# Annihilator Condition on Power Values of Commutators with Derivations 

Shuliang HUANG<br>School of Mathematics and Finance, Chuzhou University, Anhui 239000, P. R. China


#### Abstract

Let $R$ be a prime ring with center $Z(R), I$ a nonzero ideal of $R, d$ a nonzero derivation of $R$ and $0 \neq a \in R$. In the present paper, our object is to study the situation $a\left[d\left(x^{k}\right), x^{k}\right]^{n} \in Z(R)$ for all $x \in I$ under certain conditions, where $n(\geq 1), k(\geq 1)$ are fixed integers.


Keywords prime ring; derivation; extended centroid
MR(2010) Subject Classification 16W25; 16R50; 16N60

## 1. Introduction

Let $R$ be a prime ring with center $Z(R)$. For $x, y \in R$, we set $[x, y]_{1}=[x, y]=x y-y x$ and $[x, y]_{n}=\left[[x, y]_{n-1}, y\right]$ where $n \geq 2$ is a positive integer. By $d$ we mean a derivation of $R$. $s_{4}$ denotes the standard identity in four variables. In [1], a well-known result proved by Posner states that if $[d(x), x] \in Z(R)$ for all $x \in R$, then either $d=0$ or $R$ is commutative. In [2], Lanski generalizes the Posner's result to a Lie ideal. Lanski proved that if $L$ is a noncommutative Lie ideal of $R$ and $d \neq 0$ such that $[d(x), x] \in Z(R)$ for all $x \in L$, then either $R$ is commutative, or char $R=2$ and $R$ satisfies $s_{4}$. In [3], Carini and Filippis studied more generalized situation of this result by considering power values. They proved that if $[d(u), u]^{n} \in Z(R)$ for all $u$ in a noncentral Lie ideal of $R, n \geq 1$ a fixed integer and char $R \neq 2$, then either $d=0$ or $R$ satisfies $s_{4}$. In [4], Wang and You removed the restriction on characteristic and they proved that the same conclusion holds when char $R=2$.

On the other hand, some results concerning annihilators of power values in prime and semiprime rings have been obtained in literature. In [5], Bresar proved that if $R$ is a semiprime ring, $d$ a nonzero derivation of $R$ and $a \in R$ such that $a d(x)^{n}=0$, then $a d(R)=0$ when $R$ is ( $n-1$ )!-torsion free. In [6], Lee and Lin proved Bresar's result on Lie ideals of prime rings without the $(n-1)$ !-torsion free assumption on $R$. In [7], Filippis established a similar version of Bresar's result for multilinear polynomials in prime rings. Furthermore, Filippis studied the left annihilator of power values of commutators with derivations. In [8], he proved if char $R \neq 2$, $0 \neq d$ and $0 \neq a \in R$ such that $a[d(x), x]^{n} \in Z(R)$ for all $x \in L$, where $L$ is a noncentral Lie

[^0]ideal of $R$ and $n \geq 1$ a fixed integer, then $R$ satisfies $s_{4}$. In [9], Wang removed the assumption of char $R \neq 2$. In [10], Du and Wang proved a result on both sided ideal in prime ring. They proved that if char $R \neq 2,0 \neq I$ a both sided ideal of $R$ and $0 \neq d$ such that $\left[d\left(x^{k}\right), x^{k}\right]^{n} \in Z(R)$ for all $x \in I$, where $k, n$ are fixed positive integer, then $R$ satisfies $s_{4}$. For more related results concerning annihilators we refer to [11-13].

The purpose of the present paper is to study the same situation of Du and Wang with left annihilator condition.

First we recall some basic notations. We denote by $Q$ the two sided Martindale quotient ring of a prime ring $R$ and by $C$ the center of $Q$. We call $C$ the extended centroid of $R$. This $C$ is a field. It is well known that every derivation $d$ of $R$ can be uniquely extended to a derivation of $Q$, which will be also denoted by $d$. The derivation $d$ of $R$ is called a $Q$-inner induced by some $q \in Q$ if $d(x)=[q, x]$ holds for all $x \in R$. If $d$ is not $Q$-inner, then $d$ is called $Q$-outer derivation of $R$.

