Journal of Mathematical Research with Applications May, 2020, Vol. 40, No. 3, pp. 263–274 DOI:10.3770/j.issn:2095-2651.2020.03.003 Http://jmre.dlut.edu.cn

Recollements, Tilting Homological Dimensions and Higher-Dimensional Auslander-Reiten Theory

Xuerong FU¹, Hailou YAO^{2,*}

1. College of Mathematics and Statistics, Heze University, Shandong 274015, P. R. China;

2. College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China

Abstract In this paper we mainly investigate the behavior of tilting homological dimensions of the categories involved in the recollement of abelian categories $(\mathscr{A}, \mathscr{B}, \mathscr{C})$. In particular, when abelian category \mathscr{B} is hereditary, we give the connections between *n*-almost split sequences in the categories of $(\mathscr{A}, \mathscr{B}, \mathscr{C})$.

Keywords recollement; tilting homological dimension; n-almost split sequence

MR(2010) Subject Classification 16E10; 16G70; 18E10

1. Introduction

Throughout, we denote by \mathbb{N} , K and Id the set of nonnegative integers, a fixed field and the identity functor, respectively. Recall that a recollement situation between abelian categories \mathscr{A} , \mathscr{B} and \mathscr{C} is a diagram

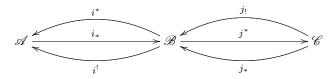


Diagram 1 The recollement of abelian categories

satisfying the following conditions:

(r1) $(i^*, i_*, i^!)$ and $(j_!, j^*, j_*)$ are adjoint triples;

(r2) the functors $i_*, j_!$ and j_* are fully faithful;

(r3) $\text{Im}_{i_*} = \text{Ker} j^*$, which plays an important role in algebraic geometry, representation theory, polynomial functor theory, ring theory and so on. The readers may refer to [1–6] and references therein.

In analogy to the theories of tilting and almost split sequence for artin algebras [3,7,8], the corresponding version of abelian categories were also studied by many authors [1,9]. Happel, Beligiannis and Reiten, and recently Hügel, Koenig and Liu, studied connections between recollements of triangulated categories in connection with tilting theory, homological conjectures and

Received January 16, 2019; Accepted October 29, 2019

Supported by the National Natural Science Foundation of China (Grant No. 11671126).

* Corresponding author

E-mail address: xuerongfu.0098@163.com (Xuerong FU); yaohl@bjut.edu.cn (Hailou YAO)

stratifications of derived categories of rings, see for example [1, 10, 11]. In 2014, Psaroudakis [6] investigated global, finitistic, and representation dimensions of recollements of abelian categories.

Let \mathscr{B} be an abelian category with enough projectives. Then each object has a projective resolution. It follows that every object has a tilting projective resolution. As a generalization of the usual projective dimension of $M \in \mathscr{B}$, we now give the notion of tilting projective dimension as follows. t.proj.dim(M) is defined to be the least number n such that there is a tilting projective resolution

$$0 \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

where all P_i 's are tilting projective. If there is no such n, we say that the tilting projective dimension of M is infinite, denoted by $t.proj.dim(M) = \infty$. Hence it is natural to define the tilting global dimension of \mathscr{B} as

$$t.gl.dim(\mathscr{B}) = \sup\{t.proj.dim(M) \mid \forall M \in \mathscr{B}\}.$$

The tilting projective dimension is a generalization of projective dimension in the category of modules. Moreover, tilting objects in an abelian category is also a generalization of canonical tilting modules. Hence motivated by [6], we study the connections between the tilting global dimension of the categories involved in a recollement $(\mathscr{A}, \mathscr{B}, \mathscr{C})$.

The organization and the main results of the paper are as follows. In Section 2, we focus on tilting global dimensions of abelian categories involved in a recollement, which can be viewed as a generation of global dimension (compare with [6, Theorem 4.1]).

Theorem 1.1 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories such that \mathscr{B} and \mathscr{C} have enough projective and injective objects. Then we have an upper bound for the tilting global dimension of \mathscr{B}

 $\mathrm{t.gl.dim}\mathscr{B} \leq \mathrm{t.gl.dim}\mathscr{A} + \mathrm{t.gl.dim}\mathscr{C} + \sup\{\mathrm{t.proj.dim}_{\mathscr{B}}i_*(P) \mid P \in \mathrm{Tproj}(\mathscr{A})\} + 1,$

where $\operatorname{Tproj}(\mathscr{A})$ is the tilting projective subcategory.

