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Abstract Let R be a prime ring with center Z(R), I a nonzero ideal of R, d a nonzero

derivation of R and 0 ̸= a ∈ R. In the present paper, our object is to study the situation

a[d(xk), xk]n ∈ Z(R) for all x ∈ I under certain conditions, where n (≥ 1), k (≥ 1) are fixed

integers.
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1. Introduction

Let R be a prime ring with center Z(R). For x, y ∈ R, we set [x, y]1 = [x, y] = xy − yx

and [x, y]n = [[x, y]n−1, y] where n ≥ 2 is a positive integer. By d we mean a derivation of R.

s4 denotes the standard identity in four variables. In [1], a well-known result proved by Posner

states that if [d(x), x] ∈ Z(R) for all x ∈ R, then either d = 0 or R is commutative. In [2], Lanski

generalizes the Posner’s result to a Lie ideal. Lanski proved that if L is a noncommutative Lie

ideal of R and d ̸= 0 such that [d(x), x] ∈ Z(R) for all x ∈ L, then either R is commutative,

or char R = 2 and R satisfies s4. In [3], Carini and Filippis studied more generalized situation

of this result by considering power values. They proved that if [d(u), u]n ∈ Z(R) for all u in a

noncentral Lie ideal of R, n ≥ 1 a fixed integer and char R ̸= 2, then either d = 0 or R satisfies

s4. In [4], Wang and You removed the restriction on characteristic and they proved that the

same conclusion holds when char R = 2.

On the other hand, some results concerning annihilators of power values in prime and

semiprime rings have been obtained in literature. In [5], Bresar proved that if R is a semiprime

ring, d a nonzero derivation of R and a ∈ R such that ad(x)n = 0, then ad(R) = 0 when R

is (n − 1)!-torsion free. In [6], Lee and Lin proved Bresar’s result on Lie ideals of prime rings

without the (n − 1)!-torsion free assumption on R. In [7], Filippis established a similar version

of Bresar’s result for multilinear polynomials in prime rings. Furthermore, Filippis studied the

left annihilator of power values of commutators with derivations. In [8], he proved if char R ̸= 2,

0 ̸= d and 0 ̸= a ∈ R such that a[d(x), x]n ∈ Z(R) for all x ∈ L, where L is a noncentral Lie
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ideal of R and n ≥ 1 a fixed integer, then R satisfies s4. In [9], Wang removed the assumption

of char R ̸= 2. In [10], Du and Wang proved a result on both sided ideal in prime ring. They

proved that if char R ̸= 2, 0 ̸= I a both sided ideal of R and 0 ̸= d such that [d(xk), xk]n ∈ Z(R)

for all x ∈ I, where k, n are fixed positive integer, then R satisfies s4. For more related results

concerning annihilators we refer to [11–13].

The purpose of the present paper is to study the same situation of Du and Wang with left

annihilator condition.

First we recall some basic notations. We denote by Q the two sided Martindale quotient ring

of a prime ring R and by C the center of Q. We call C the extended centroid of R. This C is a

field. It is well known that every derivation d of R can be uniquely extended to a derivation of

Q, which will be also denoted by d. The derivation d of R is called a Q-inner induced by some

q ∈ Q if d(x) = [q, x] holds for all x ∈ R. If d is not Q-inner, then d is called Q-outer derivation

of R.

By Kharchenko’s theorem [14], we have the following result:

Let R be a prime ring, d a derivation on R and I a nonzero ideal of R. If I satisfies the

differential identity f(r1, r2, . . . , rn, d(r1), d(r2), . . . , d(rn)) = 0 for any r1, r2, . . . , rn ∈ I, then

either

(i) I satisfies the generalized polynomial identity f(r1, r2, . . . , rn, x1, x2, . . . , xn) = 0

or (ii) d is Q-inner.

2. Main results

We begin with lemmas.

