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Abstract In this paper, the automorphism group is completely determined, of the unitary

Cayley graph, the unit graph and the total graph, over the ring of Gaussian integers modulo a

prime power.
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1. Introduction

Given a ring R, by D(R) and U(R) we denote the set of zero-divisors and the group of

units, respectively. Then the unitary Cayley graph GR, the unit graph G(R) and the total graph

T (Γ(R)) of the ring R are defined to be simple graphs with the same vertex set R and with

the edge {a, b}, where a − b ∈ U(R), a + b ∈ U(R) and a + b ∈ D(R), respectively. Obviously,

T (Γ(R)) is the complement of G(R), provided R is a finite ring.

For a graph G, a bijection σ on vertex set is called an automorphism of G if σ preserves

adjacency. Note that the set of all automorphisms of G forms a group under usual composition

of functions. Using the algebraic structure to determine the automorphisms of a family of graph

has attracted considerable attention during the past decades [1–3]. In 1995, Dejter and Giudici

defined the unitary Cayley graph in [4]. They proved that GZn is a bipartite graph when n is

even, where Zn is the additive cyclic group of integers mod n. Grimaldi defined the unit graph

G(Zn) in [5]. The total graph was introduced and investigated by Anderson and Badawi in [6].

They also studied the three induced subgraphs Nil(Γ(R)), Z(Γ(R)), and Reg(Γ(R)) of T (Γ(R)),

with vertices Nil(R), Z(R), and Reg(R), respectively. Here, R is a commutative ring, Nil(R) is

the ideal of nilpotent elements, Z(R) is the set of zero-divisors, and Reg(R) is the set of regular

elements. For some other recent papers on these graphs [7–9].

In this paper, we shall focus on the unit graph, the unitary Cayley graph and the total graph,

over the ring Zps [i] of Gaussian integers mod ps. Recall that the ring Zn[i] of Gaussian integers

modulo n is the set {a + bi | a, b ∈ Zn} with ordinary addition and multiplication of complex

numbers, and Euclidian norm N(a + ib) = a2 + b2, where i2 = −1. Let Zps [i] be the ring of

Gaussian integers modulo ps, where p is prime and s is a positive integer.
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This paper is organized as follows. In Section 2, we give some preliminaries, notation and

lemmas. In Section 3, we show that GZ2s [i] is a complete bipartite graph. Then, we get the

automorphism groups of GZ2s [i], G(Z2s [i]) and T (Γ(Z2s [i])). In Section 4, we show that GZps [i]

is a complete multipartite graph, then it is easy to have the automorphism groups of GZ2s [i],

where p ≡ 3 (mod 4). We use regular graph of Zps [i] to determine the automorphism groups

of G(Zps [i]) and T (Γ(Zps [i])). In Section 5, after defining some automorphisms, we show the

automorphism groups of GZps [i], G(Zps [i]) and T (Γ(Zps [i])), where p ≡ 1 (mod 4).

2. Preliminaries

We use D(R) and U(R) to denote the set of zero-divisors and the group of units of a ring R,

respectively. For a set T , T ∗ denotes the non-zero elements of T , |T | denotes the size of T , T\S
denotes the set of elements that belong to T and not to set S. We will use V (G) to denote the

vertex set of a graph G. Let x, y ∈ V (G). If x and y are adjacent vertices, then they are called

the neighbors of each other. We write NG(x) for the set of neighbors of x in G.

Lemma 2.1 ([10, Theorem 2]) Let p be a prime and s be a positive integer.

(i) Let p = 2 and a+ bi ∈ Zps [i]. Then a+ bi ∈ U(Zps [i]) if and only if a ̸≡ b (mod 2).

(ii) Let p = 3 (mod 4) and a + bi ∈ Zps [i]. Then a + bi ∈ U(Zps [i]) if and only if one of a

and b is prime to p.

(iii) Let p = 1 (mod 4), p = ππ for some π in Z[i] and a ∈ Z[i]/(πs), where π is the complex

conjugate of π. Then a ∈ U(Z[i]/(πs)) if and only if a is prime to p.

If G2 is a permutation group on {1, 2, . . . , n}, then the wreath product G1 ≀G2 is generated

by the direct product of n copies of G1, together with the elements of G2 acting on these n copies

of G1.

Lemma 2.2 ([11, P.139, P.188]) (i) A graph and its complement have the same automorphism

group.

