So (C̄−1)t = (ϵt1,−ϵt1+ ϵt2, . . . ,−ϵti−1+ ϵ
t
i, . . . , ϵ

t
1− ϵtn−1+ ϵ

t
n). Note that ϵsϵ

t
m = 1 for s = m, and

ϵsϵ
t
m = 0 for any s ̸= m. By simple computation,

Φ = −(C̄−1)tC̄ = −



0 0 1 1 · · · 1

0 0 −1 0 · · · 0

0 0 0 −1 · · · 0
...

...
...

...
. . .

...

1 0 0 0 · · · −1

0 1 1 1 · · · 1


= −(ϵtn−1, ϵ

t
n, ϵ

t
1 − ϵt2 + ϵtn, ϵ

t
1 − ϵt3 + ϵtn, . . . , ϵ

t
1 − ϵtn−1 + ϵtn).

Then

Φ2 = (−1)2



1 1 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

−1 0 0 0 · · · 0 1

0 −1 0 0 · · · 0 0

1 1 0 0 · · · 0 0


= (ϵt1 − ϵtn−2 + ϵtn, ϵ

t
1 − ϵtn−1 + ϵtn, ϵ

t
1, ϵ

t
2, . . . , ϵ

t
n−2).

And

Φ3 = (−1)3



0 0 0 0 1 1 · · · 1 1

0 0 0 0 −1 0 · · · 0 0

0 0 0 0 0 −1 · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · −1 0

1 0 0 0 0 0 · · · 0 −1

0 1 0 0 0 0 · · · 0 0

0 0 1 0 0 0 · · · 0 0

0 0 0 1 1 1 · · · 1 1


= −(ϵtn−3, ϵ

t
n−3+1, . . . , ϵ

t
n, ϵ

t
1 − ϵt2 + ϵtn, . . . , ϵ

t
1 − ϵtn−3 + ϵtn).
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The others Φi, 4 ≤ i ≤ 2n− 2, are similarly computed. 2

The orbit category R(Λ)= Db(Λ)/T 2 is called the root category of Λ, and the Galois covering

functor F : Db(Λ) → R(Λ) is dense. Furthermore, since Db(Λ) ≃ Db(H) for some hereditary

abelian category H, using a proof similar to [6, Theorem 3.3], we can prove that R(Λ) is a

triangulated category. For convenience, we denote R(Λ) by R in the following. We consider the

Grothendick group K0(R) as usual. Then K0(R) = K0(D
b(Λ)), and this identification is made

so that for any X ∈ Db(Λ), dimX in K0(Db(Λ)) coincides with dim FX in K0(R).

Lemma 3.2 Let Λ be the Nakayama algebra over a field k and R the root category of Λ. Then

for any indecomposable object X in R, we have dimkHomR(X,X)-dimkHomR(X,TX) = 1.

Proof Consider the covering functors F : Db(Λ) → R and take an indecomposable object Ẋ

in Db(Λ) such that FẊ = X. Since Λ is a piecewise hereditary algebra of type Dn, from the

structure of Db(Λ), HomDb(Λ)(Ẋ, T
iẊ) = 0 for i ̸= 0, and dimkHomDb(Λ)(Ẋ, Ẋ) = 1. Note

that F induces two isomorphisms HomDb(Λ)(Ẋ, Ẋ) ≃ HomR(X,X) and HomDb(Λ)(Ẋ, T Ẋ) ≃
HomR(X,TX). Thus dimkHomR(X,X)-dimkHomR(X,TX) = 1. 2

4. The isomorphism theorem

In this subsection, following [4], we recall the definition of the Ringel-Hall Lie algebras of

the root category R of Λ, where Λ is the above Nakayama algebra over a finite field k with

cardinality |k| = q. The definition is also seen in [6, Section 5].

Given X,Y, L ∈ R, consider

W (X,Y ;L) = {(f, g, h) ∈ Hom(X,L)×Hom(L, Y )×Hom(Y, TX)|

X
f→ L

g→ Y
h→ TX is a triangle}.

Applying the action of Aut(X)×Aut(Y ) on W (X,Y ;L) defined by

(a, c) ◦ (f, g, h) = (af, gc−1, ch(Ta)−1)

for (a, c) ∈ Aut(X)×Aut (Y ), (f, g, h) ∈ W (X,Y ;L), we get the Ringel-Hall number FL
YX =

|W (X,Y ;L)/Aut(X)×Aut(Y )|.
For anyM ∈ R, we denote by hM := dimM the canonical image of [M ] inK0(R). Denote by

indR the set of representatives of isoclasses of the indecomposable objects inR. And denote by h′

the subgroup ofK0(R)⊗ZC generated by hM

d(M) ,M ∈ indR, where d(M) =dimk(EndM/Rad(End

M)).