Recently, in the context of higher dimensional Auslander-Reiten theory, n-almost split sequences have attracted considerable attention as a generation of the classical almost split sequence. Guo [12] found a necessary and sufficient condition for the quadratic dual of n-translation algebras to have n-almost split sequences in the category of its projective modules. Recall from [9, Chapter I.4] and [13, Section IV.1] that a short exact sequence

$$0 \longrightarrow X \xrightarrow{\mu} E \xrightarrow{\pi} Y \longrightarrow 0$$

in an abelian category \mathscr{B} is called almost split if it is non-split, X and Y are indecomposable and for $f \in \operatorname{Hom}_{\mathscr{B}}(W, Y)$ which is not split epimorphism there is $g \in \operatorname{Hom}_{\mathscr{B}}(W, E)$ such that $f = \pi \circ g$. Then we say that an abelian category \mathscr{B} has almost split sequences if for all indecomposable non-projective objects B there is an exact sequence

$$0 \longrightarrow B'' \longrightarrow B' \longrightarrow B \longrightarrow 0$$

which satisfies the above conditions. When \mathscr{B} is hereditary, we know from [6] that \mathscr{A} and \mathscr{C} are also hereditary. So it is natural for us to consider the properties of almost split sequences in a recollement $(\mathscr{A}, \mathscr{B}, \mathscr{C})$.

In Section 3, we aim to provide a criterion to decide when *n*-almost split sequences in \mathscr{B} can be preserved in \mathscr{A} and \mathscr{C} .

Theorem 1.2 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories with tilting hereditary abelian category \mathscr{B} . If \mathscr{B} has n-almost split sequences, and the functor i^* is exact, then \mathscr{A} and \mathscr{C} have (at most) n-almost split sequences.

2. Recollements related to tilting theory and the tilting global dimension

Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories. Some properties of a recollement are listed as follows. The readers may refer to [3, 5, 11], [6, Remarks 2.2-2.5] and references therein.

(i) The functors $j^* : \mathscr{B} \to \mathscr{C}$ and $i_* : \mathscr{A} \to \mathscr{B}$ are exact. Moreover, $i^*i_* \simeq \mathrm{Id}_{\mathscr{A}}$, $\mathrm{Id}_{\mathscr{A}} \simeq i'i_*$, $j^*j_* \simeq \mathrm{Id}_{\mathscr{C}}$ and $\mathrm{Id}_{\mathscr{C}} \simeq j^*j_!$.

(ii) If the pair $(j_!, j^*)$ is an adjoint functor pair and the functor j^* is exact, then the left adjoint functor $j_!$ preserves projective objects.

(iii) If the pair (j^*, j_*) is an adjoint functor pair and the functor j_* is exact, then the left adjoint functor j^* preserves projective objects.

(iv) If the pair $(j_!, j^*)$ is an adjoint functor pair and the functor $j_!$ is exact, then the right adjoint functor j^* preserves injective objects.

(v) If the pair (j^*, j_*) is an adjoint functor pair and the functor j^* is exact, then the right adjoint functor j_* preserves injective objects.

(vi) For any adjoint functor pair, the left adjoint functor preserves the right exactness and commutes with any direct sums; the right adjoint functor preserves the left exactness and commutes with any direct products, such as for the adjoint pair (j_1, j^*) , we have that $\operatorname{Add}(j_1(M)) = j_1(\operatorname{Add}(M))$ and $\operatorname{Prod}(j^*(N)) = j^*(\operatorname{Prod}(N))$.

Inspired by [13–15], we introduce the following notion.

Definition 2.1 Let T be a tilting object in \mathscr{B} and $\mathcal{T}(T)$ be a torsion class of the torsion pair $(\mathcal{T}(T), \mathcal{F}(T))$. An object M in \mathscr{B} is called tilting projective if $\operatorname{Hom}_{\mathscr{B}}(M, -)$ preserves the exactness of sequences in $\mathcal{T}(T)$.

Remark 2.2 (1) Each projective object is tilting projective; but the converse is not true. In [13, Example 1.2(d)], the tilting object $T = 100 \oplus 111 \oplus 001$ is a tilting projective but not projective.

(2) An object $M \in \mathscr{B}$ is tilting projective if and only if $\operatorname{Ext}^{1}_{\mathscr{B}}(M, L) = 0$ for any $L \in \mathcal{T}(T)$.

From now on we always suppose that \mathscr{B} has enough projective and injective objects. Thus we have the derived functors $\operatorname{Ext}^n_{\mathscr{B}}(M,-)$ for $\operatorname{Hom}^n_{\mathscr{B}}(M,-)$ and $\operatorname{Ext}^n_{\mathscr{B}}(-,N)$ for $\operatorname{Hom}^n_{\mathscr{B}}(-,N)$.

Lemma 2.3 Let T be a tilting object in \mathscr{B} . An object M is tilting projective if and only if $\operatorname{Ext}^{1}_{\mathscr{B}}(M,L) = 0$ for any $L \in \mathcal{T}(T)$.

Proof \Rightarrow . For any $L \in \mathcal{T}(T)$, there exists an exact sequence

$$0 \longrightarrow L \longrightarrow E \longrightarrow N \longrightarrow 0$$

with E injective. This sequence is in $\mathcal{T}(T)$ by our assumption. Applying the Hom functor $\operatorname{Hom}_{\mathscr{B}}(M, -)$, we have the following long sequence

 $0 \longrightarrow \operatorname{Hom}_{\mathscr{B}}(M,L) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(M,E) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(M,N) \longrightarrow \operatorname{Ext}^{1}_{\mathscr{B}}(M,L) \longrightarrow \cdots$

By Definition 2.1, we obtain $\operatorname{Ext}_{\mathscr{B}}^{1}(M, L) = 0$ for any $L \in \mathcal{T}(T)$.