(ii) For n ≥ 2, let Kn,n be the complete bipartite graph of degree n. Then Aut(Kn,n) =

Sn ≀ S2.

(iii) Let the connected components of G consist of n1 copies of G1, n2 copies of G2, . . . , nr

copies of Gr, where G1, G2, . . . , Gr are pairwise non-isomorphic. Then Aut(G) = (Aut(G1) ≀
Sn1)× (Aut(G2) ≀ Sn2)× · · · × (Aut(Gr) ≀ Snr ).

Lemma 2.3 ([7, Theorem 2.6]) Let R be a finite ring. Then the following statements hold.

(i) If R is a local ring of even order, then Aut(GR) ∼= Aut(G(R)).

(ii) If R is a ring of odd order, then Aut(GR) � Aut(G(R)).

3. Automorphisms of some graphs for Z2s [i]

In this section, we determine the automorphism groups of the unit graph, the unitary Cayley

graph and the total graph of Z2s [i]. We first prove some lemmas about these graphs. From



Automorphism groups of some graphs for the ring of Gaussian integers modulo ps 113

the definitions of the unit graph and the unitary Cayley graph, it is easy to have the following

lemma.

Lemma 3.1 Let a+ bi ∈ Z2s [i], where s is a positive integer. Then,

(i) NGZ2s [i]
(a+ bi) = (a+ bi) + U(Z2s [i]);

(ii) NG(Z2s [i])(a+ bi) = −(a+ bi) + U(Z2s [i]).

Lemma 3.2 Let s be a positive integer. Then GZ2s [i] and G(Z2s [i]) are the union of some

independent sets. In particular,

V (GZ2s [i]) = V (G(Z2s [i])) =
∪

α∈{0,1}

(α+D(Z2s [i])).

Proof From Lemma 2.1 (i), a + bi ∈ D(Z2s [i]) if and only if a ≡ b (mod 2). Suppose that

α = a + bi, β = c + di ∈ D(Z2s [i]) and α ̸= β, then a ≡ b (mod 2) and c ≡ d (mod 2).

So a − c ≡ b − d (mod 2) and α − β ∈ D(Z2s [i]). It means that α is not connected to β in

GZ2s [i]. Furthermore, the set D(Z2s [i]) is an independent set in GZ2s [i]. It is easy to check that

1 +D(Z2s [i]) = U(Z2s [i]). Similarly, the set 1 +D(Z2s [i]) is an independent set in GZ2s [i]. The

proof for the case G(Z2s [i]) is similar. �

Theorem 3.3 Let s be a positive integer. Then

Aut(GZ2s [i])
∼= Aut(G(Z2s [i])) ∼= Aut(T (Γ(Z2s [i]))) ∼= S22s−1 ≀ S2.

Proof From Lemmas 2.2 (i) and 2.3 (i), we know that Aut(G(Z2s [i])) ∼= Aut(T (Γ(Z2s [i]))) and

Aut(GZ2s [i])
∼= Aut(G(Z2s [i])). We only need to show that Aut(GZ2s [i])

∼= S22s−1 ≀ S2. From

Lemma 2.1 (i), it is immediate that |D(Z2s [i])| = |1 + D(Z2s [i])| = |U(Z2s [i])| = 22s−1. By

Lemma 2.2 (ii), what is left is to show that GZ2s [i] is a complete bipartite graph of degree 22s−1.

Suppose that α = a + bi ∈ 1 + D(Z2s [i]), β = c + di ∈ D(Z2s [i]), then a ̸≡ b (mod 2) and

c ≡ d (mod 2) by Lemma 2.1 (i). So a− c ̸≡ b− d (mod 2) and α−β ∈ 1+D(Z2s [i]) = U(Z2s [i]).

It means that α is connected to β in GZ2s [i]. Furthermore, every vertex in the set D(Z2s [i]) is

connected to all vertices in the set 1 + D(Z2s [i]). Then by Lemma 3.2, GZ2s [i] is a complete

bipartite graph of degree 22s−1, which completes the proof. �

4. Automorphisms of some graphs for Zps [i], p ≡ 3 (mod 4)

In this section, we determine the automorphism groups of the unit graph, the unitary Cayley

graph and the total graph of Zps [i], where p ≡ 3 (mod 4). Similarly, from the definitions of the

unit graph and the unitary Cayley graph, it is easy to have the following lemma.