We define a symmetric Euler bilinear function IR(−,−) on h′ × h′ determined by

IR(hX , hY ) =dimkHomR(X,Y )− dimkHomR(X,TY )+

dimkHomR(Y,X)− dimkHomR(Y, TX),

for any X,Y ∈ R.

Let n be the free abelian group with a basis {uX |X ∈ ind R}. Let

g(R) = h′ ⊕ n,
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be a direct sum of Z-modules. We shall consider the quotient group

g(R)(q−1) = g(R)/(q − 1)g(R).

We still use uM , hM to denote the corresponding residue classes for M ∈ R.

Then by [4], g(R)(q−1) is a Lie algebra over Z/(q − 1)Z with the Lie operation [−,−] as

follows.

(1) For any two indecomposable objects X,Y ∈ R,

[uX , uY ] =

{ ∑
L∈ind R(FL

XY − FL
YX)uL, if Y ̸∼= TX,

− hX

d(X) , if Y ∼= TX.

(2) For any objects X,Y ∈ R with Y indecomposable,

[hX , uY ] = IR(hX , hY )uY , and [uY , hX ] = −[hX , uY ].

(3) [h′,h′] = 0.

Obviously, g(R)(q−1) has the canonical decomposition

g(R)(q−1) = h′
⊕ ⊕

α=dimX, X∈ind R

(g(R)(q−1))α,

where (g(R)(q−1))α is the Z/(q−1)Z-submodule spanned by all uX with X ∈ ind R and dimX =

α.

As in [4, Section 5.2], we define the direct product
∏

E∈Ωg(RE)(|E|−1) of Lie algebras and

let LC(R)1 be the Lie subalgebra of
∏

E∈Ω g(RE)(|E|−1) generated by uSi = (uSE
i
)E∈Ω and

uTSi = (uTSE
i
)E∈Ω, 1 ≤ i ≤ n. Write

g = LC(R)1 ⊗Z C,

then g is a Lie algebra over C, called the Ringel-Hall Lie algebra of the root category R. In fact,

we have the following proposition.

Proposition 4.1 Let g be the Ringel-Hall Lie algebra of the root categoryR, and
∏

E∈Ω g(RE)(|E|−1)

be the direct product of Lie algebras. Then

g =
∏
E∈Ω

g(RE)(|E|−1) ⊗ C.

Proof We should prove that for any indecomposable object X ∈ ind R, uX ∈ g. By the

Auslander-Reiten quiver of R, HomR(X,TX) = 0. So X is an exceptional object. By a proof

similar to that in [6, Proposition 8.2], X can be extended to a complete exceptional sequence X =

(X1, X2, . . . , Xn), whereX1 = X. Let L(X , TX ) be the Lie subalgebra of
∏

E∈Ω g(RE)(|E|−1)⊗C
generated by uXi , uTXi , 1 ≤ i ≤ n. Similar to that in [6, Proposition 8.3], L(X , TX ) = g. Since

uX ∈ L(X , TX ), we have uX ∈ g. 2

Naturally g has the following grading

g =
⊕

α∈K0(R)

gα

such that deg (uSi) = dimSi = ϵi and deg (uTSi) = dimTSi = −ϵi, where g0 is just h′.
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Let Q = Zn. Define a functor IQ(−,−) : Q×Q→ Z such that

IQ(α, β) = q(α+ β)− q(α)− q(β), α, β ∈ Q.

Obviously, IQ(−,−) is a symmetric bilinear form on Q, and the matrix C in Lemma 2.1 is the

Gram matrix of IQ(−,−). The relationship between IQ(−,−) and IR(−,−) is as follows.

Lemma 4.2 (1) IR(hSi , hSi) = 2 for any i = 1, 2, . . . , n, and IR(hSi , hSj ) = −1 for |j − i| = 1,

and IR(hSi , hSj ) = 0 for 1 < |j − i| < n− 1, and IR(hSi , hSj ) = 1 for |j − i| = n− 1.

(2) There exists a group isomorphism ξ : G(R) → Q defined by hSi 7→ ϵi, 1 ≤ i ≤ n. And

under ξ we have IR(−,−) = IQ(−,−).

(3) For any indecomposable object X ∈ R, q(dimX) = 1.

Proof (1) By the definition of root categories,

HomR(Si, Sj) =
∞⊕

m=1

HomDb(Λ)(Si, T
2mSj) =

∞⊕
m=1

Ext2mΛ (Si, Sj),

HomR(Si, TSj) =

∞⊕
m=1

HomDb(Λ)(Si, T
2m+1Sj) =

∞⊕
m=1

Ext2m+1
Λ (Si, Sj).