Lemma 2.1 Let R = Mm(F ) be the ring of all m×m matrices over a field F of characteristic

different from 2 and m ≥ 3. Let a be an invertible element in R. If for some b ∈ R, ([b, xk]2)
n ∈

F · a−1 for all x ∈ R, where k (≥ 1), n (≥ 1) are fixed integers, then b ∈ F · Im.

Proof Let a = (aij)m×m, b = (bij)m×m. By assumption, for every x ∈ R, ([b, xk]2)
n is zero

or invertible. Write b =
(
b11 A
B C

)
, where A = (b12, . . . , b1m), B = (b21, . . . , bm1)

T and C = (bij)

where 2 ≤ i, j ≤ m. We choose x = e11. Then [b, e11]2 =
(

0 A
B 0

)
= (be11 − 2b11e11 + e11b). Since

rank of [b, e11]2 is ≤ 2, ([b, e11]2)
n cannot be invertible, since m ≥ 3, and so it must be zero.

Therefore, ([b, e11]2)
n = 0 and so ([b, e11]2)

2n = 0. By simple manipulation, we have

0 = ([b, e11]2)
2n =

(
(AB)n 0

0 (BA)n

)
. (2.1)

Therefore, (AB)n = 0. Since (AB) ∈ F , AB = 0. Let ϕ be an inner automorphism of R defined

by ϕ(x) = (1+ e21)x(1− e21) for all x ∈ R. Then ϕ(b) satisfies the same property as b does, that

is, either ([ϕ(b), xk]2)
n is zero or invertible for every x ∈ R. Now, we have

ϕ(b) =

(
b11 − b12 A

b11E − b12E +B − CE EA+ C

)
, (2.2)
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where E = ((1, 0, . . . , 0)1×m−1)
T . As above, we have

A(b11E − b12E +B + CE) = 0. (2.3)

Recalling AB = 0, above relation implies b11b12 − b212 −ACE = 0. Now we choose x = e11 + e21.

[b, xk]2 = [b, e11 + e21]2 =

(
−b12 A

D EA

)
, (2.4)

where D = B +CE − (b11 +2b12)E. We see in the matrix [b, e11 + e21]2 that number of distinct

column vectors are 2. Hence, rank of [b, e11 + e21]2 is ≤ 2 and so rank of ([b, e11 + e21]2)
n is also

≤ 2. Therefore, ([b, e11+ e21]2)
n can not be invertible in R for m ≥ 3, and hence it must be zero.

Therefore, we can write ([b, e11 + e21]2)
2n = 0. Now we calculate

([b, xk]2)
2 = ([b, e11 + e21]2)

2 =

(
b212 +AD 0

−b12D + EAD DA+ b12EA

)
. (2.5)

Now the facts AB = 0 and b11b12 − b212 −ACE = 0 together imply AD = −3b212. Thus, we have

([b, xk]2)
2 = ([b, e11 + e21]2)

2 =

(
−2b212 0

−b12D − 3b212E DA+ b12EA

)
, (2.6)

and hence

0 = ([b, xk]2)
2n = ([b, e11 + e21]2)

2n =

(
(−2b212)

n 0

U (DA+ b12EA)n

)
, (2.7)

where U is an (m − 1) × 1 matrix. This gives (−2b212)
n = 0, implying b12 = 0. Since for any

F -automorphism φ, b and bφ satisfies the same properties, we can write (bφ)12 = 0. Therefore,

0 = ((1 − ei2)b(1 + ei2))12 for any i ̸= 1, 2. This implies b1i = 0 for all i ̸= 1, 2. Since

b12 = 0, all the entries in 1st row of the matrix b are zeros, except b11. Hence, we can write,

0 = ((1 − e1j)b(1 + e1j))1t for any j ̸= 1 and t ̸= 1. This implies bjt = 0 for all j ̸= t. Thus,

the matrix b is diagonal. Let b =
m∑
i=1

biieii. Then for s ̸= t, we have (1 + ets)b(1 − ets) =∑m
i=0 biieii + (bss − btt)ets is diagonal. Hence, bss = btt and so b is a scalar matrix, that is,

b ∈ F · Im. �

Lemma 2.2 ([15]) Let R be a noncommutative simple algebra, finite-dimensional over its center

Z. If g(x1, . . . , xt) ∈ R∗ZZ{xj}, the free product over Z, is an identity for R that is homogeneous

in {x1, . . . , xt} of degree d, then for some field F and n > 1, R ⊆ Mn(F ) and g(x1, . . . , xt) is an

identity for Mn(F ).

