Automorphism Groups of Some Graphs for the Ring of Gaussian Integers Modulo p^{s}

Hengbin ZHANG*, Jizhu NAN
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract

In this paper, the automorphism group is completely determined, of the unitary Cayley graph, the unit graph and the total graph, over the ring of Gaussian integers modulo a prime power.

Keywords automorphism; unit graph; unitary Cayley graph; Gaussian integers
MR(2010) Subject Classification 13A50; 20B25; 05C25

1. Introduction

Given a ring R, by $D(R)$ and $U(R)$ we denote the set of zero-divisors and the group of units, respectively. Then the unitary Cayley graph G_{R}, the unit graph $G(R)$ and the total graph $T(\Gamma(R))$ of the ring R are defined to be simple graphs with the same vertex set R and with the edge $\{a, b\}$, where $a-b \in U(R), a+b \in U(R)$ and $a+b \in D(R)$, respectively. Obviously, $T(\Gamma(R))$ is the complement of $G(R)$, provided R is a finite ring.

For a graph G, a bijection σ on vertex set is called an automorphism of G if σ preserves adjacency. Note that the set of all automorphisms of G forms a group under usual composition of functions. Using the algebraic structure to determine the automorphisms of a family of graph has attracted considerable attention during the past decades [1-3]. In 1995, Dejter and Giudici defined the unitary Cayley graph in [4]. They proved that $G_{\mathbb{Z}_{n}}$ is a bipartite graph when n is even, where \mathbb{Z}_{n} is the additive cyclic group of integers mod n. Grimaldi defined the unit graph $G\left(\mathbb{Z}_{n}\right)$ in [5]. The total graph was introduced and investigated by Anderson and Badawi in [6]. They also studied the three induced subgraphs $\operatorname{Nil}(\Gamma(R)), Z(\Gamma(R))$, and $\operatorname{Reg}(\Gamma(R))$ of $T(\Gamma(R))$, with vertices $\operatorname{Nil}(R), Z(R)$, and $\operatorname{Reg}(R)$, respectively. Here, R is a commutative ring, $\operatorname{Nil}(R)$ is the ideal of nilpotent elements, $Z(R)$ is the set of zero-divisors, and $\operatorname{Reg}(R)$ is the set of regular elements. For some other recent papers on these graphs [7-9].

In this paper, we shall focus on the unit graph, the unitary Cayley graph and the total graph, over the ring $\mathbb{Z}_{p^{s}}[i]$ of Gaussian integers $\bmod p^{s}$. Recall that the ring $\mathbb{Z}_{n}[i]$ of Gaussian integers modulo n is the set $\left\{a+b i \mid a, b \in \mathbb{Z}_{n}\right\}$ with ordinary addition and multiplication of complex numbers, and Euclidian norm $N(a+i b)=a^{2}+b^{2}$, where $i^{2}=-1$. Let $\mathbb{Z}_{p^{s}}[i]$ be the ring of Gaussian integers modulo p^{s}, where p is prime and s is a positive integer.
Received December 17, 2018; Accepted October 9, 2019
Supported by the National Natural Science Foundation of China (Grant No. 11771176).

* Corresponding author

E-mail address: zhhb210@163.com (Hengbin ZHANG); jznan@163.com (Jizhu NAN)

This paper is organized as follows. In Section 2, we give some preliminaries, notation and lemmas. In Section 3, we show that $G_{\mathbb{Z}_{2 s}[i]}$ is a complete bipartite graph. Then, we get the automorphism groups of $G_{\mathbb{Z}_{2^{s}[i]}}, G\left(\mathbb{Z}_{2^{s}}[i]\right)$ and $T\left(\Gamma\left(\mathbb{Z}_{2^{s}}[i]\right)\right)$. In Section 4 , we show that $G_{\mathbb{Z}_{p^{s}}[i]}$ is a complete multipartite graph, then it is easy to have the automorphism groups of $G_{\mathbb{Z}_{2}[i]}$, where $p \equiv 3(\bmod 4)$. We use regular graph of $\mathbb{Z}_{p^{s}}[i]$ to determine the automorphism groups of $G\left(\mathbb{Z}_{p^{s}}[i]\right)$ and $T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$. In Section 5, after defining some automorphisms, we show the automorphism groups of $G_{\mathbb{Z}_{p^{s}}[i]}, G\left(\mathbb{Z}_{p^{s}}[i]\right)$ and $T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$, where $p \equiv 1(\bmod 4)$.

2. Preliminaries

We use $D(R)$ and $U(R)$ to denote the set of zero-divisors and the group of units of a ring R, respectively. For a set T, T^{*} denotes the non-zero elements of $T,|T|$ denotes the size of $T, T \backslash S$ denotes the set of elements that belong to T and not to set S. We will use $V(G)$ to denote the vertex set of a graph G. Let $x, y \in V(G)$. If x and y are adjacent vertices, then they are called the neighbors of each other. We write $N_{G}(x)$ for the set of neighbors of x in G.