It is easy to see that proj.dimSi = 2 for i = 1, and proj.dimSi = 1 for 1 < i < n, proj.dimSn = 0.

Similarly, inj.dimSj = 2 for j = n, inj.dimSj = 1 for 1 < j < n, inj.dimSj = 0 for j = 1. Then

Ext3(Si, Sj) = Ext4(Si, Sj) = · · · = Extn(Si, Sj) = 0 for 1 ≤ i, j ≤ n. If i ̸= 1, then proj.dimSi ≤
1,Ext2(Si, Sj) = 0. If j ̸= n, then inj.dimSj ≤ 1,Ext2(Si, Sj) = 0. So Ext2(Si, Sj) = 0 for

i ̸= 1 or j ̸= n. There is a long exact sequence 0 → Sn → P2 → P1 → S1 → 0, and so

Ext2(S1, Sn) = Hom(Sn, Sn) = 1. Since Ext1(Si, Sj) ∼= Hom(Pi+1, Sj) for 1 ≤ i < n, 1 ≤ j ≤
n, and Ext1(Sn, Sj) = 0, we have

Ext1(Si, Sj) =

{
1, j − i = 1;

0, j − i ̸= 1.

Therefore, dimkHomR(Sj , Si) = dimkHomR(Sj , TSi) = 0 for any 1 ≤ i < j ≤ n, dimkHom

R(Si, TSj) = 1, dimkHomR(Si, Sj) = 0 for j−i = 1, and dimkHomR(S1, Sn) = 1, dimkHomR(S1,

TSn) = 0. Then IR(hS1 , hSn) = dimkHomR(S1, Sn) = 1 = C1n, and

IR(hSi , hSj ) =

{
−dimkHomR(Si, Sj) = −1, for j − i = 1;

−dimkHomR(Sj , Si) = −1, for i− j = 1.

Then IR(hSi , hSj ) = −1 for |j − i| = 1. And IR(hSi , hSj ) = 0 for 1 < |j − i| < n − 1. Then we

have IR(hSi
, hSj

) = Cij for i ̸= j. For any i = 1, 2, . . . , n, IR(hSi
, hSi

) = 2 = Cii by Lemma 3.2.

(2) It is clear that ξ is an additive group isomorphism. By (1), the Gram matrix for the

symmetric Euler bilinear function IR(−,−) is C. So IR(−,−) = IQ(−,−).

(3) q(dimX) = 1
2IQ(dimX) = 1

2IR(dimX) = dimkHomR(X,X)− dimkHomR(X,TX). By

Lemma 3.2, q(dimX) = 1. 2

Theorem 4.3 Let g be the Ringel-Hall Lie algebra of the Nakayama algebra Λ in Section 3,



480 Yalong YU and Zhengxin CHEN

g∞(q) be the complex simple Lie algebra attached to the unit form q : Zn → Z,

q(x) =

n∑
i=1

x2i −
( n−1∑

i=1

xixi+1

)
+ x1xn.

Then there is a Lie algebra isomorphism φ : g∞(q) → g defined by

hi 7→ hSi , 1 ≤ i ≤ n,

ei 7→ uSi , 1 ≤ i ≤ n,

e−i 7→ −uTSi , 1 ≤ i ≤ n.

Proof We check the following equalities.

(1) [hSi , hSj ] = 0 for all 1 ≤ i, j ≤ n.

(2) For 1 ≤ i ≤ n, [hSi , uSi ] = IR(hSi , hSi)uSi = 2uSi = CiiuSi by Lemma 4.2. For i ̸= j, |j−
i| = 1, [hSi , uSj ] = IR(hSi , hSj )uSj = (−1)uSj = CijuSj , [hSi ,−uTSj ] = −IR(hSi , hTSj )uTSj =

IR(hSi , hSj )uTSj = uTSj = −Cij(−uTSj ). For 1 < |j− i| < n−1, [hSi , uSj ] = IR(hSi , hSj )uSj =

0 = 0uSj , [hSi ,−uTSj ] = −IR(hSi , hTSj )uTSj = 0. And [hS1 , uSn ] = IR(hS1 , hSn)uSn = uSn =

C1nuSn .

(3) For 1 ≤ i ≤ n, [uSi ,−uTSi ] =
hSi

d(Si)
. Since d(Si) =dimkHomR(S(i), S(i)) = 1, we have

[uSi ,−uTSi ] = hSi . And [−uTSi , uSi ] = −[uSi ,−uTSi ] = −hSi .

(4) If q(
∑t

j=1 δjϵij ) > 1 for δj = ±1, 1 ≤ j ≤ t, then by Lemma 4.2(4), there is no

indecomposable object X in R with the vector dimension
∑t

j=1 δjϵij . Set uϵi = uSi
, and u−ϵi =

−uTSi , 1 ≤ i ≤ n. Then [uδ1ϵi1 , uδ1ϵi2 , . . . , uδ1ϵit ] = 0.

