Journal of Mathematical Research with Applications Sept., 2019, Vol. 39, No. 5, pp. 489–494 DOI:10.3770/j.issn:2095-2651.2019.05.005 Http://jmre.dlut.edu.cn

Annihilator Condition on Power Values of Commutators with Derivations

Shuliang HUANG

School of Mathematics and Finance, Chuzhou University, Anhui 239000, P. R. China

Abstract Let R be a prime ring with center Z(R), I a nonzero ideal of R, d a nonzero derivation of R and $0 \neq a \in R$. In the present paper, our object is to study the situation $a[d(x^k), x^k]^n \in Z(R)$ for all $x \in I$ under certain conditions, where $n \geq 1$, $k \geq 1$ are fixed integers.

Keywords prime ring; derivation; extended centroid

MR(2010) Subject Classification 16W25; 16R50; 16N60

1. Introduction

Let R be a prime ring with center Z(R). For $x, y \in R$, we set $[x, y]_1 = [x, y] = xy - yx$ and $[x, y]_n = [[x, y]_{n-1}, y]$ where $n \ge 2$ is a positive integer. By d we mean a derivation of R. s_4 denotes the standard identity in four variables. In [1], a well-known result proved by Posner states that if $[d(x), x] \in Z(R)$ for all $x \in R$, then either d = 0 or R is commutative. In [2], Lanski generalizes the Posner's result to a Lie ideal. Lanski proved that if L is a noncommutative Lie ideal of R and $d \ne 0$ such that $[d(x), x] \in Z(R)$ for all $x \in L$, then either R is commutative, or char R = 2 and R satisfies s_4 . In [3], Carini and Filippis studied more generalized situation of this result by considering power values. They proved that if $[d(u), u]^n \in Z(R)$ for all u in a noncentral Lie ideal of R, $n \ge 1$ a fixed integer and char $R \ne 2$, then either d = 0 or R satisfies s_4 . In [4], Wang and You removed the restriction on characteristic and they proved that the same conclusion holds when char R = 2.

On the other hand, some results concerning annihilators of power values in prime and semiprime rings have been obtained in literature. In [5], Bresar proved that if R is a semiprime ring, d a nonzero derivation of R and $a \in R$ such that $ad(x)^n = 0$, then ad(R) = 0 when Ris (n-1)!-torsion free. In [6], Lee and Lin proved Bresar's result on Lie ideals of prime rings without the (n-1)!-torsion free assumption on R. In [7], Filippis established a similar version of Bresar's result for multilinear polynomials in prime rings. Furthermore, Filippis studied the left annihilator of power values of commutators with derivations. In [8], he proved if char $R \neq 2$, $0 \neq d$ and $0 \neq a \in R$ such that $a[d(x), x]^n \in Z(R)$ for all $x \in L$, where L is a noncentral Lie

Received April 24, 2018; Accepted August 29, 2018

Supported by the Natural Science Foundation of Anhui Province (Grant Nos. 1808085MA14; 1908085MA03), the Key University Science Research Project of Anhui Province (Grant No. KJ2018A0433) and Research Project of Chuzhou University (Grant No. zrjz2017005). E-mail address: shulianghuang@sina.com

ideal of R and $n \ge 1$ a fixed integer, then R satisfies s_4 . In [9], Wang removed the assumption of char $R \ne 2$. In [10], Du and Wang proved a result on both sided ideal in prime ring. They proved that if char $R \ne 2$, $0 \ne I$ a both sided ideal of R and $0 \ne d$ such that $[d(x^k), x^k]^n \in Z(R)$ for all $x \in I$, where k, n are fixed positive integer, then R satisfies s_4 . For more related results concerning annihilators we refer to [11–13].

The purpose of the present paper is to study the same situation of Du and Wang with left annihilator condition.

First we recall some basic notations. We denote by Q the two sided Martindale quotient ring of a prime ring R and by C the center of Q. We call C the extended centroid of R. This C is a field. It is well known that every derivation d of R can be uniquely extended to a derivation of Q, which will be also denoted by d. The derivation d of R is called a Q-inner induced by some $q \in Q$ if d(x) = [q, x] holds for all $x \in R$. If d is not Q-inner, then d is called Q-outer derivation of R.