Lemma 2.1 ([10, Theorem 2]) Let p be a prime and s be a positive integer.
(i) Let $p=2$ and $a+b i \in \mathbb{Z}_{p^{s}}[i]$. Then $a+b i \in U\left(\mathbb{Z}_{p^{s}}[i]\right)$ if and only if $a \not \equiv b(\bmod 2)$.
(ii) Let $p=3(\bmod 4)$ and $a+b i \in \mathbb{Z}_{p^{s}}[i]$. Then $a+b i \in U\left(\mathbb{Z}_{p^{s}}[i]\right)$ if and only if one of a and b is prime to p.
(iii) Let $p=1(\bmod 4)$, $p=\pi \bar{\pi}$ for some π in $\mathbb{Z}[i]$ and $a \in \mathbb{Z}[i] /\left(\pi^{s}\right)$, where $\bar{\pi}$ is the complex conjugate of π. Then $a \in U\left(\mathbb{Z}[i] /\left(\pi^{s}\right)\right)$ if and only if a is prime to p.

If G_{2} is a permutation group on $\{1,2, \ldots, n\}$, then the wreath product $G_{1}\left\{G_{2}\right.$ is generated by the direct product of n copies of G_{1}, together with the elements of G_{2} acting on these n copies of G_{1}.

Lemma 2.2 ([11, P.139, P.188]) (i) A graph and its complement have the same automorphism group.
(ii) For $n \geq 2$, let $K_{n, n}$ be the complete bipartite graph of degree n. Then $\operatorname{Aut}\left(K_{n, n}\right)=$ $S_{n} 乙 S_{2}$.
(iii) Let the connected components of G consist of n_{1} copies of G_{1}, n_{2} copies of G_{2}, \ldots, n_{r} copies of G_{r}, where $G_{1}, G_{2}, \ldots, G_{r}$ are pairwise non-isomorphic. Then $\operatorname{Aut}(G)=\left(\operatorname{Aut}\left(G_{1}\right)\right.$ 乙 $\left.S_{n_{1}}\right) \times\left(\operatorname{Aut}\left(G_{2}\right) \imath S_{n_{2}}\right) \times \cdots \times\left(\operatorname{Aut}\left(G_{r}\right) \ell S_{n_{r}}\right)$.

Lemma 2.3 ([7, Theorem 2.6]) Let R be a finite ring. Then the following statements hold.
(i) If R is a local ring of even order, then $\operatorname{Aut}\left(G_{R}\right) \cong \operatorname{Aut}(G(R))$.
(ii) If R is a ring of odd order, then $\operatorname{Aut}\left(G_{R}\right) \not \nexists \operatorname{Aut}(G(R))$.

3. Automorphisms of some graphs for $\mathbb{Z}_{2^{s}}[i]$

In this section, we determine the automorphism groups of the unit graph, the unitary Cayley graph and the total graph of $\mathbb{Z}_{2^{s}}[i]$. We first prove some lemmas about these graphs. From
the definitions of the unit graph and the unitary Cayley graph, it is easy to have the following lemma.

Lemma 3.1 Let $a+b i \in \mathbb{Z}_{2^{s}}[i]$, where s is a positive integer. Then,
(i) $N_{G_{Z_{2 s}[i]}}(a+b i)=(a+b i)+U\left(\mathbb{Z}_{2 s}[i]\right)$;
(ii) $N_{G\left(\mathbb{Z}_{2^{s}}[i]\right)}(a+b i)=-(a+b i)+U\left(\mathbb{Z}_{2^{s}}[i]\right)$.

Lemma 3.2 Let s be a positive integer. Then $G_{\mathbb{Z}_{2 s}[i]}$ and $G\left(\mathbb{Z}_{2^{s}}[i]\right)$ are the union of some independent sets. In particular,

$$
V\left(G_{\mathbb{Z}_{2^{s}}[i]}\right)=V\left(G\left(\mathbb{Z}_{2^{s}}[i]\right)\right)=\bigcup_{\alpha \in\{0,1\}}\left(\alpha+D\left(\mathbb{Z}_{2^{s}}[i]\right)\right) .
$$

Proof From Lemma 2.1(i), $a+b i \in D\left(\mathbb{Z}_{2^{s}}[i]\right)$ if and only if $a \equiv b(\bmod 2)$. Suppose that $\alpha=a+b i, \beta=c+d i \in D\left(\mathbb{Z}_{2^{s}}[i]\right)$ and $\alpha \neq \beta$, then $a \equiv b(\bmod 2)$ and $c \equiv d(\bmod 2)$. So $a-c \equiv b-d(\bmod 2)$ and $\alpha-\beta \in D\left(\mathbb{Z}_{2^{s}}[i]\right)$. It means that α is not connected to β in $G_{\mathbb{Z}_{2} s[i]}$. Furthermore, the set $D\left(\mathbb{Z}_{2 s}[i]\right)$ is an independent set in $G_{\mathbb{Z}_{2} s[i]}$. It is easy to check that $1+D\left(\mathbb{Z}_{2^{s}}[i]\right)=U\left(\mathbb{Z}_{2^{s}}[i]\right)$. Similarly, the set $1+D\left(\mathbb{Z}_{2^{s}}[i]\right)$ is an independent set in $G_{\mathbb{Z}_{2^{s}}[i]}$. The proof for the case $G\left(\mathbb{Z}_{2^{s}}[i]\right)$ is similar.