By Kharchenko's theorem [14], we have the following result:
Let $R$ be a prime ring, $d$ a derivation on $R$ and $I$ a nonzero ideal of $R$. If $I$ satisfies the differential identity $f\left(r_{1}, r_{2}, \ldots, r_{n}, d\left(r_{1}\right), d\left(r_{2}\right), \ldots, d\left(r_{n}\right)\right)=0$ for any $r_{1}, r_{2}, \ldots, r_{n} \in I$, then either
(i) $I$ satisfies the generalized polynomial identity $f\left(r_{1}, r_{2}, \ldots, r_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)=0$ or (ii) $d$ is $Q$-inner.

## 2. Main results

We begin with lemmas.
Lemma 2.1 Let $R=M_{m}(F)$ be the ring of all $m \times m$ matrices over a field $F$ of characteristic different from 2 and $m \geq 3$. Let $a$ be an invertible element in $R$. If for some $b \in R,\left(\left[b, x^{k}\right]_{2}\right)^{n} \in$ $F \cdot a^{-1}$ for all $x \in R$, where $k(\geq 1), n(\geq 1)$ are fixed integers, then $b \in F \cdot I_{m}$.

Proof Let $a=\left(a_{i j}\right)_{m \times m}, b=\left(b_{i j}\right)_{m \times m}$. By assumption, for every $x \in R,\left(\left[b, x^{k}\right]_{2}\right)^{n}$ is zero or invertible. Write $b=\left(\begin{array}{cc}b_{11} & A \\ B & C\end{array}\right)$, where $A=\left(b_{12}, \ldots, b_{1 m}\right), B=\left(b_{21}, \ldots, b_{m 1}\right)^{T}$ and $C=\left(b_{i j}\right)$ where $2 \leq i, j \leq m$. We choose $x=e_{11}$. Then $\left[b, e_{11}\right]_{2}=\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right)=\left(b e_{11}-2 b_{11} e_{11}+e_{11} b\right)$. Since rank of $\left[b, e_{11}\right]_{2}$ is $\leq 2,\left(\left[b, e_{11}\right]_{2}\right)^{n}$ cannot be invertible, since $m \geq 3$, and so it must be zero. Therefore, $\left(\left[b, e_{11}\right]_{2}\right)^{n}=0$ and so $\left(\left[b, e_{11}\right]_{2}\right)^{2 n}=0$. By simple manipulation, we have

$$
0=\left(\left[b, e_{11}\right]_{2}\right)^{2 n}=\left(\begin{array}{cc}
(A B)^{n} & 0  \tag{2.1}\\
0 & (B A)^{n}
\end{array}\right)
$$

Therefore, $(A B)^{n}=0$. Since $(A B) \in F, A B=0$. Let $\phi$ be an inner automorphism of $R$ defined by $\phi(x)=\left(1+e_{21}\right) x\left(1-e_{21}\right)$ for all $x \in R$. Then $\phi(b)$ satisfies the same property as $b$ does, that is, either $\left(\left[\phi(b), x^{k}\right]_{2}\right)^{n}$ is zero or invertible for every $x \in R$. Now, we have

$$
\phi(b)=\left(\begin{array}{cc}
b_{11}-b_{12} & A  \tag{2.2}\\
b_{11} E-b_{12} E+B-C E & E A+C
\end{array}\right)
$$

where $E=\left((1,0, \ldots, 0)_{1 \times m-1}\right)^{T}$. As above, we have

$$
\begin{equation*}
A\left(b_{11} E-b_{12} E+B+C E\right)=0 \tag{2.3}
\end{equation*}
$$

Recalling $A B=0$, above relation implies $b_{11} b_{12}-b_{12}^{2}-A C E=0$. Now we choose $x=e_{11}+e_{21}$.

$$
\left[b, x^{k}\right]_{2}=\left[b, e_{11}+e_{21}\right]_{2}=\left(\begin{array}{cc}
-b_{12} & A  \tag{2.4}\\
D & E A
\end{array}\right)
$$

where $D=B+C E-\left(b_{11}+2 b_{12}\right) E$. We see in the matrix $\left[b, e_{11}+e_{21}\right]_{2}$ that number of distinct column vectors are 2 . Hence, rank of $\left[b, e_{11}+e_{21}\right]_{2}$ is $\leq 2$ and so rank of $\left(\left[b, e_{11}+e_{21}\right]_{2}\right)^{n}$ is also $\leq 2$. Therefore, $\left(\left[b, e_{11}+e_{21}\right]_{2}\right)^{n}$ can not be invertible in $R$ for $m \geq 3$, and hence it must be zero. Therefore, we can write $\left(\left[b, e_{11}+e_{21}\right]_{2}\right)^{2 n}=0$. Now we calculate