Lemma 4.1 Let a+ bi ∈ Zps [i], where p ≡ 3 (mod 4) and s is a positive integer. Then,

(i) NGZps [i]
(a+ bi) = (a+ bi) + U(Zps [i]);

(ii) If a+ bi ∈ D(Zps [i]), then NG(Zps [i])(a+ bi) = −(a+ bi) + U(Zps [i]);

(iii) If a+ bi ∈ U(Zps [i]), then NG(Zps [i])(a+ bi) = (−(a+ bi) + U(Zps [i]))\{a+ bi}.

Lemma 4.2 Let p ≡ 3 (mod 4) and s be a positive integer. Then GZps [i] and G(Zps [i]) are the
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union of some independent sets. In particular,

V (GZps [i]) = V (G(Zps [i])) =

p−1∪
a,b=0

((a+ bi) +D(Zps [i])).

Proof Let p ≡ 3 (mod 4) and s be a positive integer. By Lemma 2.1 (ii), a + bi ∈ D(Zps [i]) if

and only if a and b are not prime to p. Suppose that α = a + bi, β = c + di ∈ D(Z2s [i]) and

α ̸= β, then p|a, p|b, p|c and p|d. So p|(a − c), p|(b − d) and (α − β) ∈ D(Z2s [i]). It means

that α is not connected to β in GZps [i]. Furthermore, the set D(Zps [i]) is an independent set in

GZps [i]. It is easy to check that
∪p−1

a,b=0((a + bi) + D(Zps [i]))\D(Zps [i]) = U(Zps [i]). Similarly,

for a, b ∈ {0, 1, . . . , p− 1}, the set (a+ bi)+D(Zps [i]) is an independent set in GZps [i]. The proof

for the case G(Zps [i]) is similar. �
Recall that the total graph of ring R is a graph with all elements of R as vertices, and two

distinct vertices α, β are adjacent if and only if α + β ∈ D(R). It is denoted by T (Γ(R)). Let

regular graph of R, Reg(Γ(R)), be the induced subgraph of T (Γ(R)) on the regular elements of

R. For a finite ring, the regular elements are the unit elements. So Reg(Γ(Zps [i])) is an induced

subgraph of T (Γ(Zps [i])) on the unit elements of Zps [i]. We first determine the automorphism

group of Reg(Γ(Zps [i])).

Theorem 4.3 Let p ≡ 3 (mod 4) and s be a positive integer. Then,

Aut(Reg(Γ(Zps [i]))) ∼= (Sp2s−2 ≀ S2) ≀ S p2−1
2

.

Proof Let us denote by Rp the set {a + bi ∈ Zps [i]|0 ≤ a, b ≤ p − 1}. From Lemma 2.1 (ii),

a + bi ∈ D(Zps [i]) if and only if a and b are not prime to p. Then there exists only one zero

divisor 0 in Rp.

Suppose that 0 ̸= α ∈ Rp, then there exists a unique 0 ̸= β ∈ Rp such that α + β =

p + pi. We next show that the subgraph of Reg(Γ(Zps [i])) induced by α + D(Zps [i])
∪
β +

D(Zps [i]) is a complete bipartite connected components of Reg(Γ(Zps [i])). Since p ≡ 3 (mod 4),

we know that (p, 2α) = 1 and (p, 2β) = 1. Therefore, α + D(Zps [i]) and β + D(Zps [i]) are the

independent sets in Reg(Γ(Zps [i])). And by α+β = p+pi, it is obvious that α+D(Zps [i])
∪
β+

D(Zps [i]) is a complete bipartite subgraph of Reg(Γ(Zps [i])). For γ ∈ Rp\{α, β}, it is clear

that α + γ ̸= p + pi and β + γ ̸= p + pi. Thus, (p, α + γ) = 1 and (p, β + γ) = 1. Hence,

for any a + bi ∈ D(Zps [i]), (p, α + γ + a + bi) = 1 and (p, β + γ + a + bi) = 1, this means

that α + γ + a + bi ∈ U(Zps [i]) and β + γ + a + bi ∈ U(Zps [i]). Therefore, all vertices in

α + D(Zps [i])
∪

β + D(Zps [i]) are not adjacent to
∪

γ∈Rp\{α,β}(γ + D(Zps [i])). From Lemma

2.1 (ii), |D(Zps [i])| = p2s−2. Consequently, the subgraph of Reg(Γ(Zps [i])) induced by α +

D(Zps [i])
∪

β+D(Zps [i]) is a complete bipartite connected components of Reg(Γ(Zps [i])), which

gives Aut(Reg(Γ(α+D(Zps [i])
∪
β +D(Zps [i])))) ∼= Sp2s−2 ≀ S2.