By the above (1)–(4), there exists a natural epimorphism φ from g∞(q) to g determined by

φ(hi) = hSi , φ(ei) = uSi , φ(e−i) = −uTSi , 1 ≤ i ≤ n. Since g∞(q) is a simple Lie algebra, we

have ker φ = 0, and so φ must be an isomorphism. 2

5. Applications of the isomorphism theorem

In this section, as an application of the isomorphism theorem, we prove that there is a

bijection between the set of the indecomposable objects of the root category of the Nakayama

algebra and the set of the roots of the positive definite unit form. moreover, we determine the

Dynkin type, a root space decomposition and a Chevalley basis of the above simple Lie algebra.

Theorem 5.1 (1) Let Λ be the Nakayama algebra defined in Section 3 over a field k and R the

root category of Λ. Set q(x1, x2, . . . , xn) =
∑n

i=1 x
2
i − (

∑n−1
i=1 xixi+1) + x1xn,

∆ = {(x1, x2, . . . , xn) ∈ Zn|q(x1, x2, . . . , xn) = 1}.

There is a bijection ψ : ind R → ∆ defined by ψ(M) = dim M . In other words, there is a

one-to-one correspondence between the indecomposable objects of the root category R and the

roots of the unit form q.

(2) The indecomposable object X with the dimensional vector −ϵ1,−ϵ2, . . . ,−ϵn−1,
∑n

i=2 ϵi

is mouth object in the Auslander-Reiten quiver of R.
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(3) g∞(q) is a simple Lie algebra of type Dn, and g∞(q) has a root space decomposition

g∞(q) = H ⊕
⊕
α∈∆

(g∞(q))α,

where H = ⊕n
i=1Chi, dimC(g∞(q))α = 1 for any α ∈ ∆.

Proof (1) Let X ∈ ind R. By Lemma 4.2(3), dim X ̸= 0, and dim X ∈ ∆. Thus the map

ψ is well-defined. Let α ∈ Zn = G(R) with q(α) = 1. If X is an indecomposable object

with dimX = α in R, then by Proposition 4.1, uX ∈ g. In fact, uX ∈ gα. By Theorem 4.3,

φ−1(uX) ∈ g∞(q))α. In the simple Lie algebra g∞(q), dimC(g∞(q))α ≤ 1 for any 0 ̸= α ∈ Zn.

Then the indecomposable object X in R such that dim X = α is unique. Thus ψ is injective.

Note that the cardinality |ind R| is 2n2 − 2n, which is equal to the cardinality |∆| by Lemma

2.1(3). Then ψ is bijective.

(2) At first we show that the indecomposable object X with the dimensional vector −ϵ1 is a

mouth object in the Auslander-Reiten quiver of Db(Λ), others can be similarly proven. Let Λ̂ be

the repetitive algebra of Λ. Then Λ̂ is a self-injective algebra. Since the global dimension of Λ

is finite, then its stable module category modΛ̂ as a triangulated category is triangle-equivalent

to Db(Λ). So from now on we think modΛ̂ = Db(Λ). The vertices of ordinary quiver Q̂ of Λ̂ can

be denoted by ij , 1 ≤ i ≤ n, j ∈ Z, such that for each j the full subquiver of Q̂ consisting of

{1j , 2j , . . . , nj} coincides with the ordinary quiver of Λ with the same numbering vertices as in

Section 3. Note that the subalgebra determined by the full subquiver consisting of {10, 20, . . . , n0}
is Λ. Q̂ is described as follows:

· · ·

· · ·

· · ·

· · ·

· · ·

n−2

(n− 1)−2

· · ·

2−2

1−2

n−1

(n− 1)−1

· · ·

2−1

1−1

n0

(n− 1)0

· · ·

20

10

· · ·

· · ·

· · ·

· · ·

· · ·
�
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�

�
��	

�
�

�
�

�
�

�
�
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�
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�
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α−2
1

α−2
2

α−2
n−2

α−2
n−1

α−1
1

α−1
2

α−1
n−2

α−1
n−1

α0
1

α0
2

α0
n−2

α0
n−1

β−1
n−1

β−1
n

β0
n−1

β0
n

where the diagram is commutative, and any composition of n−1 arrows with a same direction

is zero, i.e., αi
1α

i
2 · · ·αi

n−1 = 0, for i ∈ Z.
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Note that the indecomposable module

S10

...

S(n−1)0

S1−1

, which denotes the indecomposable object

with the simple composition factors S10 , S20 , . . . , S(n−1)0 , S1−1 , is the projective cover of S10 , and

also the injective envelope of S1−1 . In the Auslander-Reiten quiver of Λ̂, the inclusion

S20

...