$$
\left(\left[b, x^{k}\right]_{2}\right)^{2}=\left(\left[b, e_{11}+e_{21}\right]_{2}\right)^{2}=\left(\begin{array}{cc}
b_{12}^{2}+A D & 0  \tag{2.5}\\
-b_{12} D+E A D & D A+b_{12} E A
\end{array}\right)
$$

Now the facts $A B=0$ and $b_{11} b_{12}-b_{12}^{2}-A C E=0$ together imply $A D=-3 b_{12}^{2}$. Thus, we have

$$
\left(\left[b, x^{k}\right]_{2}\right)^{2}=\left(\left[b, e_{11}+e_{21}\right]_{2}\right)^{2}=\left(\begin{array}{cc}
-2 b_{12}^{2} & 0  \tag{2.6}\\
-b_{12} D-3 b_{12}^{2} E & D A+b_{12} E A
\end{array}\right)
$$

and hence

$$
0=\left(\left[b, x^{k}\right]_{2}\right)^{2 n}=\left(\left[b, e_{11}+e_{21}\right]_{2}\right)^{2 n}=\left(\begin{array}{cc}
\left(-2 b_{12}^{2}\right)^{n} & 0  \tag{2.7}\\
U & \left(D A+b_{12} E A\right)^{n}
\end{array}\right)
$$

where $U$ is an $(m-1) \times 1$ matrix. This gives $\left(-2 b_{12}^{2}\right)^{n}=0$, implying $b_{12}=0$. Since for any $F$-automorphism $\varphi, b$ and $b^{\varphi}$ satisfies the same properties, we can write $\left(b^{\varphi}\right)_{12}=0$. Therefore, $0=\left(\left(1-e_{i 2}\right) b\left(1+e_{i 2}\right)\right)_{12}$ for any $i \neq 1,2$. This implies $b_{1 i}=0$ for all $i \neq 1,2$. Since $b_{12}=0$, all the entries in 1st row of the matrix $b$ are zeros, except $b_{11}$. Hence, we can write, $0=\left(\left(1-e_{1 j}\right) b\left(1+e_{1 j}\right)\right)_{1 t}$ for any $j \neq 1$ and $t \neq 1$. This implies $b_{j t}=0$ for all $j \neq t$. Thus, the matrix $b$ is diagonal. Let $b=\sum_{i=1}^{m} b_{i i} e_{i i}$. Then for $s \neq t$, we have $\left(1+e_{t s}\right) b\left(1-e_{t s}\right)=$ $\sum_{i=0}^{m} b_{i i} e_{i i}+\left(b_{s s}-b_{t t}\right) e_{t s}$ is diagonal. Hence, $b_{s s}=b_{t t}$ and so $b$ is a scalar matrix, that is, $b \in F \cdot I_{m}$.

Lemma 2.2 ([15]) Let $R$ be a noncommutative simple algebra, finite-dimensional over its center $Z$. If $g\left(x_{1}, \ldots, x_{t}\right) \in R *_{Z} Z\left\{x_{j}\right\}$, the free product over $Z$, is an identity for $R$ that is homogeneous in $\left\{x_{1}, \ldots, x_{t}\right\}$ of degree $d$, then for some field $F$ and $n>1, R \subseteq M_{n}(F)$ and $g\left(x_{1}, \ldots, x_{t}\right)$ is an identity for $M_{n}(F)$.

Theorem 2.3 Let $R$ be a prime ring of characteristic different from 2 with center $Z(R), I$ a nonzero ideal of $R, d$ a nonzero derivation of $R$ and $0 \neq a \in R$. Suppose that there exists $x \in I$ such that $a\left[d\left(x^{k}\right), x^{k}\right]^{n} \neq 0$. If $a\left[d\left(x^{k}\right), x^{k}\right]^{n} \in Z(R)$ for all $x \in I$, where $n(\geq 1), k(\geq 1)$ are fixed integers, then $R$ satisfies $s_{4}$, the standard identity in four variables.