Theorem 3.3 Let s be a positive integer. Then

$$
\operatorname{Aut}\left(G_{\mathbb{Z}_{2 s}[i]}\right) \cong \operatorname{Aut}\left(G\left(\mathbb{Z}_{2^{s}}[i]\right)\right) \cong \operatorname{Aut}\left(T\left(\Gamma\left(\mathbb{Z}_{2^{s}}[i]\right)\right)\right) \cong S_{2^{2 s-1}} \backslash S_{2} .
$$

Proof From Lemmas $2.2(\mathrm{i})$ and $2.3(\mathrm{i})$, we know that $\operatorname{Aut}\left(G\left(\mathbb{Z}_{2^{s}}[i]\right)\right) \cong \operatorname{Aut}\left(T\left(\Gamma\left(\mathbb{Z}_{2^{s}}[i]\right)\right)\right)$ and $\operatorname{Aut}\left(G_{\mathbb{Z}_{2 s}[i]}\right) \cong \operatorname{Aut}\left(G\left(\mathbb{Z}_{2^{s}}[i]\right)\right)$. We only need to show that $\operatorname{Aut}\left(G_{\mathbb{Z}_{2^{s}}[i]}\right) \cong S_{2^{2 s-1}}$ 亿 S_{2}. From Lemma 2.1 (i), it is immediate that $\left.\left|D\left(\mathbb{Z}_{2^{s}}[i]\right)\right|=\mid 1+D\left(\mathbb{Z}_{2^{s}} s i\right]\right)\left|=\left|U\left(\mathbb{Z}_{2^{s}}[i]\right)\right|=2^{2 s-1}\right.$. By Lemma 2.2 (ii), what is left is to show that $G_{\mathbb{Z}_{2_{s}[i]}}$ is a complete bipartite graph of degree $2^{2 s-1}$. Suppose that $\alpha=a+b i \in 1+D\left(\mathbb{Z}_{2} s[i]\right), \beta=c+d i \in D\left(\mathbb{Z}_{2^{s}}[i]\right)$, then $a \not \equiv b(\bmod 2)$ and $c \equiv d(\bmod 2)$ by Lemma 2.1 (i). So $a-c \not \equiv b-d(\bmod 2)$ and $\alpha-\beta \in 1+D\left(\mathbb{Z}_{2^{s}}[i]\right)=U\left(\mathbb{Z}_{2^{s}}[i]\right)$. It means that α is connected to β in $G_{\mathbb{Z}_{2} s[i]}$. Furthermore, every vertex in the set $D\left(\mathbb{Z}_{2^{s}}[i]\right)$ is connected to all vertices in the set $1+D\left(\mathbb{Z}_{2^{s}}[i]\right)$. Then by Lemma $3.2, G_{\mathbb{Z}_{2}[i]}$ is a complete bipartite graph of degree $2^{2 s-1}$, which completes the proof.

4. Automorphisms of some graphs for $\mathbb{Z}_{p^{s}}[i], p \equiv 3(\bmod 4)$

In this section, we determine the automorphism groups of the unit graph, the unitary Cayley graph and the total graph of $\mathbb{Z}_{p^{s}}[i]$, where $p \equiv 3(\bmod 4)$. Similarly, from the definitions of the unit graph and the unitary Cayley graph, it is easy to have the following lemma.

Lemma 4.1 Let $a+b i \in \mathbb{Z}_{p^{s}}[i]$, where $p \equiv 3(\bmod 4)$ and s is a positive integer. Then,
(i) $N_{G_{Z_{p^{s}[i]}}}(a+b i)=(a+b i)+U\left(\mathbb{Z}_{\left.p^{s} s i\right]}\right)$;
(ii) If $a+b i \in D\left(\mathbb{Z}_{p^{s}}[i]\right)$, then $N_{G\left(\mathbb{Z}_{p^{s}}[i]\right)}(a+b i)=-(a+b i)+U\left(\mathbb{Z}_{p^{s}}[i]\right)$;
(iii) If $a+b i \in U\left(\mathbb{Z}_{p^{s}}[i]\right)$, then $N_{G\left(\mathbb{Z}_{p^{s}}[i]\right)}(a+b i)=\left(-(a+b i)+U\left(\mathbb{Z}_{p^{s}}[i]\right)\right) \backslash\{a+b i\}$.

Lemma 4.2 Let $p \equiv 3(\bmod 4)$ and s be a positive integer. Then $G_{\mathbb{Z}_{p} s[i]}$ and $G\left(\mathbb{Z}_{p^{s} s}[i]\right)$ are the
union of some independent sets. In particular,

$$
V\left(G_{\mathbb{Z}_{p^{s}}[i]}\right)=V\left(G\left(\mathbb{Z}_{p^{s}}[i]\right)\right)=\bigcup_{a, b=0}^{p-1}\left((a+b i)+D\left(\mathbb{Z}_{p^{s}}[i]\right)\right) .
$$