 \Leftarrow . Since $\operatorname{Ext}^{1}_{\mathscr{B}}(M,L) = 0$ for any $L \in \mathcal{T}(T)$, it follows that for any short exact sequence

$$0 \longrightarrow N_1 \longrightarrow N \stackrel{h}{\longrightarrow} N_2 \longrightarrow 0$$

in $\mathcal{T}(T)$ and any homomorphism $f: M \to N_2$, there exists a morphism $g: M \to N$ such that $f = g \circ h$. Applying the functor $\operatorname{Hom}_{\mathscr{B}}(M, -)$, we have that the sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{B}}(M, N_1) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(M, N) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(M, N_2) \longrightarrow 0$$

is exact. Hence M is tilting projective. \Box

Lemma 2.4 Let T be a tilting object in \mathscr{B} and $M \in \mathscr{B}$. Then t.proj.dim $M \leq n$ if and only if $\operatorname{Ext}_{\mathscr{B}}^{n+1}(M,N) = 0$ for any $N \in \mathcal{T}(T)$.

Proof \Leftarrow . By the definition of the tilting projective dimension, if there exists an exact sequence

$$0 \longrightarrow X \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

where all P_i 's are tilting projective. Now we only need to prove that X is also tilting projective. By the Dimension-Shift, we have the following isomorphism

 $\operatorname{Ext}_{\mathscr{B}}^{n+1}(M,N) \cong \operatorname{Ext}_{\mathscr{B}}^{1}(X,N) = 0.$

Using Lemma 2.3, we obtain that X is tilting projective.

 \Rightarrow . We will prove the necessity by using induction on n: If t.proj.dim $M \leq 1$, then there is an exact sequence

$$0 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

with tilting projectives P_0 and P_1 . By applying $\operatorname{Hom}_{\mathscr{B}}(-, N)$, we obtain that

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{B}}(M, N) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(P_0, N) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(P_1, N) \longrightarrow \operatorname{Ext}^1_{\mathscr{B}}(M, N)$$

$$\rightarrow \operatorname{Ext}^{1}_{\mathscr{B}}(P_{0}, N) \rightarrow \cdots$$

Thus, $\operatorname{Ext}^2_{\mathscr{B}}(M,N) \cong \operatorname{Ext}^1_{\mathscr{B}}(P_1,N) = 0$ for any $N \in \mathcal{T}(T)$. We now suppose the result holds for t.proj.dim $M \leq n-1$, then there exists an exact sequence

$$0 \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0.$$

266

However, by the assumption that ${\mathscr B}$ has enough injective objects, so we can obtain an exact sequence

$$0 \longrightarrow N \longrightarrow E \longrightarrow N' \longrightarrow 0$$

with E injective. It follows that N' and E are in $\mathcal{T}(T)$ since T is tilting. Thus we have

$$\operatorname{Ext}_{\mathscr{B}}^{n+1}(M,N) \cong \operatorname{Ext}_{\mathscr{B}}^{n}(M,N') = 0.$$

By induction assumption the necessity holds. \Box

Lemma 2.5 Let $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow M_4 \longrightarrow 0$ be an exact sequence in an abelian category \mathscr{B} with enough projective and injective objects.

- (1) If $M_4 = 0$, then we have
- (i) if t.proj.dim M_1 < t.proj.dim M_2 , then t.proj.dim M_3 = t.proj.dim M_2 ;
- (ii) if t.proj.dim M_1 > t.proj.dim M_2 , then t.proj.dim M_3 = t.proj.dim M_1 + 1;
- (iii) if t.proj.dim M_1 = t.proj.dim M_2 , then t.proj.dim $M_3 \leq$ t.proj.dim M_1 + 1.
- (2) If $M_4 \neq 0$, then

 $t.proj.dim M_3 \leq \max\{t.proj.dim M_1 + 1, t.proj.dim M_2, t.proj.dim M_4\}.$

Proof When $M_4 = 0$, for any $N \in \mathcal{T}(T)$ and $n \ge 0$, there exists a long exact sequence as follows

$$\cdots \longrightarrow \operatorname{Ext}^{n}_{\mathscr{B}}(M_{3}, N) \longrightarrow \operatorname{Ext}^{n}_{\mathscr{B}}(M_{2}, N) \longrightarrow \operatorname{Ext}^{n}_{\mathscr{B}}(M_{1}, N) \longrightarrow \operatorname{Ext}^{n+1}_{\mathscr{B}}(M_{3}, N)$$
$$\longrightarrow \operatorname{Ext}^{n+1}_{\mathscr{B}}(M_{2}, N) \longrightarrow \operatorname{Ext}^{n+1}_{\mathscr{B}}(M_{1}, N) \longrightarrow \cdots$$

Case 1. If $m \ge n$, and $\operatorname{Ext}_{\mathscr{B}}^{m}(M_{1}, N) = 0$ but $\operatorname{Ext}_{\mathscr{B}}^{n}(M_{2}, N) \ne 0$, then $\operatorname{Ext}_{\mathscr{B}}^{n}(M_{3}, N) \ne 0$. So for j > 0 we have the isomorphism

$$\operatorname{Ext}_{\mathscr{B}}^{n+j}(M_3, N) \cong \operatorname{Ext}_{\mathscr{B}}^{n+j}(M_2, N).$$

Thus, t.proj.dim $M_3 = t.proj.dim M_2$.