S(n−1)0

S1−1

↪→

S10

...

S(n−1)0

S1−1

is right almost split and is an irreducible morphism. Similarly, the canonical epimorphism

S10

...

S(n−1)0

S1−1

�
S10

...

S(n−1)0

is left almost split and is an irreducible morphism in the Auslander-Reiten quiver of Λ̂. It is easy

to see that there is a full subquiver

S10

...

S(n−1)0

S10

...

S(n−1)0

S1−1

S20

...

S(n−1)0

S20

...

S(n−1)0

S1−1

��� @
@R

@
@R �

���

in the Auslander-Reiten quiver of Λ̂, where τ


S10

...

S(n−1)0

 =

S20

...

S(n−1)0

S1−1

. Therefore, the image of

S20

...

S(n−1)0

S1−1

in modΛ̂ is a mouth object of the Auslander-Reiten quiver of Db(Λ) = mod Λ̂. There
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is an exact sequence,

0 →

S20

...

S(n−1)0

S1−1

→

S10

...

S(n−1)0

S1−1

→ S10 → 0,

in the mod Λ̂, then the image of

S20

...

S(n−1)0

S1−1

in modΛ̂ is of the dimensional vector −ϵ1. Similarly,

we can prove that the object with the dimensional vector −ϵ2 is a mouth object. Similarly, there

is a full subquiver

S20

...

S(n−1)0

SnoS1−1

S20

...

S(n−1)0

SnoS1−1

S2−1

S30

...

S(n−1)0

SnoS1−1

S30

...

S(n−1)0

Sn0S1−1

S2−1

��� @
@R

@
@R �

���

in the Auslander-Reiten quiver of Λ̂, where τ(

S20

...

S(n−1)0

SnoS1−1

) =

S30

...

S(n−1)0

Sn0S1−1

S2−1

. Therefore, the image of

S30

...

S(n−1)0

Sn0S1−1

S2−1

in modΛ̂ is a mouth object of the Auslander-Reiten quiver of Db(Λ) = mod Λ̂. And

there is an exact sequence

0 →

S30

...

S(n−1)0

Sn0S1−1

S2−1

→

S20

...

S(n−1)0

Sn0S1−1

S2−1

→ S20 → 0
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in the mod Λ̂, then the image of

S30

...

S(n−1)0

Sn0S1−1

S2−1

in modΛ̂ is of the dimensional vector −ϵ2. Let M

be the image of

S30

...

S(n−1)0

Sn0S1−1

S2−1

. Then τ iM, 0 ≤ i ≤ n − 3, are mouth objects in mod Λ̂. Because

dimτ iM = −ϵ2+i, 0 ≤ i ≤ n − 3, the indecomposable objects X with the dimensional vector

−ϵ1, . . . ,−ϵn−1,
∑n

i=2 ϵi are mouth objects in the Auslander-Retein quiver of R .

(3) Let M1 be the unique indecomposable object X with the dimensional vector −ϵn−1 in

R, dimMi+1 = dimτ−iM1, 1 ≤ i ≤ n− 3, Mn−1 with the dimensional vector −ϵ1, and Mn with

the dimensional vector ϵ2 + ϵ3 + · · · + ϵn. From (2), we know that Mi, 1 ≤ i ≤ n, are mouth

objects of in modΛ̂. We describe them in the Auslander-Reiten quiver of R as follows.
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Figure 2 AR-quiver of R

There is a slice Ln−2 Mn−1.

Mn

L3
· · ·L2L1 Ln−3

- - - -
6

- -

So Λ(n, n − 1) is a tilted algebra of type Dn, and so a piecewise hereditary algebra of type Dn.

As in Section 2, the simple Lie algebra g∞(q) has a root space decomposition

g∞(q) = H ⊕
⊕
α∈∆′

(g∞(q))α,
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where H = ⊕n
i=1Chi is the Cartan subalgebra of g∞(q), ∆′ is the root system of g∞(q).

From the Auslander-Reiten quiver we know dimM1 = −ϵn−1, dimL1 = dimτ−(n−2)M1 =

(−ϵn−1)Φ
−(n−2) = −ϵ1 + ϵn. By computation, dimL1 = dimM1 + dimM2 + · · · + dimMn−1 +

dimMn. Since there is a distinguished triangle L1 → M → Sn−1 → TL1 in R, we have

dimM = −ϵ1 + ϵn−1 + ϵn. Then dimM = dimM2 + dimM3 + · · · + dimMn−1 + dimMn. So

if X = −
∑i

k=1 ϵk +
∑n

k=j+1 ϵk, dimX can be written as dimX =
∑n

i=1 kαdimMi with integral

coefficients kα all nonnegative. Similarly, dimTL1 = ϵ1−ϵn, and dimTL1 = dimTM1+dimTM2+