Proof Let $p \equiv 3(\bmod 4)$ and s be a positive integer. By Lemma 2.1 (ii), $a+b i \in D\left(\mathbb{Z}_{p^{s}}[i]\right)$ if and only if a and b are not prime to p. Suppose that $\alpha=a+b i, \beta=c+d i \in D\left(\mathbb{Z}_{2^{s}}[i]\right)$ and $\alpha \neq \beta$, then $p|a, p| b, p \mid c$ and $p \mid d$. So $p|(a-c), p|(b-d)$ and $(\alpha-\beta) \in D\left(\mathbb{Z}_{2^{s}}[i]\right)$. It means that α is not connected to β in $G_{\mathbb{Z}_{p} s[i]}$. Furthermore, the set $D\left(\mathbb{Z}_{p^{s}}[i]\right)$ is an independent set in $G_{\mathbb{Z}_{p^{s}}[i]}$. It is easy to check that $\bigcup_{a, b=0}^{p-1}\left((a+b i)+D\left(\mathbb{Z}_{p^{s} s}^{s i]}\right)\right) \backslash D\left(\mathbb{Z}_{p^{s}}[i]\right)=U\left(\mathbb{Z}_{p^{s}}[i]\right)$. Similarly, for $a, b \in\{0,1, \ldots, p-1\}$, the set $(a+b i)+D\left(\mathbb{Z}_{p^{s}}[i]\right)$ is an independent set in $G_{\mathbb{Z}_{p} s[i]}$. The proof for the case $G\left(\mathbb{Z}_{p^{s}}[i]\right)$ is similar.

Recall that the total graph of ring R is a graph with all elements of R as vertices, and two distinct vertices α, β are adjacent if and only if $\alpha+\beta \in D(R)$. It is denoted by $T(\Gamma(R))$. Let regular graph of $R, \operatorname{Reg}(\Gamma(R))$, be the induced subgraph of $T(\Gamma(R))$ on the regular elements of R. For a finite ring, the regular elements are the unit elements. So $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$ is an induced subgraph of $T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$ on the unit elements of $\mathbb{Z}_{p^{s}}[i]$. We first determine the automorphism group of $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$.

Theorem 4.3 Let $p \equiv 3(\bmod 4)$ and s be a positive integer. Then,

$$
\operatorname{Aut}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)\right) \cong\left(S_{p^{2 s-2}} \backslash S_{2}\right) \backslash S_{\frac{p^{2}-1}{2}}
$$

Proof Let us denote by R_{p} the set $\left\{a+b i \in \mathbb{Z}_{p^{s}}[i] \mid 0 \leq a, b \leq p-1\right\}$. From Lemma 2.1(ii), $a+b i \in D\left(\mathbb{Z}_{p^{s}}[i]\right)$ if and only if a and b are not prime to p. Then there exists only one zero divisor 0 in R_{p}.

Suppose that $0 \neq \alpha \in R_{p}$, then there exists a unique $0 \neq \beta \in R_{p}$ such that $\alpha+\beta=$ $p+p i$. We next show that the subgraph of $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$ induced by $\alpha+D\left(\mathbb{Z}_{p^{s} s}^{s}[i]\right) \cup \beta+$ $D\left(\mathbb{Z}_{p^{s}}[i]\right)$ is a complete bipartite connected components of $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$. Since $p \equiv 3(\bmod 4)$, we know that $(p, 2 \alpha)=1$ and $(p, 2 \beta)=1$. Therefore, $\alpha+D\left(\mathbb{Z}_{p^{s}}[i]\right)$ and $\beta+D\left(\mathbb{Z}_{p^{s}}[i]\right)$ are the independent sets in $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$. And by $\alpha+\beta=p+p i$, it is obvious that $\alpha+D\left(\mathbb{Z}_{p^{s}}[i]\right) \cup \beta+$ $D\left(\mathbb{Z}_{p^{s}}[i]\right)$ is a complete bipartite subgraph of $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$. For $\gamma \in R_{p} \backslash\{\alpha, \beta\}$, it is clear that $\alpha+\gamma \neq p+p i$ and $\beta+\gamma \neq p+p i$. Thus, $(p, \alpha+\gamma)=1$ and $(p, \beta+\gamma)=1$. Hence, for any $a+b i \in D\left(\mathbb{Z}_{p^{s}}[i]\right),(p, \alpha+\gamma+a+b i)=1$ and $(p, \beta+\gamma+a+b i)=1$, this means that $\alpha+\gamma+a+b i \in U\left(\mathbb{Z}_{p^{s}}[i]\right)$ and $\beta+\gamma+a+b i \in U\left(\mathbb{Z}_{p^{s}}[i]\right)$. Therefore, all vertices in $\alpha+D\left(\mathbb{Z}_{p^{s}}[i]\right) \bigcup \beta+D\left(\mathbb{Z}_{p^{s}}[i]\right)$ are not adjacent to $\bigcup_{\gamma \in R_{p} \backslash\{\alpha, \beta\}}\left(\gamma+D\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$. From Lemma 2.1 (ii), $\left|D\left(\mathbb{Z}_{p^{s}}[i]\right)\right|=p^{2 s-2}$. Consequently, the subgraph of $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$ induced by $\alpha+$ $D\left(\mathbb{Z}_{p^{s}}[i]\right) \bigcup \beta+D\left(\mathbb{Z}_{p^{s}}[i]\right)$ is a complete bipartite connected components of $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$, which gives $\operatorname{Aut}\left(\operatorname{Reg}\left(\Gamma\left(\alpha+D\left(\mathbb{Z}_{p^{s}}[i]\right) \bigcup \beta+D\left(\mathbb{Z}_{p^{s}}[i]\right)\right)\right) \cong S_{p^{2 s-2}} \backslash S_{2}\right.$.