Theorem 2.3 Let R be a prime ring of characteristic different from 2 with center Z(R), I a

nonzero ideal of R, d a nonzero derivation of R and 0 ̸= a ∈ R. Suppose that there exists x ∈ I

such that a[d(xk), xk]n ̸= 0. If a[d(xk), xk]n ∈ Z(R) for all x ∈ I, where n (≥ 1), k (≥ 1) are

fixed integers, then R satisfies s4, the standard identity in four variables.

Proof Suppose that R does not satisfy s4. By our assumption, we have

a[d(xk), xk]n ∈ Z(R), (2.8)
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for all x ∈ I. Since there exists r ∈ I such that a[d(rk), rk]n ̸= 0, a[d(xk), xk]n is a central

differential identity for I. It follows from [16, Theorem 1] that R is a prime PI-ring and so

RC(= Q) is a finite-dimensional central simple C-algebra by Posner’s theorem for prime PI-ring.

Now we divide the proof in the following two cases:

Case 1 Let d be inner derivation of R induced by p ∈ Q. Then

[a([p, xk]2)
n, x3] = 0, (2.9)

for all x ∈ I and so for all x ∈ Q, sine I and Q satisfy same GPI [17]. Since a[d(rk), rk]n ̸= 0 for

some r ∈ I, (2.9) is a nontrivial GPI for Q. Also, since Q is a finite-dimensional central simple

C-algebra, Lemma 2.2 is applicable. By Lemma 2.2, there exists a suitable field F such that

Q ⊆ Mk(F ), the ring of all k× k matrices over F , and moreover Mk(F ) satisfies (2.9). Since by

assumption, R does not satisfy s4, k ≥ 3. Therefore, we have

a([p, xk]2)
n ∈ Z(Mk(F ))

for all x ∈ Mk(F ). Since I ⊆ Q ⊆ Mk(F ), there exists r ∈ Mk(F ), such that a([p, rk]2)
n ̸= 0.

Then a is invertible and so ([p, xk]2)
n ∈ F · a−1 for all x ∈ Mk(F ). By Lemma 2.1, p ∈ Z(R)

implying d = 0, a contradiction.

Case 2 Let d be outer derivation of R. We rewrite the relation (2.8) as

a[
k−1∑
i=0

xid(x)xk−i−1, xk]n ∈ Z(R). (2.10)

By Kharchenko’s theorem [14], we have that I satisfies

a[
k−1∑
i=0

xiyxk−i−1, xk]n ∈ Z(R). (2.11)

Since we assumed that R does not satisfy s4, R cannot be commutative. Therefore, we may

choose b ∈ R such that b /∈ Z(R). Replacing y with [b, x] in (2.11), we obtain that for all x ∈ I

[a([[b, xk], xk])n, x3] = 0. (2.12)

Then by the same argument as given in case-I, b ∈ Z(R), a contradiction. �
The following example demonstrates that in the hypothesis the condition a[d(rk), rk]n ̸= 0

for some r ∈ I cannot be omitted.

Example 2.4 Let R1 be any ring not satisfying s4 and R2 =
{(

a b
0 0

)
| a, b ∈ F

}
, where F is

a field. Set R = R1

⊕
R2, we define a map d : R → R by d(r, s) = (0, t) with t =

(
0 a
0 0

)
for

all r ∈ R1 and s =
(
a b
0 0

)
∈ R2. It is easy to check d is a nonzero derivation of R. Now let

I = {0}×
{(

0 a
0 0

)
| a ∈ F

}
be a nonzero ideal of R. It is straightforward to check that d satisfies

the property a[d(xk), xk]n = 0 for all x ∈ I, however R does not satisfy s4.