· · ·+ dimTMn−1 + dimTMn = −
∑n

i=1 dimMi. By computations, if Z =
∑i

k=1 ϵk −
∑n

k=j+1 ϵk,

dimZ can be written as dimZ =
∑n

i=1 k
′

αdimMi with integral coefficients k
′

α all nonpositive. By

computations, each root X can be written as dimX =
∑n

i=1 kαdimMi with integral coefficients

kα all nonnegative or all nonpositive. So {Mi|1 ≤ i ≤ n} is a minimal generating subcategory of

R. By (1) we know {ψ(Mi)|1 ≤ i ≤ n} is a base of the root system ∆′, and ψ(Mi), 1 ≤ i ≤ n,

are seemed as simple roots of ∆′. Set πi = ψ(Mi), 1 ≤ i ≤ n. In the Dynkin diagram Γ of ∆′, for

i ̸= j, πi is joined to πj , if and only if there is a distinguished triangle Mi → N → Mj → TMi

or Mj → N ′ → Mi → TMj for N,N ′ ∈ R, if and only if |i − j| = 1, 1 ≤ i < j ≤ n − 1,

or

{
i = n, j = n− 2;

i = n− 2, j = n.
Thus the root system ∆′ is of Dynkin type Dn. Therefore the

simple Lie algebra g∞(q) is of Dynkin type Dn, and g∞(q) is a simple Lie algebra of type Dn,

dimCg∞(q) = 2n2 − n. So |∆′| = 2n2 − 2n = |∆|. Since the root system ∆′ ⊆ ∆, we have

∆′ = ∆. Thus (3) holds. 2

Corollary 5.2 There is a one-to-one correspondence between the objects of indΛ and the pos-

itive roots of ∆.

Proof Let ∆+ be the set of the positive roots of ∆. By Lemma 2.1(3) ∆+ = {ϵi|1 ≤ i ≤
n} ∪ {

∑j
k=i ϵk|1 < i < j ≤ n} ∪ {

∑i
k=1 ϵk|1 < i < n}, |∆+| = n2+n−2

2 . From Theorem 5.1,

there is an injective map ψ : ind Λ → ∆+ defined by ψ(M) = dim M . So ψ(indΛ) ⊆ ∆+. Since

|ψ(indΛ)| = |indΛ| = n2+n−2
2 = |∆+|, we have ψ(indΛ) = ∆+. Therefore, ψ : indΛ → ∆+ is

bijective. 2

Lemma 5.3 (i) Assume that X is an indecomposable object of R with dimension vector

α = δ(−
∑i

k=1 ϵk +
∑n

k=j+1 ϵk), where 1 ≤ i < j ≤ n. Then in the Ringel-Hall Lie algebra g,

uX =

{
(−1)i[uTSi , uTSi−1 , . . . , uTS2 , uSj+1 , . . . , uSn−1 , uSn , uTS1 ], if δ = 1;

(−1)i[uSi , uSi−1 , . . . , uS2 , uTSj+1 , . . . , uTSn−1 , uTSn , uS1 ], if δ = −1.

(ii) Assume thatX ′ is an indecomposable object ofR with dimension vector α = δ(
∑i

k=1 ϵk),

where 1 ≤ i < n. Then in the Ringel-Hall Lie algebra g, if δ = 1, uX′ = [uS1 , uS2 , uS3 , . . . , uSi−1 ,

uSi ]; if δ = −1, uX′ = [uTS1 , uTS2 , uTS3 , . . . , uTSi−1 , uTSi ].

(iii) Assume thatX ′′ is an indecomposable object ofR with dimension vector α = δ(
∑j

k=i ϵk),

where 1 < i < j ≤ n. Then in the Ringel-Hall Lie algebra g, uX′′ = [uTSi , uTSi+1 , . . . , uTSj−1 , uTSj ]

for δ = −1; uX′′ = [uSi , uSi+1 , . . . , uSj−1 , uSj ] for δ = 1.
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Proof (i) Let Ln−1 =Mn−1, Ln =Mn. As shown in Figure 2, there is a slice

Ln−2 Ln−1

Ln

L3
· · ·L2L1 Ln−3

- - - -
6

- -
.

in the Auslander-Reiten quiver of R. By the structure of Auslander-Reiten quiver of R, we know

that dimL1 = −ϵ1 + ϵn, and there is a distinguished triangle Sn → L1 → TS1 → TSn in R.