Since $(p, 2)=1$, the equation $X+Y=p+p i$ has $\frac{p^{2}-1}{2}$ distinct pairs of solutions in R_{p}. Thus, $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$ consist of $\frac{p^{2}-1}{2}$ copies of $\alpha+D\left(\mathbb{Z}_{p^{s}}[i]\right) \cup \beta+D\left(\mathbb{Z}_{p^{s}}[i]\right)$. By Lemma 2.2 (iii), we get $\operatorname{Aut}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)\right) \cong\left(S_{p^{2 s-2}} \backslash S_{2}\right) \backslash S_{\frac{p^{2}-1}{2}}$.

Now we determine the automorphism groups of the unit graph, the unitary Cayley graph
and the total graph of $\mathbb{Z}_{p^{s}}[i]$ ，where $p \equiv 3(\bmod 4)$ ．
Theorem 4．4 Let $p \equiv 3(\bmod 4)$ and s be a positive integer．Then

$$
\operatorname{Aut}\left(G_{\mathbb{Z}_{p^{s}}[i]}\right) \cong S_{p^{2 s-2}} \backslash S_{p^{2}}
$$

and

$$
\operatorname{Aut}\left(G\left(\mathbb{Z}_{p^{s}}[i]\right)\right) \cong \operatorname{Aut}\left(T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)\right) \cong\left(\left(S_{p^{2 s-2}} \backslash S_{2}\right) 乙 S_{\frac{p^{2}-1}{2}}\right) \times S_{p^{2 s-2}}
$$

Proof The proof for $\operatorname{Aut}\left(G_{\mathbb{Z}_{p^{s}[i]}}\right) \cong S_{p^{2 s-2}}$ \ $S_{p^{2}}$ is similar to Theorem 3．3．In fact，$G_{\mathbb{Z}_{p} s[i]}$ is a complete p^{2}－partite graph $K_{p^{2 s-2}, p^{2 s-2}, \ldots, p^{2 s-2}}$ ．

By Lemma $2.2(\mathrm{i})$ ，we get $\operatorname{Aut}\left(G\left(\mathbb{Z}_{p^{s}}[i]\right)\right) \cong \operatorname{Aut}\left(T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)\right)$ ．We only need to show that $\operatorname{Aut}\left(T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)\right) \cong\left(\left(S_{p^{2 s-2}} \backslash S_{2}\right) 乙 S_{\frac{p^{2}-1}{2}}\right) \times S_{p^{2 s-2}}$ ．From Lemma 4.1 （ii）and（iii），we know that the unit elements and zero divisors have different degrees in graph $T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$ ．It is obvious that $D\left(\mathbb{Z}_{p^{s}}[i]\right)$ and $U\left(\mathbb{Z}_{p^{s}}[i]\right)$ are two connected components of $T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$ and $D\left(\mathbb{Z}_{p^{s}}[i]\right)$ is closed under addition．Hence，the connected component of $T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)$ induced by the zero divisors is a complete subgraph．By Theorem 4．3， $\operatorname{Aut}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)\right) \cong\left(S_{p^{2 s-2}} \backslash S_{2}\right)$ 亿 $S_{\frac{p^{2}-1}{2}}$ ．Therefore， $\operatorname{Aut}\left(T\left(\Gamma\left(\mathbb{Z}_{p^{s}}[i]\right)\right)\right) \cong\left(\left(S_{p^{2 s-2}} \backslash S_{2}\right)\right.$ \} S _ { \frac { p ^ { 2 } - 1 } { 2 } }) \times S _ { p ^ { 2 s - 2 } } , by Lemma 2 . 2 （iii）．

5．Automorphisms of some graphs for $\mathbb{Z}_{p^{s}}[i], p \equiv 1(\bmod 4)$

Let $p \equiv 1(\bmod 4)$ ．Then $p=\pi \bar{\pi}$ for some π in $\mathbb{Z}[i]$ ，where $\bar{\pi}$ is the complex conjugate of π ． In［10］，we know that $\mathbb{Z}[i] /\left(\pi^{s}\right) \cong \mathbb{Z}_{p^{s}}$ ．Then by Chinese remainder theorem，

$$
\mathbb{Z}_{p^{s}}[i] \cong \mathbb{Z}[i] /\left(p^{s}\right) \cong \mathbb{Z}[i] /\left(\pi^{s}\right) \times \mathbb{Z}[i] /\left(\bar{\pi}^{s}\right) \cong \mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}
$$

In this section，we use $\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}$ instead of $\mathbb{Z}_{p^{s}}[i]$ ．It is well known that $U\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)=$ $U\left(\mathbb{Z}_{p^{s}}\right) \times U\left(\mathbb{Z}_{p^{s}}\right)$ ．Then by Lemma 2.1 （iii）and the definitions of the unit graph，the unitary Cayley graph，it is easy to have the following lemma．

Lemma 5．1 Let $(a, b) \in \mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}$ ，where $p \equiv 1(\bmod 4)$ and s is a positive integer．Then，
（i）$N_{G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}}(a, b)=(a, b)+U\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)$ ；
（ii）If $(a, b) \in D\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)$ ，then $N_{G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)}(a, b)=-(a, b)+U\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)$ ；
（iii）If $(a, b) \in U\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)$ ，then $N_{G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)}(a, b)=\left(-(a, b)+U\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)\right) \backslash\{(a, b)\}$ ．
Lemma 5．2 Let $p \equiv 1(\bmod 4)$ and s be a positive integer．Then $G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}$ and $G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)$ are the union of some independent sets．In particular，

$$
V\left(G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}\right)=V\left(G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)\right)=\bigcup_{a, b=0}^{p-1}\left((a, b)+D\left(\mathbb{Z}_{p^{s}}\right) \times D\left(\mathbb{Z}_{p^{s}}\right)\right)
$$