Case 2. If $m \ge n$, and $\operatorname{Ext}_{\mathscr{B}}^m(M_2, N) = 0$ but $\operatorname{Ext}_{\mathscr{B}}^n(M_1, N) \ne 0$, then $\operatorname{Ext}_{\mathscr{B}}^{n+1}(M_3, N) \ne 0$ and for any $j = 1, 2, \ldots, \operatorname{Ext}_{\mathscr{B}}^{n+j}(M_3, N) \cong \operatorname{Ext}_{\mathscr{B}}^{n+j-1}(M_1, N)$. Hence

 $t.proj.dim M_3 = t.proj.dim M_1 + 1.$

Case 3. If $m \ge n$, and $\operatorname{Ext}_{\mathscr{B}}^m(M_2, N) = \operatorname{Ext}_{\mathscr{B}}^m(M_1, N) = 0$, then

$$\operatorname{Ext}_{\mathscr{B}}^{n+1}(M_3, N) = 0 = \operatorname{Ext}_{\mathscr{B}}^{n+2}(M_3, N).$$

So t.proj.dim $M_3 \leq$ t.proj.dim $M_1 + 1$.

The assertion for $M_4 \neq 0$ follows directly from the above result. \Box

For convenience, we define the \mathscr{A} -relative tilting global dimension of \mathscr{B} by

$$\text{t.gl.dim}_{\mathscr{A}}\mathscr{B} := \sup\{ \text{t.proj.dim}_{\mathscr{B}}i_*(A) \mid \forall A \in \mathscr{A} \}$$

Lemma 2.6 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories such that \mathscr{C} has enough projective objects. Then

$$\operatorname{t.proj.dim}_{\mathscr{B}} j_!(C) \leq \operatorname{t.proj.dim}_{\mathscr{C}} C + \operatorname{t.gl.dim}_{\mathscr{A}} \mathscr{B} + 1.$$

267

Proof If t.proj.dim_{\mathscr{C}} $C = \infty$ or t.gl.dim_{\mathscr{A}} $\mathscr{B} = \infty$, then the assertion is obvious. We only have to consider the case finite dimension. We will prove by using induction on t.proj.dim_{\mathscr{C}} C. Write t.gl.dim_{\mathscr{A}} $\mathscr{B} = n$. Firstly we suppose that C is a tilting projective object in \mathscr{C} , then it follows from Lemma 2.3 that $j_!(C)$ is a tilting projective object in \mathscr{B} since $j_!$ is fully faithful. And so the result holds. Secondly we assume that t.proj.dim_{\mathscr{C}} C = m and that the result also holds for any object of \mathscr{C} with the tilting projective dimension less than m, i.e., t.proj.dim_{\mathscr{B}} $j_!(C') \leq$ t.proj.dim_{\mathscr{C}} C' + n + 1 for any object $C' \in \mathscr{C}$ and t.proj.dim_{\mathscr{C}} C' < m. Since t.proj.dim_{\mathscr{C}} C < m, it follows that there exists an exact sequence as follows

$$0 \longrightarrow T_m \xrightarrow{t_m} T_{m-1} \longrightarrow \cdots \longrightarrow T_1 \xrightarrow{t_1} T_0 \xrightarrow{t_0} C \longrightarrow 0$$

with $T_i \in \text{Tproj}\mathscr{C}$ (the subcategory of all tilting projective objects of \mathscr{C}). If we take $K_0 = \text{Ker}t_0$, then it is easy to see that t.proj.dim $\mathscr{C}K_0 < m$. By the induction hypothesis, we can obtain that t.proj.dim $\mathscr{B}j_!(K_0) \leq \text{t.proj.dim}_{\mathscr{C}}K_0 + n + 1$. Applying the right exact functor $j_!$ to the short exact sequence

$$0 \longrightarrow K_0 \xrightarrow{i_0} T_0 \xrightarrow{a_0} C \longrightarrow 0 ,$$

we have that

$$0 \longrightarrow L_1(j_!C) \longrightarrow j_!(K_0) \xrightarrow{j_!i_0} j_!(T_0) \xrightarrow{j_!a_0} j_!(C) \longrightarrow 0$$
(2.1)