By the structure of Auslander-Reiten quiver of R, uL1 = −[uSn , uTS1 ]. We can get an exact

sequence 0 → L1 → L2 → Sn−1 → 0, then uL2 = [uSn−1 , uL1 ] = −[uSn−1 , uSn , uTS1 ]. Similarly,

since 0 → Li → Li+1 → Sn−i → 0 is exact, we have

uLi = −[uSn−i+1 , uSn−i+2 , . . . , uSn , uTS1 ] (∗∗)

for 1 ≤ i ≤ n − 2. For any indecomposable object N with dimension vector δ(−
∑i

k=1 ϵk +∑n
k=j+1 ϵk) or δ(−

∑i
k=1 ϵk) or δ(−

∑j
k=i ϵk), δ ∈ {1,−1}, there is some m ∈ {1, 2, . . . , n} such

that HomR(N,Lm) ̸= 0 or HomR(TN,Lm) ̸= 0 or Hom(Lm, N) ̸= 0 or Hom(Lm, TN) ̸= 0, we

only prove (i) for the case HomR(N,Lm) ̸= 0. Let δ = 1, i.e., dimN = −
∑i

k=1 ϵk +
∑n

k=j+1 ϵk,

1 ≤ i < j ≤ n. Choose 0 ̸= f ∈HomR(N,Lm). We can construct a distinguished triangle N ′ →
N → Lm → TN ′ inR. Since Homk(Lm, TN) = 0 by the structure ofR, we have by [11, Corollary

1.4], N ′ is indecomposable, and so dimN ′ ∈ ∆. On the other hand, dimN ′ = dimN − dimLm.

Since Hom(N,Lm) ̸= 0, then dimLm = −ϵ1+
∑n

k=j+1 ϵk for 2 < j < n. In fact, Lm = Ln−j , then

dimN ′ = −
∑i

k=2 ϵk for 2 ≤ i < n− 1. Otherwise, dimN ′ ̸∈ ∆, a contradiction. If dimN ′ = −ϵ2,
then dimLm = −ϵ1 +

∑n
k=j+1 ϵk, 2 ≤ j < n. We can get an exact sequence 0 → N ′ → N →

Lm → 0. By the structure of Auslander-Reiten quiver of R, then uN = [uLm , uN ′ ]. By Theorem

5.1, N ′ ≃ TS2, uN = [uLm , uTS2 ]. By (∗∗), uN = (−1)2[uTS2 , uSj+1 , . . . , uSn , uTS1 ]. If dimN
′ =

−ϵ2 − ϵ3, there is an exact sequence 0 → TS3 → N ′ → TS2 → 0, then uN ′ = [uTS2 , uTS3 ].

Therefore,
uN =[uLm , uN ′ ] = [uLm , [uTS2 , uTS3 ]]

=− [uTS2 , [uTS3 , uLm ]]− [uTS3 , [uLm , uTS2 ]]

=− [uTS3 , [uLm , uTS2 ]] = (−1)2[uTS3 , [uTS2 , uLm ]]

=(−1)3[uTS3 , uTS2 , uSj+1 , . . . , uSn , uTS1 ].

If dimN ′ = −
∑i

k=2 ϵk, then we know uN = (−1)i[uTSi , uTSi−1 , . . . , uTS2 , uSj+1 , . . . , uSn , uTS1 ]

for dimN = −
∑i

k=1 ϵk +
∑n

k=j+1 ϵk. Next, for the case δ = −1, i.e., dimN =
∑i

k=1 ϵk −∑n
k=j+1 ϵk, 1 ≤ i < j ≤ n, we can similarly obtain that uN = (−1)i[uSi , uSi−1 , . . . , uS2 , uTSj+1 , . . . ,

uTSn , uS1 ]. So (i) holds.

(ii) By the structure of Auslander-Reiten quiver of R, we know that if dimG = ϵi, dimH =

ϵi−1, dimQ = ϵi + ϵi−1, and there is an exact sequence 0 → G → Q → H → 0 in R,

then uQ = [uH , uG] = [uSi−1 , uSi ]. And if dimI = ϵi−2,dimF = ϵi + ϵi−1 + ϵi−2, we can

get an exact sequence 0 → Q → F → I → 0, then uF = [uI , uQ] = [uSi−2 , uSi−1 , uSi ].