By Kharchenko's theorem [14], we have the following result:

Let R be a prime ring, d a derivation on R and I a nonzero ideal of R. If I satisfies the differential identity $f(r_1, r_2, \ldots, r_n, d(r_1), d(r_2), \ldots, d(r_n)) = 0$ for any $r_1, r_2, \ldots, r_n \in I$, then either

(i) I satisfies the generalized polynomial identity $f(r_1, r_2, \ldots, r_n, x_1, x_2, \ldots, x_n) = 0$

or (ii) d is Q-inner.

2. Main results

We begin with lemmas.

Lemma 2.1 Let $R = M_m(F)$ be the ring of all $m \times m$ matrices over a field F of characteristic different from 2 and $m \ge 3$. Let a be an invertible element in R. If for some $b \in R$, $([b, x^k]_2)^n \in F \cdot a^{-1}$ for all $x \in R$, where $k (\ge 1)$, $n (\ge 1)$ are fixed integers, then $b \in F \cdot I_m$.

Proof Let $a = (a_{ij})_{m \times m}$, $b = (b_{ij})_{m \times m}$. By assumption, for every $x \in R$, $([b, x^k]_2)^n$ is zero or invertible. Write $b = \begin{pmatrix} b_{11} & A \\ B & C \end{pmatrix}$, where $A = (b_{12}, \ldots, b_{1m})$, $B = (b_{21}, \ldots, b_{m1})^T$ and $C = (b_{ij})$ where $2 \leq i, j \leq m$. We choose $x = e_{11}$. Then $[b, e_{11}]_2 = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} = (be_{11} - 2b_{11}e_{11} + e_{11}b)$. Since rank of $[b, e_{11}]_2$ is ≤ 2 , $([b, e_{11}]_2)^n$ cannot be invertible, since $m \geq 3$, and so it must be zero. Therefore, $([b, e_{11}]_2)^n = 0$ and so $([b, e_{11}]_2)^{2n} = 0$. By simple manipulation, we have

$$0 = ([b, e_{11}]_2)^{2n} = \begin{pmatrix} (AB)^n & 0\\ 0 & (BA)^n \end{pmatrix}.$$
 (2.1)

Therefore, $(AB)^n = 0$. Since $(AB) \in F$, AB = 0. Let ϕ be an inner automorphism of R defined by $\phi(x) = (1 + e_{21})x(1 - e_{21})$ for all $x \in R$. Then $\phi(b)$ satisfies the same property as b does, that is, either $([\phi(b), x^k]_2)^n$ is zero or invertible for every $x \in R$. Now, we have

$$\phi(b) = \begin{pmatrix} b_{11} - b_{12} & A \\ b_{11}E - b_{12}E + B - CE & EA + C \end{pmatrix},$$
(2.2)

Annihilator condition on power values of commutators with derivations

where $E = ((1, 0, ..., 0)_{1 \times m-1})^T$. As above, we have

$$A(b_{11}E - b_{12}E + B + CE) = 0. (2.3)$$

Recalling AB = 0, above relation implies $b_{11}b_{12} - b_{12}^2 - ACE = 0$. Now we choose $x = e_{11} + e_{21}$.

$$[b, x^k]_2 = [b, e_{11} + e_{21}]_2 = \begin{pmatrix} -b_{12} & A \\ D & EA \end{pmatrix},$$
(2.4)

where $D = B + CE - (b_{11} + 2b_{12})E$. We see in the matrix $[b, e_{11} + e_{21}]_2$ that number of distinct column vectors are 2. Hence, rank of $[b, e_{11} + e_{21}]_2$ is ≤ 2 and so rank of $([b, e_{11} + e_{21}]_2)^n$ is also ≤ 2 . Therefore, $([b, e_{11} + e_{21}]_2)^n$ can not be invertible in R for $m \geq 3$, and hence it must be zero. Therefore, we can write $([b, e_{11} + e_{21}]_2)^{2n} = 0$. Now we calculate

$$([b, x^k]_2)^2 = ([b, e_{11} + e_{21}]_2)^2 = \begin{pmatrix} b_{12}^2 + AD & 0\\ -b_{12}D + EAD & DA + b_{12}EA \end{pmatrix}.$$
 (2.5)