with $\operatorname{Ker}(j_!a_0) = K'_0$. However, since $j^* : \mathscr{B} \to \mathscr{C}$ is exact and $\operatorname{Id}_{\mathscr{C}} \simeq j^*j_!$ it follows that $j^*\operatorname{Ker}(j_!i_0) \cong \operatorname{Ker}(i_0)$. Thus, $j^*\operatorname{Ker}(j_!i_0) = 0$, and hence t.proj.dim $_{\mathscr{B}}L_1(j_!C) \leq n$. Thus from Lemma 2.3 and the short exact sequence

$$0 \longrightarrow L_1 j_!(C) \longrightarrow j_!(K_0) \longrightarrow \operatorname{Ker} j_!(a_0) \longrightarrow 0$$

we obtain that t.proj.dim_{\mathscr{B}}Ker $(j_{!}a_{0}) \leq m+n$. Therefore, it follows from (2.1) that

t.proj.dim
$$_{\mathscr{B}} j_!(C) \le m + n + 1$$

since $j_!(T_0) \in \text{Tproj}\mathcal{B}$. \Box

Theorem 2.7 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories such that \mathscr{B} and \mathscr{C} have enough projective and injective objects. Then we have an upper bound for the tilting global dimension of \mathscr{B}

 $\text{t.gl.dim}\mathscr{B} \leq \text{t.gl.dim}\mathscr{A} + \text{t.gl.dim}\mathscr{C} + \sup\{\text{t.proj.dim}_{\mathscr{B}}i_*(P) \mid P \in \text{Tproj}(\mathscr{A})\} + 1$

where $\operatorname{Tproj}(\mathscr{A})$ is the tilting projective subcategory of \mathscr{A} .

Proof Let *B* be an object in \mathscr{B} . Suppose that t.gl.dim $_{\mathscr{A}}\mathscr{B} = n < \infty$ and t.gl.dim $\mathscr{C} = m < \infty$. From [6, Proposition 2.6] there exists the following exact sequence

 $0 \longrightarrow \operatorname{Ker} \mu_B \longrightarrow j_! j^* (B)^{\mu_B} \longrightarrow B \longrightarrow \operatorname{Coker} \mu_B \longrightarrow 0 ,$

with $\operatorname{Ker} \mu_B \in i_*(\mathscr{A})$ and $\operatorname{Coker} \mu_B \in i(\mathscr{A})$. So we have

t.proj.dim_{\mathscr{B}}Ker $\mu_B \leq n$ and t.proj.dim_{\mathscr{B}}Coker $\mu_B \leq n$.

By Lemmas 2.5 and 2.6, it is easy to see

t.proj.dim_{\$\mathcal{B}\$}
$$B \le \max\{n+1, \text{t.proj.dim}_{\mathcal{B}} j_! j^*(B)\}$$

 $\le \max\{n+1, \text{t.proj.dim}_{\mathcal{C}} j^*(B)+n+1\}$
 $= \text{t.proj.dim}_{\mathcal{C}} j^*(B)+n+1.$

Since $j^*(B)$ is an object of \mathscr{C} , we infer that t.proj.dim_{\mathscr{B}} $B \leq m + n + 1$. Hence, t.gl.dim $\mathscr{B} \leq$ t.gl.dim $\mathscr{B} +$ t.gl.dim $\mathscr{C} + 1$. Furthermore, for any $A \in \mathscr{A}$ we assume that

$$\sup\{\text{t.proj.dim}_{\mathscr{B}}i_*(P) \mid P \in \operatorname{Tproj}(\mathscr{A})\} = n < \infty.$$

In order to prove

$$\mathrm{t.gl.dim}\mathscr{B} \leq \mathrm{t.gl.dim}\mathscr{A} + \mathrm{t.gl.dim}\mathscr{C} + \sup\{\mathrm{t.proj.dim}_{\mathscr{B}}i_*(P) \mid P \in \mathrm{Tproj}(\mathscr{A})\} + 1,$$

it suffices to show that

$$t.gl.\dim_{\mathscr{A}}\mathscr{B} \leq t.gl.\dim_{\mathscr{A}} + \sup\{t.proj.\dim_{\mathscr{B}}i_*(P) \mid P \in \operatorname{Tproj}(\mathscr{A})\}.$$

So we only need to check that $t.proj.dim_{\mathscr{B}}i_*(A) \leq t.proj.dim_{\mathscr{A}}A + n$. If A is a tilting projective object of \mathscr{A} , then $t.proj.dim_{\mathscr{B}}i_*(\mathscr{A}) \leq n$ and so our result holds. Now suppose that $t.proj.dim_{\mathscr{A}}A = m$, then we have the exact sequence

$$0 \longrightarrow T_m \longrightarrow T_{m-1} \longrightarrow \cdots \longrightarrow T_1 \longrightarrow T_0 \longrightarrow A \longrightarrow 0$$

with $T_i \in \operatorname{Tproj}\mathscr{A}$ for $0 \leq i \leq m$. So we know that $\operatorname{t.proj.dim}_{\mathscr{B}}i_*(T_i) \leq m+n$. Therefore, t.gl.dim $\mathscr{A}\mathscr{B} \leq \operatorname{t.gl.dim}\mathscr{A} + \sup\{\operatorname{t.proj.dim}_{\mathscr{B}}i_*(P) \mid P \in \operatorname{Tproj}(\mathscr{A})\}$. We conclude that