By computation, uX′ = [uS1 , uS2 , uS3 , . . . , uSi−1 , uSi ] for dimX ′ =
∑i

k=1 ϵk. Similarly, uX′ =

[uTS1 , uTS2 , . . . , uTSi−1 , uTSi ] for dimX
′ = −

∑i
k=1 ϵk.
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(iii) Similarly to the (ii), uX′′ = [uTSi , uTSi+1 , . . . , uTSj−1 , uTSj ] for dimX ′′ = −
∑j

k=i ϵk,

uX′′ = [uSi , uSi+1 , . . . , uSj−1 , uSj ] for dimX
′′ =

∑j
k=i ϵk. 2

Theorem 5.4 The Lie algebra g∞(q) attached to the unit form

q(x1, x2, . . . , xn) =
n∑

i=1

x2i −
( n−1∑

i=1

xixi+1

)
+ x1xn

has a basis

B ={hi, e±i|1 ≤ i ≤ n} ∪ {[e−i, e−(i−1), . . . , e−2, ej+1, . . . , en−1, en, e−1],

[ei, ei−1, . . . , e2, e−(j+1), . . . , e−(n−1), e−n, e1]|1 ≤ i < j ≤ n− 1}∪

{[e−i, e−(i+1), . . . , e−(j−1), e−j ], [ei, ei+1, . . . , ej−1, ej ]|1 < i < j ≤ n}∪

{[e1, e2, . . . , ei−1, ei], [e−1, e−2, . . . , e−(i−1), e−i]|1 < i < n}.

Proof By the construction of g, g has a Chevalley basis B̄ = {hSi |1 ≤ i ≤ n}∪{uM |M ∈ indR}.
By Theorem 4.3, g∞(q) has a Chevalley basis φ−1(B̄) = {hi|1 ≤ i ≤ n}∪{φ−1(uM )|M ∈ ind R}.
If dimM = ±ϵi, 1 ≤ i ≤ n, then φ−1(uM ) = ±e±i. Let dimM ̸= ±ϵi, 1 ≤ i ≤ n. Next we prove

in the following cases that for anyM ∈ indR, φ−1(uM ) is a scalar multiplication of some element

in B.

Case 1 dimM = δ(−
∑i

k=1 ϵk +
∑n

k=j+1 ϵk).

If δ = 1 and i is odd, then by Lemma 5.2, uM = (−1)[uTSi , uTSi−1 , . . . , uTS2 , uSj+1 , . . . , uSn−1 ,

uSn , uTS1 ]. So φ
−1(uM ) = −[−e−i,−e−(i−1), . . . ,−e−2, ej+1, . . . , en−1, en,−e−1] = (−1)i+1[e−i,

e−(i−1), . . . , e−2, ej+1, . . . , en−1, en, e−1]. If δ = 1 and i is even, then φ−1(uM ) = (−1)i[e−i, e−(i−1),

. . . , e−2, ej+1, . . . , en−1, en, e−1].

If δ = −1, then uM = (−1)i[uSi , uSi−1 , . . . , uS2 , uTSj+1 , . . . , uTSn−1 , uTSn , uS1 ] by Lemma 5.2,

and so φ−1(uM ) = (−1)i[ei, ei−1, . . . , e2,−e−(j+1), . . . ,−e−(n−1),−e−n, e1] = (−1)n−j+i[ei, ei−1,

. . . , e2, e−(j+1), . . . , e−(n−1), e−n, e1]. So if n− j is even, then φ−1(uM ) = (−1)i[ei, ei−1, . . . , e2,

e−(j+1), . . . , e−(n−1), e−n, e1], and if n−j is odd, then φ−1(uM ) = (−1)i+1[ei, ei−1, . . . , e2, e−(j+1),

. . . , e−(n−1), e−n, e1].

Case 2 dimW = δ(
∑i

k=1 ϵk).

If δ = 1, then uW = [uS1 , uS2 , . . . , uSi−1 , uSi ], so φ
−1(uW ) = [e1, e2, . . . , ei−1, ei]. If δ = −1,

then uW = [uTS1 , uTS2 , . . . , uTSi−1 , uTSi ], so φ−1(uM ) = [−e−1,−e−2, . . . ,−e−(i−1),−e−i] =

(−1)i[e−1, e−2, . . . , e−(i−1), e−i]. If i is even, then φ−1(uM ) = [e−1, e−2, . . . , e−(i−1), e−i]. If i is

odd, then φ−1(uM ) = −[e−1, e−2, . . . , e−(i−1), e−i].

Case 3 dimX = δ(
∑j

k=i ϵk).

If δ = 1, then uX = [uSi , uSi+1 , . . . , uSj−1 , uSj ], and φ
−1(uX) = [ei, ei+1, . . . , ej−1, ej ]. If δ =

−1, then uX = [uTSi , uTSi+1 , . . . , uTSj−1 , uTSj ], so φ
−1(uX) = [−e−i,−e−(i+1), . . . ,−e−(j−1),

−e−j ] = (−1)j−i+1[e−i, e−(i+1), . . . , e−(j−1), e−j ]. If j−i+1 is odd, then φ−1(uX) = −[e−i, e−(i+1),

. . . , e−(j−1), e−j ]. If j − i+ 1 is even, then φ−1(uX) = [e−i, e−(i+1), . . . , e−(j−1), e−j ].

So B is also a Chevalley basis of g∞(q). 2
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