Since (p, 2) = 1, the equation X + Y = p + pi has p2−1
2 distinct pairs of solutions in Rp.

Thus, Reg(Γ(Zps [i])) consist of p2−1
2 copies of α+D(Zps [i])

∪
β+D(Zps [i]). By Lemma 2.2 (iii),

we get Aut(Reg(Γ(Zps [i]))) ∼= (Sp2s−2 ≀ S2) ≀ S p2−1
2

. �
Now we determine the automorphism groups of the unit graph, the unitary Cayley graph
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and the total graph of Zps [i], where p ≡ 3 (mod 4).

Theorem 4.4 Let p ≡ 3 (mod 4) and s be a positive integer. Then

Aut(GZps [i])
∼= Sp2s−2 ≀ Sp2

and

Aut(G(Zps [i])) ∼= Aut(T (Γ(Zps [i]))) ∼= ((Sp2s−2 ≀ S2) ≀ S p2−1
2

)× Sp2s−2 .

Proof The proof for Aut(GZps [i])
∼= Sp2s−2 ≀ Sp2 is similar to Theorem 3.3. In fact, GZps [i] is a

complete p2-partite graph Kp2s−2,p2s−2,...,p2s−2 .

By Lemma 2.2 (i), we get Aut(G(Zps [i])) ∼= Aut(T (Γ(Zps [i]))). We only need to show that

Aut(T (Γ(Zps [i]))) ∼= ((Sp2s−2 ≀S2) ≀S p2−1
2

)×Sp2s−2 . From Lemma 4.1 (ii) and (iii), we know that

the unit elements and zero divisors have different degrees in graph T (Γ(Zps [i])). It is obvious that

D(Zps [i]) and U(Zps [i]) are two connected components of T (Γ(Zps [i])) and D(Zps [i]) is closed

under addition. Hence, the connected component of T (Γ(Zps [i])) induced by the zero divisors is

a complete subgraph. By Theorem 4.3, Aut(Reg(Γ(Zps [i]))) ∼= (Sp2s−2 ≀ S2) ≀ S p2−1
2

. Therefore,

Aut(T (Γ(Zps [i]))) ∼= ((Sp2s−2 ≀ S2) ≀ S p2−1
2

)× Sp2s−2 , by Lemma 2.2 (iii). �

5. Automorphisms of some graphs for Zps [i], p ≡ 1 (mod 4)

Let p ≡ 1 (mod 4). Then p = ππ for some π in Z[i], where π is the complex conjugate of π.

In [10], we know that Z[i]/(πs) ∼= Zps . Then by Chinese remainder theorem,

Zps [i] ∼= Z[i]/(ps) ∼= Z[i]/(πs)× Z[i]/(πs) ∼= Zps × Zps .

In this section, we use Zps × Zps instead of Zps [i]. It is well known that U(Zps × Zps) =

U(Zps) × U(Zps). Then by Lemma 2.1 (iii) and the definitions of the unit graph, the unitary

Cayley graph, it is easy to have the following lemma.

Lemma 5.1 Let (a, b) ∈ Zps × Zps , where p ≡ 1 (mod 4) and s is a positive integer. Then,

(i) NGZps×Zps
(a, b) = (a, b) + U(Zps × Zps);

(ii) If (a, b) ∈ D(Zps × Zps), then NG(Zps×Zps )(a, b) = −(a, b) + U(Zps × Zps);

(iii) If (a, b) ∈ U(Zps × Zps), then NG(Zps×Zps )(a, b) = (−(a, b) + U(Zps × Zps))\{(a, b)}.

Lemma 5.2 Let p ≡ 1 (mod 4) and s be a positive integer. Then GZps×Zps
and G(Zps × Zps)

are the union of some independent sets. In particular,

V (GZps×Zps
) = V (G(Zps × Zps)) =

p−1∪
a,b=0

((a, b) +D(Zps)×D(Zps)).