Now the facts AB = 0 and $b_{11}b_{12} - b_{12}^2 - ACE = 0$ together imply $AD = -3b_{12}^2$. Thus, we have

$$([b, x^k]_2)^2 = ([b, e_{11} + e_{21}]_2)^2 = \begin{pmatrix} -2b_{12}^2 & 0\\ -b_{12}D - 3b_{12}^2E & DA + b_{12}EA \end{pmatrix},$$
 (2.6)

and hence

$$0 = ([b, x^k]_2)^{2n} = ([b, e_{11} + e_{21}]_2)^{2n} = \begin{pmatrix} (-2b_{12}^2)^n & 0\\ U & (DA + b_{12}EA)^n \end{pmatrix},$$
(2.7)

where U is an $(m-1) \times 1$ matrix. This gives $(-2b_{12}^2)^n = 0$, implying $b_{12} = 0$. Since for any *F*-automorphism φ , *b* and b^{φ} satisfies the same properties, we can write $(b^{\varphi})_{12} = 0$. Therefore, $0 = ((1 - e_{i2})b(1 + e_{i2}))_{12}$ for any $i \neq 1, 2$. This implies $b_{1i} = 0$ for all $i \neq 1, 2$. Since $b_{12} = 0$, all the entries in 1st row of the matrix *b* are zeros, except b_{11} . Hence, we can write, $0 = ((1 - e_{1j})b(1 + e_{1j}))_{1t}$ for any $j \neq 1$ and $t \neq 1$. This implies $b_{jt} = 0$ for all $j \neq t$. Thus, the matrix *b* is diagonal. Let $b = \sum_{i=1}^{m} b_{ii}e_{ii}$. Then for $s \neq t$, we have $(1 + e_{ts})b(1 - e_{ts}) = \sum_{i=0}^{m} b_{ii}e_{ii} + (b_{ss} - b_{tt})e_{ts}$ is diagonal. Hence, $b_{ss} = b_{tt}$ and so *b* is a scalar matrix, that is, $b \in F \cdot I_m$. \Box

Lemma 2.2 ([15]) Let R be a noncommutative simple algebra, finite-dimensional over its center Z. If $g(x_1, \ldots, x_t) \in R *_Z Z\{x_j\}$, the free product over Z, is an identity for R that is homogeneous in $\{x_1, \ldots, x_t\}$ of degree d, then for some field F and n > 1, $R \subseteq M_n(F)$ and $g(x_1, \ldots, x_t)$ is an identity for $M_n(F)$.

Theorem 2.3 Let R be a prime ring of characteristic different from 2 with center Z(R), I a nonzero ideal of R, d a nonzero derivation of R and $0 \neq a \in R$. Suppose that there exists $x \in I$ such that $a[d(x^k), x^k]^n \neq 0$. If $a[d(x^k), x^k]^n \in Z(R)$ for all $x \in I$, where $n \geq 1$, $k \geq 1$ are fixed integers, then R satisfies s_4 , the standard identity in four variables.

Proof Suppose that R does not satisfy s_4 . By our assumption, we have

$$a[d(x^k), x^k]^n \in Z(R),$$

$$(2.8)$$

for all $x \in I$. Since there exists $r \in I$ such that $a[d(r^k), r^k]^n \neq 0$, $a[d(x^k), x^k]^n$ is a central differential identity for I. It follows from [16, Theorem 1] that R is a prime PI-ring and so RC(=Q) is a finite-dimensional central simple C-algebra by Posner's theorem for prime PI-ring. Now we divide the proof in the following two cases:

Case 1 Let d be inner derivation of R induced by $p \in Q$. Then

$$[a([p, x^k]_2)^n, x_3] = 0, (2.9)$$

for all $x \in I$ and so for all $x \in Q$, sine I and Q satisfy same GPI [17]. Since $a[d(r^k), r^k]^n \neq 0$ for some $r \in I$, (2.9) is a nontrivial GPI for Q. Also, since Q is a finite-dimensional central simple C-algebra, Lemma 2.2 is applicable. By Lemma 2.2, there exists a suitable field F such that $Q \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies (2.9). Since by assumption, R does not satisfy s_4 , $k \geq 3$. Therefore, we have

$$a([p, x^k]_2)^n \in Z(M_k(F))$$

for all $x \in M_k(F)$. Since $I \subseteq Q \subseteq M_k(F)$, there exists $r \in M_k(F)$, such that $a([p, r^k]_2)^n \neq 0$. Then *a* is invertible and so $([p, x^k]_2)^n \in F \cdot a^{-1}$ for all $x \in M_k(F)$. By Lemma 2.1, $p \in Z(R)$ implying d = 0, a contradiction.