Proof Suppose that $R$ does not satisfy $s_{4}$. By our assumption, we have

$$
\begin{equation*}
a\left[d\left(x^{k}\right), x^{k}\right]^{n} \in Z(R) \tag{2.8}
\end{equation*}
$$

for all $x \in I$. Since there exists $r \in I$ such that $a\left[d\left(r^{k}\right), r^{k}\right]^{n} \neq 0, a\left[d\left(x^{k}\right), x^{k}\right]^{n}$ is a central differential identity for $I$. It follows from [16, Theorem 1] that $R$ is a prime PI-ring and so $R C(=Q)$ is a finite-dimensional central simple $C$-algebra by Posner's theorem for prime PI-ring. Now we divide the proof in the following two cases:

Case 1 Let $d$ be inner derivation of $R$ induced by $p \in Q$. Then

$$
\begin{equation*}
\left[a\left(\left[p, x^{k}\right]_{2}\right)^{n}, x_{3}\right]=0 \tag{2.9}
\end{equation*}
$$

for all $x \in I$ and so for all $x \in Q$, sine $I$ and $Q$ satisfy same GPI [17]. Since $a\left[d\left(r^{k}\right), r^{k}\right]^{n} \neq 0$ for some $r \in I,(2.9)$ is a nontrivial GPI for $Q$. Also, since $Q$ is a finite-dimensional central simple $C$-algebra, Lemma 2.2 is applicable. By Lemma 2.2, there exists a suitable field $F$ such that $Q \subseteq M_{k}(F)$, the ring of all $k \times k$ matrices over $F$, and moreover $M_{k}(F)$ satisfies (2.9). Since by assumption, $R$ does not satisfy $s_{4}, k \geq 3$. Therefore, we have

$$
a\left(\left[p, x^{k}\right]_{2}\right)^{n} \in Z\left(M_{k}(F)\right)
$$

for all $x \in M_{k}(F)$. Since $I \subseteq Q \subseteq M_{k}(F)$, there exists $r \in M_{k}(F)$, such that $a\left(\left[p, r^{k}\right]_{2}\right)^{n} \neq 0$. Then $a$ is invertible and so $\left(\left[p, x^{k}\right]_{2}\right)^{n} \in F \cdot a^{-1}$ for all $x \in M_{k}(F)$. By Lemma 2.1, $p \in Z(R)$ implying $d=0$, a contradiction.

Case 2 Let $d$ be outer derivation of $R$. We rewrite the relation (2.8) as

$$
\begin{equation*}
a\left[\sum_{i=0}^{k-1} x^{i} d(x) x^{k-i-1}, x^{k}\right]^{n} \in Z(R) \tag{2.10}
\end{equation*}
$$

By Kharchenko's theorem [14], we have that $I$ satisfies

$$
\begin{equation*}
a\left[\sum_{i=0}^{k-1} x^{i} y x^{k-i-1}, x^{k}\right]^{n} \in Z(R) \tag{2.11}
\end{equation*}
$$

Since we assumed that $R$ does not satisfy $s_{4}, R$ cannot be commutative. Therefore, we may choose $b \in R$ such that $b \notin Z(R)$. Replacing $y$ with $[b, x]$ in (2.11), we obtain that for all $x \in I$

$$
\begin{equation*}
\left[a\left(\left[\left[b, x^{k}\right], x^{k}\right]\right)^{n}, x_{3}\right]=0 \tag{2.12}
\end{equation*}
$$

Then by the same argument as given in case-I, $b \in Z(R)$, a contradiction.
The following example demonstrates that in the hypothesis the condition $a\left[d\left(r^{k}\right), r^{k}\right]^{n} \neq 0$ for some $r \in I$ cannot be omitted.

Example 2.4 Let $R_{1}$ be any ring not satisfying $s_{4}$ and $R_{2}=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in F\right\}$, where $F$ is a field. Set $R=R_{1} \bigoplus R_{2}$, we define a map $d: R \rightarrow R$ by $d(r, s)=(0, t)$ with $t=\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$ for all $r \in R_{1}$ and $s=\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \in R_{2}$. It is easy to check $d$ is a nonzero derivation of $R$. Now let $I=\{0\} \times\left\{\left.\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \right\rvert\, a \in F\right\}$ be a nonzero ideal of $R$. It is straightforward to check that $d$ satisfies the property $a\left[d\left(x^{k}\right), x^{k}\right]^{n}=0$ for all $x \in I$, however $R$ does not satisfy $s_{4}$.