Proof The proof is similar to Lemma 4．2．
In order to get the automorphism groups of $G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}, G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)$ and $T\left(\Gamma\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)\right)$ ， we need to define the following mappings．Let

$$
\begin{aligned}
f: \mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}} & \rightarrow \mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}} \\
(a, b) & \mapsto(b, a) .
\end{aligned}
$$

Then $\left\{f, f^{2}=e\right\}$ is a cycle group with order 2 , denoted by S_{2}. Let Z_{p} be a subset of $\mathbb{Z}_{p^{s}}$, set $Z_{p}=\{a \mid 0 \leq a \leq p-1\}$. Let S_{p} be the symmetric group over the set Z_{p} and $g \in S_{p}$, define

$$
\begin{aligned}
h_{e, g}: Z_{p} \times Z_{p} & \rightarrow Z_{p} \times Z_{p} \\
(a, b) & \mapsto(a, g(b)) .
\end{aligned}
$$

Set $H_{p}=\left\{h_{e, g} \mid g \in S_{p}\right\}$. Similarly, we have

$$
\begin{aligned}
h_{g, e}: Z_{p} \times Z_{p} & \rightarrow Z_{p} \times Z_{p} \\
(a, b) & \mapsto(g(a), b) .
\end{aligned}
$$

Note that $h_{g, e}=f h_{e, g} f$.
We will denote by $\operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right)$ the automorphism group of subgraph of $G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}$ induced by $Z_{p} \times Z_{p}$. It is easy to check that the restriction of S_{2} to $Z_{p} \times Z_{p}$ and H_{p} are subgroups of $\operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right)$. Let $\left\langle S_{2} \cup H_{p}\right\rangle$ denote the subgroup of $\operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right)$ generated by $S_{2} \cup H_{p}$.

Let $S_{2} \imath S_{\frac{p-1}{2}}$ be the symmetric group over a partition $Z_{p}^{*}=\cup_{a+b=p}\{a, b\}$, where $Z_{p}^{*}=Z_{p} \backslash\{0\}$ and $g \in S_{2} \backslash S_{\frac{p-1}{2}}$, define

$$
\begin{aligned}
k_{e, g}: Z_{p} \times Z_{p} & \rightarrow Z_{p} \times Z_{p} \\
(a, b) & \mapsto(a, g(b)), \quad b \neq 0, \\
(a, b) & \mapsto(a, b), \quad b=0 .
\end{aligned}
$$

Set $K_{p}=\left\{k_{e, g} \left\lvert\, g \in S_{2}\left\{S_{\frac{p-1}{2}}\right\}\right.\right.$. Similar to $h_{g, e}$, we have

$$
\begin{array}{rlrl}
k_{g, e}: Z_{p} \times Z_{p} & \rightarrow Z_{p} \times Z_{p} & \\
(a, b) & \mapsto(g(a), b), \quad a \neq 0, \\
(a, b) & \mapsto(a, b), & a=0 .
\end{array}
$$

Note that $k_{g, e}=f k_{e, g} f$. We will denote by $\operatorname{Aut}\left(G\left(Z_{p} \times Z_{p}\right)\right)$ the automorphism group of subgraph of $G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)$ induced by $Z_{p} \times Z_{p}$. It is easy to check that the restriction of S_{2} to $Z_{p} \times Z_{p}$ and K_{p} are subgroups of $\operatorname{Aut}\left(G\left(Z_{p} \times Z_{p}\right)\right)$. Let $\left\langle S_{2} \cup K_{p}\right\rangle$ denote the subgroup of $\operatorname{Aut}\left(G\left(Z_{p} \times Z_{p}\right)\right)$ generated by $S_{2} \cup K_{p}$.

Theorem 5.3 Let $p \equiv 1(\bmod 4)$. Then

$$
\operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right)=\left\langle S_{2} \cup H_{p}\right\rangle
$$

and

$$
\operatorname{Aut}\left(G\left(Z_{p} \times Z_{p}\right)\right)=\left\langle S_{2} \cup K_{p}\right\rangle
$$

Proof It is obvious that $\operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right) \supseteq\left\langle S_{2} \cup H_{p}\right\rangle$. Let $\sigma \in \operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right)$. We next show that σ can be generated by finite composite of elements in $S_{2} \cup H_{p}$. Suppose that $\sigma(0,0)=(a, b)$. Then there exist $g_{1}, g_{2} \in S_{p}$ such that $g_{1}(a)=0$ and $g_{2}(b)=0$. Thus, $h_{g_{2}, e} h_{e, g_{1}} \sigma(0,0)=$ $h_{g_{2}, e} h_{e, g_{1}}(a, b)=(0,0)$.