Case 2 Let d be outer derivation of R. We rewrite the relation (2.8) as

$$a[\sum_{i=0}^{k-1} x^i d(x) x^{k-i-1}, x^k]^n \in Z(R).$$
(2.10)

By Kharchenko's theorem [14], we have that I satisfies

$$a[\sum_{i=0}^{k-1} x^{i}yx^{k-i-1}, x^{k}]^{n} \in Z(R).$$
(2.11)

Since we assumed that R does not satisfy s_4 , R cannot be commutative. Therefore, we may choose $b \in R$ such that $b \notin Z(R)$. Replacing y with [b, x] in (2.11), we obtain that for all $x \in I$

$$[a([[b, x^k], x^k])^n, x_3] = 0. (2.12)$$

Then by the same argument as given in case-I, $b \in Z(R)$, a contradiction. \Box

The following example demonstrates that in the hypothesis the condition $a[d(r^k), r^k]^n \neq 0$ for some $r \in I$ cannot be omitted.

Example 2.4 Let R_1 be any ring not satisfying s_4 and $R_2 = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in F \right\}$, where F is a field. Set $R = R_1 \bigoplus R_2$, we define a map $d : R \to R$ by d(r, s) = (0, t) with $t = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ for all $r \in R_1$ and $s = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \in R_2$. It is easy to check d is a nonzero derivation of R. Now let $I = \{0\} \times \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \mid a \in F \right\}$ be a nonzero ideal of R. It is straightforward to check that d satisfies the property $a[d(x^k), x^k]^n = 0$ for all $x \in I$, however R does not satisfy s_4 .

Now to prove our next theorem we need the following lemma.

Lemma 2.5 Let n be a fixed positive integer, R be an n!-torsion free ring with center Z(R).

Annihilator condition on power values of commutators with derivations

Suppose $y_1, y_2, \ldots, y_n \in R$ satisfy $\lambda y_1 + \lambda^2 y_2 + \cdots + \lambda^n y_n \in Z(R)$ for $\lambda = 1, 2, \ldots, n$. Then $y_i \in Z(R)$ for all *i*.

Proof The proof of this lemma is analogous to the proof of Lemma 1 in [18]. \Box Now we prove our next theorem.

Theorem 2.6 Let $n (\geq 1)$, $k (\geq 1)$ be fixed integers, R a noncommutative 2n(k-1)!-torsion free prime ring with center Z(R), $0 \neq I$ an ideal of R, $0 \neq a \in R$ and d a derivation of R. If $a[d(x^k), x^k]^n \in Z(R)$ for all $x \in I$, then either d = 0 or R satisfies s_4 .

Proof By [19], since I, R and Q satisfies the same differential identities, we have

$$a[d(x^k), x^k]^n \in C, (2.13)$$

for all $x \in Q$. Since $1 \in Q$, we may replace x with x + 1. By this replacement, we obtain

$$a[d((x+1)^k), (x+1)^k]^n \in C,$$
(2.14)

for all $x \in Q$. We have the facts $(x+1)^k = x^k + {k \choose 1} x^{k-1} + {k \choose 2} x^{k-2} + \dots + 1$ and d(1) = 0. Using these facts, (2.14) implies that

$$a\left[d(x^{k}) + \binom{k}{1}d(x^{k-1}) + \dots + \binom{k}{k-1}d(x), x^{k} + \binom{k}{1}x^{k-1} + \dots + \binom{k}{k-1}x\right]^{n} \in C, \quad (2.15)$$

that is

$$a\bigg\{[d(x^k), x^k] + \binom{k}{1}\bigg([d(x^k), x^{k-1}] + [d(x^{k-1}), x^k]\bigg) + \dots + \binom{k}{k-1}\binom{k}{k-1}[d(x), x]\bigg\}^n \in C,$$
(2.16)

for all $x \in Q$. Now expanding the expression completely and then using (2.13), the above expression can be rewritten as

$$af_{2kn-1}(x) + af_{2kn-2}(x) + \dots + af_{2n}(x) \in C,$$
 (2.17)

where $f_n(x)$ denotes a suitable homogeneous function of degree n in x. Putting $x = \lambda x$, where $\lambda \in C$, in (2.17), we get

$$\lambda^{2n-1} \{ \lambda^{2kn-2n} a f_{2kn-1}(x) + \lambda^{2kn-2n-1} a f_{2kn-2}(x) + \dots + \lambda a f_{2n}(x) \} \in C.$$
(2.18)