Proof The proof is similar to Lemma 4.2. �
In order to get the automorphism groups of GZps×Zps

, G(Zps × Zps) and T (Γ(Zps × Zps)),

we need to define the following mappings. Let

f : Zps × Zps → Zps × Zps

(a, b) 7→ (b, a).
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Then {f, f2 = e} is a cycle group with order 2, denoted by S2. Let Zp be a subset of Zps , set

Zp = {a | 0 ≤ a ≤ p− 1}. Let Sp be the symmetric group over the set Zp and g ∈ Sp, define

he,g : Zp × Zp → Zp × Zp

(a, b) 7→ (a, g(b)).

Set Hp = {he,g | g ∈ Sp}. Similarly, we have

hg,e : Zp × Zp → Zp × Zp

(a, b) 7→ (g(a), b).

Note that hg,e = fhe,gf .

We will denote by Aut(GZp×Zp) the automorphism group of subgraph of GZps×Zps
induced

by Zp × Zp. It is easy to check that the restriction of S2 to Zp × Zp and Hp are subgroups of

Aut(GZp×Zp). Let ⟨S2 ∪Hp⟩ denote the subgroup of Aut(GZp×Zp) generated by S2 ∪Hp.

Let S2 ≀S p−1
2

be the symmetric group over a partition Z∗
p = ∪a+b=p{a, b}, where Z∗

p = Zp\{0}
and g ∈ S2 ≀ S p−1

2
, define

ke,g : Zp × Zp → Zp × Zp

(a, b) 7→ (a, g(b)), b ̸= 0,

(a, b) 7→ (a, b), b = 0.

Set Kp = {ke,g | g ∈ S2 ≀ S p−1
2
}. Similar to hg,e, we have

kg,e : Zp × Zp → Zp × Zp

(a, b) 7→ (g(a), b), a ̸= 0,

(a, b) 7→ (a, b), a = 0.

Note that kg,e = fke,gf . We will denote by Aut(G(Zp × Zp)) the automorphism group of

subgraph of G(Zps × Zps) induced by Zp × Zp. It is easy to check that the restriction of S2

to Zp × Zp and Kp are subgroups of Aut(G(Zp × Zp)). Let ⟨S2 ∪ Kp⟩ denote the subgroup of

Aut(G(Zp × Zp)) generated by S2 ∪Kp.

Theorem 5.3 Let p ≡ 1 (mod 4). Then

Aut(GZp×Zp) = ⟨S2 ∪Hp⟩

and

Aut(G(Zp × Zp)) = ⟨S2 ∪Kp⟩.

Proof It is obvious that Aut(GZp×Zp) ⊇ ⟨S2 ∪Hp⟩. Let σ ∈ Aut(GZp×Zp). We next show that

σ can be generated by finite composite of elements in S2 ∪ Hp. Suppose that σ(0, 0) = (a, b).

Then there exist g1, g2 ∈ Sp such that g1(a) = 0 and g2(b) = 0. Thus, hg2,ehe,g1σ(0, 0) =

hg2,ehe,g1(a, b) = (0, 0).

Set σ1 = hg2,ehe,g1σ. Since automorphisms preserve adjacency and (0, 1) ̸∈ NGZp×Zp
(0, 0),

we know that σ1(0, 1) ̸∈ NGZp×Zp
(0, 0). Then σ1(0, 1) ∈ {(a, b) ∈ Zp × Zp | a = 0, b ̸= 0 or a ̸=
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0, b = 0}. Without loss of generality we can assume σ1(0, 1) = (a1, 0). Then there exists g3 ∈ Sp

such that g3(0) = 0 and g3(a1) = 1. Thus, we get fhg3,eσ1(0, 0) = fhg3,e(0, 0) = (0, 0) and

fhg3,eσ1(0, 1) = fhg3,e(a1, 0) = f(1, 0) = (0, 1).

Set σ2 = fhg3,eσ1. Since σ2(NGZp×Zp
(0, 0)) = NGZp×Zp

(0, 0) and σ2(NGZp×Zp
(0, 1)) =

NGZp×Zp
(0, 1), we know that σ2(Zp ×Zp\NGZp×Zp

(0, 0)) = Zp ×Zp\NGZp×Zp
(0, 0) and σ2(Zp ×

Zp\NGZp×Zp
(0, 1)) = Zp × Zp\NGZp×Zp

(0, 1). In fact,

(Zp × Zp\NGZp×Zp
(0, 0)) ∩ (Zp × Zp\NGZp×Zp

(0, 1)) = {(0, b) | 0 ≤ b ≤ p− 1}.