 $t.gl.dim\mathscr{B} \leq t.gl.dim\mathscr{A} + t.gl.dim\mathscr{C} + \sup\{t.proj.dim_{\mathscr{B}}i_*(P) \mid P \in \operatorname{Tproj}(\mathscr{A})\} + 1.$

Here is a well-known example of recollements of abelian categories, which can be referred to [5, Example 2.10], [6, Example 2.7], [16, Proposition 2.7] for more details.

Example 2.8 Let $\Lambda = \begin{bmatrix} A & M \\ 0 & B \end{bmatrix}$ be the triangular matrix algebra defined above. Then there exists a recollement as follows

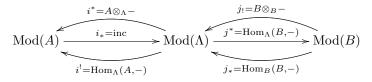


Diagram 2 The recollement of module categories over the triangular matrix algebra

Clearly,

$$\begin{split} \text{t.gl.dimMod}(\Lambda) \leq & \text{t.gl.dimMod}(A) + \text{t.gl.dimMod}(B) + \\ & \sup\{\text{t.proj.dim}_\Lambda i_*(P) \mid P \in \operatorname{Tproj}(\operatorname{Mod}(A))\} + 1. \end{split}$$

We say an abelian category \mathscr{B} is tilting hereditary if t.gl.dim $\mathscr{B} \leq 1$. That is, if T is a tilting object in \mathscr{B} , we always have $\operatorname{Ext}^{2}_{\mathscr{B}}(B,L) = 0$ for all $B \in \mathscr{B}$ and $L \in \mathcal{T}(T)$. As a corollary

of Theorem 2.7, the following result shows the properties of tilting hereditary in a recollement $(\mathscr{A}, \mathscr{B}, \mathscr{C})$, which plays a crucial role in studying almost split sequences in the categories involved in a recollement $(\mathscr{A}, \mathscr{B}, \mathscr{C})$.

Corollary 2.9 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories such that \mathscr{B} and \mathscr{C} have enough projective objects. If \mathscr{B} is tilting hereditary, then \mathscr{A} and \mathscr{C} are also tilting hereditary.

3. The Auslander-Reiten theory

Now it is convenient to recall the following notions [6]. Let \mathscr{A} be an abelian category and $\mathcal{K}(\mathscr{A})$ the homotopy category of complexes over \mathscr{A} . Then there exists a triangulated category $\mathcal{D}(\mathscr{A})$, which is the derived category of \mathscr{A} . Denote by $\mathcal{D}^b(\mathscr{A})$ the full subcategory of $\mathcal{D}(\mathscr{A})$ with objects being those complexes which have bound cohomology. In particular, there is a canonical embedding of \mathscr{A} into $\mathcal{D}(\mathscr{A})$.

Theorem 3.1 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories and \mathscr{B} be a hereditary abelian category with a tilting object T, and suppose that \mathscr{B} and \mathscr{C} have enough projectives. If the functors j_1 and j_* are exact, then both \mathscr{A} and \mathscr{C} have almost split sequences.

Proof Firstly, it is easy to see from [6, Theorem 4.8] that \mathscr{A} and \mathscr{C} are also hereditary. Secondly, we also know that i^*T and j^*T are tilting objects in \mathscr{A} and \mathscr{C} , respectively. If we take $\Lambda_{\mathscr{A}} = \operatorname{End}(i^*T)^{op}$, $\Lambda_{\mathscr{C}} = \operatorname{End}(j^*T)^{op}$ and $\Lambda_{\mathscr{B}} = \operatorname{End}(T)^{op}$, then $\mathcal{D}^b(\mathscr{A})$ and $\mathcal{D}^b(\Lambda_{\mathscr{A}})$, $\mathcal{D}^b(\mathscr{B})$ and $\mathcal{D}^b(\Lambda_{\mathscr{B}})$, $\mathcal{D}^b(\mathscr{C})$ and $\mathcal{D}^b(\Lambda_{\mathscr{C}})$ are derived equivalent. Finally, we conclude by [9, Proposition 4.8] that both \mathscr{A} and \mathscr{C} have almost split sequences. Now we will give a proof by using the definition of the almost split sequence directly. We only prove that \mathscr{C} has almost split sequences, it is similar for \mathscr{A} . For any indecomposable non-projective object C in \mathscr{C} , it suffices to show that there exists an exact sequence

$$0 \longrightarrow C'' \xrightarrow{f} C' \xrightarrow{g} C \longrightarrow 0 \tag{3.1}$$

satisfying the following conditions

- (i) C and C'' are indecomposable in \mathscr{C} ;
- (ii) It is non-split;