Set $\sigma_{1}=h_{g_{2}, e} h_{e, g_{1}} \sigma$. Since automorphisms preserve adjacency and $(0,1) \notin N_{G_{Z_{p} \times Z_{p}}}(0,0)$, we know that $\sigma_{1}(0,1) \notin N_{G_{Z_{p} \times Z_{p}}}(0,0)$. Then $\sigma_{1}(0,1) \in\left\{(a, b) \in Z_{p} \times Z_{p} \mid a=0, b \neq 0\right.$ or $a \neq$
$0, b=0\}$. Without loss of generality we can assume $\sigma_{1}(0,1)=\left(a_{1}, 0\right)$. Then there exists $g_{3} \in S_{p}$ such that $g_{3}(0)=0$ and $g_{3}\left(a_{1}\right)=1$. Thus, we get $f h_{g_{3}, e} \sigma_{1}(0,0)=f h_{g_{3}, e}(0,0)=(0,0)$ and $f h_{g_{3}, e} \sigma_{1}(0,1)=f h_{g_{3}, e}\left(a_{1}, 0\right)=f(1,0)=(0,1)$.

Set $\sigma_{2}=f h_{g_{3}, e} \sigma_{1}$. Since $\sigma_{2}\left(N_{G Z_{p} \times Z_{p}}(0,0)\right)=N_{G_{Z_{p} \times Z_{p}}}(0,0)$ and $\sigma_{2}\left(N_{G z_{p} \times Z_{p}}(0,1)\right)=$ $N_{G_{Z_{p} \times Z_{p}}}(0,1)$, we know that $\sigma_{2}\left(Z_{p} \times Z_{p} \backslash N_{G_{Z_{p} \times Z_{p}}}(0,0)\right)=Z_{p} \times Z_{p} \backslash N_{G_{Z_{p} \times Z_{p}}}(0,0)$ and $\sigma_{2}\left(Z_{p} \times\right.$ $\left.Z_{p} \backslash N_{G_{Z_{p} \times Z_{p}}}(0,1)\right)=Z_{p} \times Z_{p} \backslash N_{G_{Z_{p} \times Z_{p}}}(0,1)$. In fact,

$$
\left(Z_{p} \times Z_{p} \backslash N_{G_{Z_{p} \times Z_{p}}}(0,0)\right) \cap\left(Z_{p} \times Z_{p} \backslash N_{G_{Z_{p} \times Z_{p}}}(0,1)\right)=\{(0, b) \mid 0 \leq b \leq p-1\}
$$

Then there exists $g_{4} \in S_{p}$ such that $h_{e, g_{4}} \sigma_{2}(0, b)=(0, b)$, where $0 \leq b \leq p-1$.
Set $\sigma_{3}=h_{e, g_{4}} \sigma_{2}$. Similarly, there exists $g_{5} \in S_{p}$ such that $h_{g_{5}, e} \sigma_{3}(a, 0)=(a, 0)$ and $h_{g_{5}, e} \sigma_{3}(0, b)=(0, b)$, where $0 \leq a, b \leq p-1$.

Set $\sigma_{4}=h_{g_{5}, e} \sigma_{3}$. Since automorphisms preserve adjacency and

$$
\left(Z_{p} \times Z_{p} \backslash N_{G_{Z_{p} \times Z_{p}}}(0, b)\right) \cap\left(Z_{p} \times Z_{p} \backslash N_{G_{Z_{p} \times Z_{p}}}(a, 0)\right)=\{(0,0),(a, b)\}
$$

we can get $\sigma_{4}(a, b)=(a, b)$, where $0 \leq a, b \leq p-1$. Therefore, σ_{4} is the identity element e of $\operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right)$. This gives $e=h_{g_{5}, e} h_{e, g_{4}} f h_{g_{3}, e} h_{g_{2}, e} h_{e, g_{1}} \sigma$. Hence $\sigma=h_{e, g_{1}}^{-1} h_{g_{2}, e}^{-1} h_{g_{3}, e}^{-1} f h_{e, g_{4}}^{-1} h_{g_{5}, e}^{-1}$, which gives σ can be generated by finite composite of elements in $S_{2} \cup H_{p}$.

For any $\sigma \in \operatorname{Aut}\left(G\left(Z_{p} \times Z_{p}\right)\right)$, by Lemma 5.1, we know that $N_{G\left(Z_{p} \times Z_{p}\right)}(0,0)=Z_{p}^{*} \times Z_{p}^{*}$ and $\sigma\left(Z_{p}^{*} \times Z_{p}^{*}\right)=Z_{p}^{*} \times Z_{p}^{*}$. Since automorphism preserves adjacency, $N_{G\left(Z_{p} \times Z_{p}\right)}(\sigma(0,0))=$ $\sigma\left(N_{G\left(Z_{p} \times Z_{p}\right)}(0,0)\right)=\sigma\left(Z_{p}^{*} \times Z_{p}^{*}\right)=Z_{p}^{*} \times Z_{p}^{*}=N_{G\left(Z_{p} \times Z_{p}\right)}(0,0)$. Then, $\sigma(0,0)=(0,0)$. Similar to the proof of $\operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right), \operatorname{Aut}\left(G\left(Z_{p} \times Z_{p}\right)\right) \cong\left\langle S_{2} \cup K_{p}\right\rangle$, which completes the proof.

Since every non-zero element in $\mathbb{Z}_{p^{s}}$ can be written uniquely as $t_{0}+t_{1} p+\cdots+t_{s-1} p^{s-1}$, where $t_{i} \in\{0,1, \ldots, p-1\}, i \in\{0,1, \ldots, s-1\}$, and $U\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)=U\left(\mathbb{Z}_{p^{s}}\right) \times U\left(\mathbb{Z}_{p^{s}}\right)$, it is easy to get the following lemma.