Now to prove our next theorem we need the following lemma.
Lemma 2.5 Let $n$ be a fixed positive integer, $R$ be an $n!$-torsion free ring with center $Z(R)$.

Suppose $y_{1}, y_{2}, \ldots, y_{n} \in R$ satisfy $\lambda y_{1}+\lambda^{2} y_{2}+\cdots+\lambda^{n} y_{n} \in Z(R)$ for $\lambda=1,2, \ldots, n$. Then $y_{i} \in Z(R)$ for all $i$.

Proof The proof of this lemma is analogous to the proof of Lemma 1 in [18].
Now we prove our next theorem.
Theorem 2.6 Let $n(\geq 1), k(\geq 1)$ be fixed integers, $R$ a noncommutative $2 n(k-1)$ !-torsion free prime ring with center $Z(R), 0 \neq I$ an ideal of $R, 0 \neq a \in R$ and $d$ a derivation of $R$. If $a\left[d\left(x^{k}\right), x^{k}\right]^{n} \in Z(R)$ for all $x \in I$, then either $d=0$ or $R$ satisfies $s_{4}$.
Proof By [19], since $I, R$ and $Q$ satisfies the same differential identities, we have

$$
\begin{equation*}
a\left[d\left(x^{k}\right), x^{k}\right]^{n} \in C, \tag{2.13}
\end{equation*}
$$

for all $x \in Q$. Since $1 \in Q$, we may replace $x$ with $x+1$. By this replacement, we obtain

$$
\begin{equation*}
a\left[d\left((x+1)^{k}\right),(x+1)^{k}\right]^{n} \in C \tag{2.14}
\end{equation*}
$$

for all $x \in Q$. We have the facts $(x+1)^{k}=x^{k}+\binom{k}{1} x^{k-1}+\binom{k}{2} x^{k-2}+\cdots+1$ and $d(1)=0$. Using these facts, (2.14) implies that

$$
\begin{equation*}
a\left[d\left(x^{k}\right)+\binom{k}{1} d\left(x^{k-1}\right)+\cdots+\binom{k}{k-1} d(x), x^{k}+\binom{k}{1} x^{k-1}+\cdots+\binom{k}{k-1} x\right]^{n} \in C, \tag{2.15}
\end{equation*}
$$

that is

$$
\begin{equation*}
a\left\{\left[d\left(x^{k}\right), x^{k}\right]+\binom{k}{1}\left(\left[d\left(x^{k}\right), x^{k-1}\right]+\left[d\left(x^{k-1}\right), x^{k}\right]\right)+\cdots+\binom{k}{k-1}\binom{k}{k-1}[d(x), x]\right\}^{n} \in C, \tag{2.16}
\end{equation*}
$$

for all $x \in Q$. Now expanding the expression completely and then using (2.13), the above expression can be rewritten as

$$
\begin{equation*}
a f_{2 k n-1}(x)+a f_{2 k n-2}(x)+\cdots+a f_{2 n}(x) \in C, \tag{2.17}
\end{equation*}
$$

where $f_{n}(x)$ denotes a suitable homogeneous function of degree $n$ in $x$. Putting $x=\lambda x$, where $\lambda \in C$, in (2.17), we get

$$
\begin{equation*}
\lambda^{2 n-1}\left\{\lambda^{2 k n-2 n} a f_{2 k n-1}(x)+\lambda^{2 k n-2 n-1} a f_{2 k n-2}(x)+\cdots+\lambda a f_{2 n}(x)\right\} \in C . \tag{2.18}
\end{equation*}
$$

Since $\lambda \in C$ is invertible in $C$, above relation yields that

$$
\begin{equation*}
\lambda^{2 k n-2 n} a f_{2 k n-1}(x)+\lambda^{2 k n-2 n-1} a f_{2 k n-2}(x)+\cdots+\lambda a f_{2 n}(x) \in C . \tag{2.19}
\end{equation*}
$$