Since $\lambda \in C$ is invertible in C, above relation yields that

$$\lambda^{2kn-2n} a f_{2kn-1}(x) + \lambda^{2kn-2n-1} a f_{2kn-2}(x) + \dots + \lambda a f_{2n}(x) \in C.$$
(2.19)

Putting $\lambda = 1, 2, \ldots, 2kn - 2n$ and then using Lemma 2.5, we have $af_{2n}(x) \in C$ for all $x \in Q$, since R is (2kn - 2n)!-torsion free. Now, $af_{2n}(x) \in C$ is $a\{\binom{k}{k-1}\binom{k}{k-1}[d(x), x]\}^n \in C$ for all $x \in Q$ i.e., $ak^{2n}[d(x), x]^n \in C$ for all $x \in Q$. Since R is 2n(k-1)!-torsion free, $a[d(x), x]^n \in C$ for all $x \in Q$. This implies that either d = 0 or R satisfies s_4 (see [8,9]). \Box

We conclude with an example in a prime ring R satisfying the differential identity in above theorem.

Example 2.7 Let $R = M_2(F)$ be a 2×2 matrix ring over a field F. Then for any $0 \neq a \in Z(R)$

and any derivation d of R, we have $a[d(x^k), x^k]^{2n} \in Z(R)$ for all $x \in R$, where k and n are any positive integers.

Acknowledgements The author would like to thank the referees for their valuable comments.

References

- [1] E. C. POSNER. Derivation in prime rings. Proc. Amer. Math. Soc., 1957, 8: 1093–1100.
- [2] C. LANSKI. Differential identities, Lie ideals, and Posner's theorems. Pacific J. Math., 1988, 134(2): 275– 297.
- [3] L. CARINI, V. D. FILIPPIS. Commutators with power central values on a Lie ideal. Pacific J. Math., 2000, 193(2): 269–278.
- [4] Yu WANG, Hong YOU. A note on commutators with power central values on Lie ideals. Acta Math. Sinica, 2006, 22(6): 1715–1720.
- [5] M. BRESAR. A note on derivations. Math. J. Okayama Univ., 1990, 32: 83-88.
- [6] T. K. LEE, J. S. LIN. A result on derivations. Proc. Amer. Math. Soc., 1996, 124(6): 1687–1691.
- [7] V. D. FILIPPIS. Prime rings with annihilators conditions on power values of derivations on multilinear polynomials. Taiwanese J. Math., 2001, 5(4): 725–730.
- [8] V. D. FILIPPIS. Lie ideals and annihilator conditions on power values of commutators with derivation. Indian J. Pure Appl. Math., 2001, 32: 649–656.
- Yu WANG. Annihilator conditions with derivations in prime rings of characteristic 2. Indian J. Pure Appl. Math., 2008, 39(6): 459–465.
- [10] Yiqiu DU, Yu WANG. Derivations in commutators with power central values in rings. Publ. Math. Debrecen, 2010, 77(1-2): 193–199.
- [11] B. DHARA, R. K. SHARMA. Derivations with annihilator conditions in prime rings. Publ. Math. Debrecen, 2007, 71(1-2): 11–20.
- [12] B. DHARA. Power values of derivations with annihilator conditions on Lie ideals in prime rings. Comm. Algebra, 2009, 37: 2159–2167.
- [13] Yu WANG. Annihilators conditions with generalized derivations in prime rings. Linear Algebra Appl., 2011, 434: 625–635.
- [14] V. K. KHARCHENKO. Differential identity of prime rings. Algebra and Logic, 1978, 17: 155–168.
- [15] C. LANSKI. An engel condition with derivation. Proc. Amer. Math. Soc., 1993, 118(3): 731–734.
- [16] M. CHANG, T. K. LEE. Annihilators of power values of derivations in prime rings. Comm. Algebra, 1998, 26: 2091–2113.
- [17] C. L. CHUANG. GPI's having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc., 1988, 103(3): 723–728.
- [18] L. O. CHUNG, J. LUH. Semiprime rings with nilpotent derivations. Canad. Math. Bull., 1981, 24: 415-421.
- [19] T. K. LEE. Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica, 1992, 20(1): 27–38.

494