(iii) Any morphism $h: W \to C$ which is not a split epimorphism factors through g. Now we give the proof in three steps:

Step 1. We have that the sequence

$$0 \longrightarrow j_! C'' \xrightarrow{j_! f} j_! C' \xrightarrow{j_! g} j_! C \longrightarrow 0$$
(3.2)

is an almost split sequence in \mathscr{B} by applying the exact functor $j_{!}$ to (3.1). According to the definition of almost split sequences, we only need to verify that $j_{!}C$ is indecomposable non-projective. Firstly, we claim that $j_{!}C$ is indecomposable. Otherwise, there is an isomorphism $j_{!}C \cong B_1 \oplus B_2$ with nonzero objects B_1 and B_2 in \mathscr{B} . Since $\mathrm{Id}_{\mathscr{C}} \simeq j^*j_{!}$ and j^* commutes with

Recollements, tilting homological dimensions and higher-dimensional Auslander-Reiten theory 271

any direct sums, it follows that

$$C \cong j^* j_! C \cong j^* (B_1 \oplus B_2) \cong j^* B_1 \oplus j^* B_2$$

So we have $C \cong j^*B_1 \oplus j^*B_2$, which is a contradiction. Hence $j_!C$ is indecomposable. Similarly, we can show that $j_!C''$ is also indecomposable. Secondly, we claim that $j_!C$ is non-projective. Otherwise, the sequence (3.2) is split. After applying the exact functor j^* it derives the exact sequence (3.1) since $\mathrm{Id}_{\mathscr{C}} \simeq j^*j_!$, which contradicts the hypothesis that C is non-projective. Thus, $j_!C$ is non-projective. So $j_!C$ is indecomposable non-projective.

Step 2. We now claim that C'' is indecomposable. It is known from the hypothesis that C is already indecomposable. If C'' is not indecomposable, then there are two nonzero objects C_1 and C_2 in \mathscr{C} such that $C'' \cong C_1 \oplus C_2$. it deduces that $j_!C'' \cong j_!(C_1 \oplus C_2) \cong j_!C_1 \oplus j_!C_2$ by applying the exact functor $j_!$. This is a contradiction with the indecomposable object $j_!C''$.

Step 3. We next prove that the assertion for condition (iii) holds. For any morphism $h : W \to C$ which is not a split epimorphism, then we have that $j_!h : j_!W \to j_!C$ is also not a split epimorphism in \mathscr{B} since $j_!$ is a right exact functor. Thus for the sequence (3.2), there exists a morphism $j_!t : j_!W \to j_!C'$ such that $j_!h = j_!g \circ j_!t$. Applying the exact functor j^* again, we get a morphism $t : W \to C'$ such that $h = g \circ t$, this means that h factors through g.

Finally, the condition (ii) can be verified easily by reduction to absurdity. This shows that for any indecomposable non-projective object C in \mathscr{C} , there exists an almost split sequence. Consequently, \mathscr{C} has almost split sequences. \Box

The final main result of this section is to show that the above theorem holds for the situation of *n*-almost split sequences [12,17]. Now let us give the definition of the *n*-almost split sequence in a Krull-Schmidt abelian category \mathscr{B} . It is easy to see from [6, Section 6] that \mathscr{A} and \mathscr{C} involved in a recollement $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ are Krull-Schmidt abelian categories, and if \mathscr{B} is of finite representation type, then it follows that \mathscr{A} and \mathscr{C} are of finite representation type.

Definition 3.2 ([18]) Let \mathscr{B} be a representation finite abelian category and let $n \in \mathbb{Z}_{>0}$. An *n*-cluster tilting object M in \mathscr{B} is an object such that

$$addM = \{ X \in \mathscr{B} \mid Ext^{i}_{\mathscr{B}}(M, X) = 0, \forall \ 0 < i < n \}$$
$$= \{ X \in \mathscr{B} \mid Ext^{i}_{\mathscr{R}}(X, M) = 0, \forall \ 0 < i < n \}$$

Lemma 3.3 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories with the exact functor i^* . If M is an n-cluster tilting object in \mathscr{B} , then j^*M and i^*M are n-cluster tilting in \mathscr{C} and \mathscr{A} , respectively.

Proof We only prove that j^*M is an *n*-cluster tilting object in \mathscr{C} . It can be proved similarly that i^*M is *n*-cluster tilting in \mathscr{A} . By Definition 3.2, we have to check that the following equality holds

$$\begin{aligned} \operatorname{add}(j^*M) &= \{ Y \in \mathscr{C} \mid \operatorname{Ext}^i_{\mathscr{C}}(j^*M, Y) = 0, \forall \ 0 < i < n \} \\ &= \{ Y \in \mathscr{C} \mid \operatorname{Ext}^i_{\mathscr{C}}(Y, j^*M) = 0, \forall \ 0 < i < n \}. \end{aligned}$$