Then there exists g4 ∈ Sp such that he,g4σ2(0, b) = (0, b), where 0 ≤ b ≤ p− 1.

Set σ3 = he,g4σ2. Similarly, there exists g5 ∈ Sp such that hg5,eσ3(a, 0) = (a, 0) and

hg5,eσ3(0, b) = (0, b), where 0 ≤ a, b ≤ p− 1.

Set σ4 = hg5,eσ3. Since automorphisms preserve adjacency and

(Zp × Zp\NGZp×Zp
(0, b)) ∩ (Zp × Zp\NGZp×Zp

(a, 0)) = {(0, 0), (a, b)},

we can get σ4(a, b) = (a, b), where 0 ≤ a, b ≤ p − 1. Therefore, σ4 is the identity element e of

Aut(GZp×Zp). This gives e = hg5,ehe,g4fhg3,ehg2,ehe,g1σ. Hence σ = h−1
e,g1h

−1
g2,eh

−1
g3,efh

−1
e,g4h

−1
g5,e,

which gives σ can be generated by finite composite of elements in S2 ∪Hp.

For any σ ∈ Aut(G(Zp × Zp)), by Lemma 5.1, we know that NG(Zp×Zp)(0, 0) = Z∗
p × Z∗

p

and σ(Z∗
p × Z∗

p ) = Z∗
p × Z∗

p . Since automorphism preserves adjacency, NG(Zp×Zp)(σ(0, 0)) =

σ(NG(Zp×Zp)(0, 0)) = σ(Z∗
p × Z∗

p ) = Z∗
p × Z∗

p = NG(Zp×Zp)(0, 0). Then, σ(0, 0) = (0, 0). Similar

to the proof of Aut(GZp×Zp), Aut(G(Zp × Zp)) ∼= ⟨S2 ∪Kp⟩, which completes the proof. �
Since every non-zero element in Zps can be written uniquely as t0 + t1p + · · · + ts−1p

s−1,

where ti ∈ {0, 1, . . . , p− 1}, i ∈ {0, 1, . . . , s− 1}, and U(Zps ×Zps) = U(Zps)×U(Zps), it is easy

to get the following lemma.

Lemma 5.4 Let p ≡ 1 (mod 4) and s be a positive integer. Then for α, β ∈ Zps × Zps , the

following conditions are equivalent.

(i) NGZps×Zps
(α) = NGZps×Zps

(β).

(ii) α, β ∈ (a, b) +D(Zps)×D(Zps) for some a, b ∈ {0, 1, . . . , p− 1}.
(iii) NG(Zps×Zps )(α) = NG(Zps×Zps )(β).

Now we show the automorphism groups of the unit graph, the unitary Cayley graph and the

total graph of Zps [i], where p ≡ 1 (mod 4).

Theorem 5.5 Let p ≡ 1 (mod 4) and s be a positive integer. Then,

Aut(GZps×Zps
) ∼= (Sp2s−2)p

2

o ⟨S2 ∪Hp⟩,

and

Aut(G(Zps × Zps)) ∼= Aut(T (Γ(Zps × Zps)))

∼= (Sp2s−2)p
2

o ⟨S2 ∪Kp⟩.

Proof Recall that |D(Zps)×D(Zps)| = p2s−2. Let (Sp2s−2)p
2

be a product of symmetric groups

over
∪p−1

a,b=0((a, b)+D(Zps)×D(Zps)). We claim that Aut(GZps×Zps
)/(Sp2s−2)p

2 ∼= Aut(GZp×Zp).
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Let

φ : Aut(GZps×Zps
) → Aut(GZp×Zp)

σ 7→ σ|Zp×Zp ,

where σ|Zp×Zp is the restriction of σ to Zp × Zp. By Lemma 5.4, it is easily seen that φ is an

epimorphism and ker(φ) = (Sp2s−2)p
2

. Therefore, Aut(GZps×Zps
) ∼= (Sp2s−2)p

2 o ⟨S2 ∪ Hp⟩ by

Theorem 5.3.

The proof for the case G(Zps × Zps) is similar. �
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