Now to prove our next theorem we need the following lemma.

Lemma 2.5 Let n be a fixed positive integer, R be an n!-torsion free ring with center Z(R).
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Suppose y1, y2, . . . , yn ∈ R satisfy λy1 + λ2y2 + · · · + λnyn ∈ Z(R) for λ = 1, 2, . . . , n. Then

yi ∈ Z(R) for all i.

Proof The proof of this lemma is analogous to the proof of Lemma 1 in [18]. �
Now we prove our next theorem.

Theorem 2.6 Let n (≥ 1), k (≥ 1) be fixed integers, R a noncommutative 2n(k − 1)!-torsion

free prime ring with center Z(R), 0 ̸= I an ideal of R, 0 ̸= a ∈ R and d a derivation of R. If

a[d(xk), xk]n ∈ Z(R) for all x ∈ I, then either d = 0 or R satisfies s4.

Proof By [19], since I, R and Q satisfies the same differential identities, we have

a[d(xk), xk]n ∈ C, (2.13)

for all x ∈ Q. Since 1 ∈ Q, we may replace x with x+ 1. By this replacement, we obtain

a[d((x+ 1)k), (x+ 1)k]n ∈ C, (2.14)

for all x ∈ Q. We have the facts (x+1)k = xk +
(
k
1

)
xk−1+

(
k
2

)
xk−2+ · · ·+1 and d(1) = 0. Using

these facts, (2.14) implies that

a

[
d(xk) +

(
k

1

)
d(xk−1) + · · ·+

(
k

k − 1

)
d(x), xk +

(
k

1

)
xk−1 + · · ·+

(
k

k − 1

)
x

]n
∈ C, (2.15)

that is

a

{
[d(xk), xk] +

(
k

1

)(
[d(xk), xk−1] + [d(xk−1), xk]

)
+ · · ·+

(
k

k − 1

)(
k

k − 1

)
[d(x), x]

}n

∈ C,

(2.16)

for all x ∈ Q. Now expanding the expression completely and then using (2.13), the above

expression can be rewritten as

af2kn−1(x) + af2kn−2(x) + · · ·+ af2n(x) ∈ C, (2.17)

where fn(x) denotes a suitable homogeneous function of degree n in x. Putting x = λx, where

λ ∈ C, in (2.17), we get

λ2n−1{λ2kn−2naf2kn−1(x) + λ2kn−2n−1af2kn−2(x) + · · ·+ λaf2n(x)} ∈ C. (2.18)

Since λ ∈ C is invertible in C, above relation yields that

λ2kn−2naf2kn−1(x) + λ2kn−2n−1af2kn−2(x) + · · ·+ λaf2n(x) ∈ C. (2.19)

Putting λ = 1, 2, . . . , 2kn − 2n and then using Lemma 2.5, we have af2n(x) ∈ C for all x ∈ Q,

since R is (2kn − 2n)!-torsion free. Now, af2n(x) ∈ C is a
{(

k
k−1

)(
k

k−1

)
[d(x), x]

}n ∈ C for all

x ∈ Q i.e., ak2n[d(x), x]n ∈ C for all x ∈ Q. Since R is 2n(k − 1)!-torsion free, a[d(x), x]n ∈ C

for all x ∈ Q. This implies that either d = 0 or R satisfies s4 (see [8, 9]). �
We conclude with an example in a prime ring R satisfying the differential identity in above

theorem.

Example 2.7 Let R = M2(F ) be a 2×2 matrix ring over a field F . Then for any 0 ̸= a ∈ Z(R)
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and any derivation d of R, we have a[d(xk), xk]2n ∈ Z(R) for all x ∈ R, where k and n are any

positive integers.
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