Lemma 5.4 Let $p \equiv 1(\bmod 4)$ and s be a positive integer. Then for $\alpha, \beta \in \mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}$, the following conditions are equivalent.
(i) $N_{G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p} s}}(\alpha)=N_{G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}}(\beta)$.
(ii) $\alpha, \beta \in(a, b)+D\left(\mathbb{Z}_{p^{s}}\right) \times D\left(\mathbb{Z}_{p^{s}}\right)$ for some $a, b \in\{0,1, \ldots, p-1\}$.
(iii) $N_{G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)}(\alpha)=N_{G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)}(\beta)$.

Now we show the automorphism groups of the unit graph, the unitary Cayley graph and the total graph of $\mathbb{Z}_{p^{s}}[i]$, where $p \equiv 1(\bmod 4)$.

Theorem 5.5 Let $p \equiv 1(\bmod 4)$ and s be a positive integer. Then,

$$
\operatorname{Aut}\left(G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}\right) \cong\left(S_{p^{2 s-2}}\right)^{p^{2}} \rtimes\left\langle S_{2} \cup H_{p}\right\rangle
$$

and

$$
\begin{aligned}
\operatorname{Aut}\left(G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)\right) & \cong \operatorname{Aut}\left(T\left(\Gamma\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)\right)\right) \\
& \cong\left(S_{p^{2 s-2}}\right)^{p^{2}} \rtimes\left\langle S_{2} \cup K_{p}\right\rangle
\end{aligned}
$$

Proof Recall that $\left|D\left(\mathbb{Z}_{p^{s}}\right) \times D\left(\mathbb{Z}_{p^{s}}\right)\right|=p^{2 s-2}$. Let $\left(S_{p^{2 s-2}}\right)^{p^{2}}$ be a product of symmetric groups over $\bigcup_{a, b=0}^{p-1}\left((a, b)+D\left(\mathbb{Z}_{p^{s}}\right) \times D\left(\mathbb{Z}_{p^{s}}\right)\right)$. We claim that $\operatorname{Aut}\left(G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}} s}\right) /\left(S_{p^{2 s-2}}\right)^{p^{2}} \cong \operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right)$.

Let

$$
\begin{aligned}
\varphi: \operatorname{Aut}\left(G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}\right) & \rightarrow \operatorname{Aut}\left(G_{Z_{p} \times Z_{p}}\right) \\
\sigma & \left.\mapsto \sigma\right|_{Z_{p} \times Z_{p}},
\end{aligned}
$$

where $\left.\sigma\right|_{Z_{p} \times Z_{p}}$ is the restriction of σ to $Z_{p} \times Z_{p}$. By Lemma 5.4, it is easily seen that φ is an epimorphism and $\operatorname{ker}(\varphi)=\left(S_{p^{2 s-2}}\right)^{p^{2}}$. Therefore, $\operatorname{Aut}\left(G_{\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}}\right) \cong\left(S_{p^{2 s-2}}\right)^{p^{2}} \rtimes\left\langle S_{2} \cup H_{p}\right\rangle$ by Theorem 5.3.

The proof for the case $G\left(\mathbb{Z}_{p^{s}} \times \mathbb{Z}_{p^{s}}\right)$ is similar.
Acknowledgements We thank the referees for their time and comments.

References

[1] D. F. ANDERSON, P. S. LIVINGSTON. The zero-divisor graph of a commutative ring. J. Algebra, 1999, 217(2): 434-447.
[2] Jinming ZHOU, Dein WONG, Xiaobin MA. Automorphisms of the zero-divisor graph of the full matrix ring. Linear Multilinear Algebra, 2017, 65(5): 991-1002.
[3] M. MIRZARGAR, P. P. PACH, A. R. ASHRAFI. The automorphism group of commuting graph of a finite group. Bull. Korean Math. Soc., 2014, 51(4): 1145-1153.
[4] I. J. DEJTER, R. E. GIUDICI. On unitary Cayley graphs. J. Combin. Math. Combin. Comput, 1995, 18: 121-124.
[5] R. P. GRIMALDI. Graphs from rings. Congr. Numer, 1990, 71: 95-104.
[6] D. F. ANDERSON, A. BADAWI. The total graph of a commutative ring. J. Algebra, 2008, 320(7): 27062719.
[7] K. KHASHYARMANESH, M. R. KHORSANDI. A generalization of the unit and unitary Cayley graphs of a commutative ring. Acta Math. Hungar, 2012, 137(4): 242-253.
[8] A. BAHRAMI, R. JAHANI-NEZHAD. Unit and unitary Cayley graphs for the ring of Gaussian integers modulo n. Quasigroups Related Systems, 2017, 25: 189-200.
[9] S. AKBARI, D. KIANI, F. MOHAMMADI, et al. The total graph and regular graph of a commutative ring. J. Pure Appl. Algebra, 2009, 213(12): 2224-2228.
[10] J. T. CROSS. The Euler ϕ-function in the Gaussian integers. Amer. Math. Monthly, 1983, 90(8): 518-528.
[11] L. W. BEINEKE, J. W. ROBIN, J. C. PETER. Topics in Algebraic Graph Theory. Cambridge University Press, Cambridge, 2004.