Putting $\lambda=1,2, \ldots, 2 k n-2 n$ and then using Lemma 2.5, we have $a f_{2 n}(x) \in C$ for all $x \in Q$, since $R$ is $(2 k n-2 n)$ !-torsion free. Now, $a f_{2 n}(x) \in C$ is $\left.a\left\{\begin{array}{c}k \\ k-1\end{array}\right)\binom{k}{k-1}[d(x), x]\right\}^{n} \in C$ for all $x \in Q$ i.e., $a k^{2 n}[d(x), x]^{n} \in C$ for all $x \in Q$. Since $R$ is $2 n(k-1)$ !-torsion free, $a[d(x), x]^{n} \in C$ for all $x \in Q$. This implies that either $d=0$ or $R$ satisfies $s_{4}$ (see $\left.[8,9]\right)$.

We conclude with an example in a prime ring $R$ satisfying the differential identity in above theorem.

Example 2.7 Let $R=M_{2}(F)$ be a $2 \times 2$ matrix ring over a field $F$. Then for any $0 \neq a \in Z(R)$
and any derivation $d$ of $R$, we have $a\left[d\left(x^{k}\right), x^{k}\right]^{2 n} \in Z(R)$ for all $x \in R$, where $k$ and $n$ are any positive integers.

Acknowledgements The author would like to thank the referees for their valuable comments.

## References

[1] E. C. POSNER. Derivation in prime rings. Proc. Amer. Math. Soc., 1957, 8: 1093-1100.
[2] C. LANSKI. Differential identities, Lie ideals, and Posner's theorems. Pacific J. Math., 1988, 134(2): 275297.
[3] L. CARINI, V. D. FILIPPIS. Commutators with power central values on a Lie ideal. Pacific J. Math., 2000, 193(2): 269-278.
[4] Yu WANG, Hong YOU. A note on commutators with power central values on Lie ideals. Acta Math. Sinica, 2006, 22(6): 1715-1720.
[5] M. BRESAR. A note on derivations. Math. J. Okayama Univ., 1990, 32: 83-88.
[6] T. K. LEE, J. S. LIN. A result on derivations. Proc. Amer. Math. Soc., 1996, 124(6): 1687-1691.
[7] V. D. FILIPPIS. Prime rings with annihilators conditions on power values of derivations on multilinear polynomials. Taiwanese J. Math., 2001, 5(4): 725-730.
[8] V. D. FILIPPIS. Lie ideals and annihilator conditions on power values of commutators with derivation. Indian J. Pure Appl. Math., 2001, 32: 649-656.
[9] Yu WANG. Annihilator conditions with derivations in prime rings of characteristic 2. Indian J. Pure Appl. Math., 2008, 39(6): 459-465.
[10] Yiqiu DU, Yu WANG. Derivations in commutators with power central values in rings. Publ. Math. Debrecen, 2010, 77(1-2): 193-199.
[11] B. DHARA, R. K. SHARMA. Derivations with annihilator conditions in prime rings. Publ. Math. Debrecen, 2007, 71(1-2): 11-20.
[12] B. DHARA. Power values of derivations with annihilator conditions on Lie ideals in prime rings. Comm. Algebra, 2009, 37: 2159-2167.
[13] Yu WANG. Annihilators conditions with generalized derivations in prime rings. Linear Algebra Appl., 2011, 434: 625-635.
[14] V. K. KHARCHENKO. Differential identity of prime rings. Algebra and Logic, 1978, 17: 155-168.
[15] C. LANSKI. An engel condition with derivation. Proc. Amer. Math. Soc., 1993, 118(3): 731-734.
[16] M. CHANG, T. K. LEE. Annihilators of power values of derivations in prime rings. Comm. Algebra, 1998, 26: 2091-2113.
[17] C. L. CHUANG. GPI's having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc., 1988, 103(3): 723-728.
[18] L. O. CHUNG, J. LUH. Semiprime rings with nilpotent derivations. Canad. Math. Bull., 1981, 24: 415-421.
[19] T. K. LEE. Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica, 1992, 20(1): 27-38.


[^0]:    Received April 24, 2018; Accepted August 29, 2018
    Supported by the Natural Science Foundation of Anhui Province (Grant Nos. 1808085MA14; 1908085MA03), the Key University Science Research Project of Anhui Province (Grant No. KJ2018A0433) and Research Project of Chuzhou University (Grant No. zrjz2017005).
    E-mail address: shulianghuang@sina.com