Since the exact functor j^* commutes with any direct sums, it follows that

$$\begin{aligned} \operatorname{add}(j^*M) &= j^*(\operatorname{add} M) = j^*\{X \in \mathscr{B} \mid \operatorname{Ext}^i_{\mathscr{B}}(M, X) = 0, \forall \ 0 < i < n\} \\ &= j^*\{X \in \mathscr{B} \mid \operatorname{Ext}^i_{\mathscr{B}}(X, M) = 0, \forall \ 0 < i < n\} \\ &= \{j^*X \in \mathscr{C} \mid \operatorname{Ext}^i_{\mathscr{C}}(j^*M, j^*X) = 0, \forall \ 0 < i < n\} \\ &= \{j^*X \in \mathscr{C} \mid \operatorname{Ext}^i_{\mathscr{C}}(j^*X, j^*M) = 0, \forall \ 0 < i < n\}. \end{aligned}$$

Therefore, all objects Y are actually j^*X with X in addM. \Box

Definition 3.4 Let \mathscr{B} be a representation finite abelian category, and M be the *n*-cluster tilting object in \mathscr{B} . An exact sequence

$$0 \longrightarrow C_{n+1} \xrightarrow{f_{n+1}} C_n \longrightarrow \cdots \longrightarrow C_1 \xrightarrow{f_1} C_0 \longrightarrow 0$$

with $C_i \in \text{add}M$ is said to be an *n*-almost split sequences if the following holds

- (i) For every i, we have $f_i \in rad(C_i, C_{i-1})$.
- (ii) The objects C_{n+1} and C_0 are indecomposable.
- (iii) The sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{B}}(X, C_{n+1}) \xrightarrow{f_{n+1}^*} \operatorname{Hom}_{\mathscr{B}}(X, C_n) \longrightarrow \cdots \longrightarrow \operatorname{Hom}_{\mathscr{B}}(X, C_1) \xrightarrow{f_1^*} \operatorname{rad}_{\mathscr{B}}(X, C_0) \longrightarrow 0$$

is exact for any $X \in addM$.

Remark 3.5 (i) $\operatorname{rad}_{\mathscr{B}}(-,-)$ is the subfunctor of $\operatorname{Hom}_{\mathscr{B}}(-,-)$, which is defined by

 $\operatorname{rad}_{\mathscr{B}}(X,Y) = \{ f \in \operatorname{Hom}_{\mathscr{B}}(X,Y) \mid hfg \text{ is not an isomorphism for any } g : A \to X \text{ and } h : Y \to A \text{ with } A \operatorname{ind}(\mathscr{B}) \},$

where $\operatorname{ind}(\mathscr{B})$ denotes the subcategory of \mathscr{B} consisting of all indecomposable objects of \mathscr{B} .

(ii) An abelian category \mathscr{B} is *n*-representation-finite if $gl.\dim\mathscr{B} \leq n$ and there exists an *n*cluster tilting object M in \mathscr{B} . Note from [6] that if \mathscr{B} is an representation-finite abelian category, then it follows that \mathscr{A} and \mathscr{C} are representation-finite abelian categories since \mathscr{A} and \mathscr{C} are fully embedded in \mathscr{B} . In fact, if the functor i^* and j^* are exact, for an *n*-cluster tilting object M, then j^*M and i^*M are (at most) *n*-cluster tilting in \mathscr{C} and \mathscr{A} , respectively.

Theorem 3.6 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories, and \mathscr{B} be the representationfinite abelian category with an *n*-cluster tilting object M. If \mathscr{B} has *n*-almost split sequences, $\operatorname{add} j_! j^*(\mathscr{B}) \subseteq \operatorname{add} \mathscr{B}$, the functor i^* is exact, then \mathscr{A} and \mathscr{C} have (at most) *n*-almost split sequences.

Proof Here we only show that \mathscr{C} has (at most) *n*-almost split sequence. It is similar to the proof of \mathscr{A} . Let

$$0 \longrightarrow B_{n+1} \xrightarrow{b_{n+1}} B_n \longrightarrow \cdots \longrightarrow B_1 \xrightarrow{b_1} B_0 \longrightarrow 0$$

be an *n*-almost split sequence in \mathscr{B} with $B_i \in \operatorname{add} M$. Applying the exact functor j^* , we get the

272

Recollements, tilting homological dimensions and higher-dimensional Auslander-Reiten theory 273

following exact sequence

$$0 \longrightarrow j^*(B_{n+1}) \xrightarrow{j^*(b_{n+1})} j^*(B_n) \longrightarrow \cdots \longrightarrow j^*(B_1) \xrightarrow{j^*(b_1)} j^*(B_0) \longrightarrow 0$$

with $j^*(B_i) \in \operatorname{add} j^*M$. It suffices to prove that it is an *n*-almost split sequence in \mathscr{C} .

Step 1. We firstly show that $j^*(B_{n+1})$ and $j^*(B_0)$ are indecomposable in \mathscr{C} . Here we only prove that $j^*(B_0)$ is indecomposable, it is similar for $j^*(B_{n+1})$. Now we assume that $j^*(B_0)$ is decomposable, that is, there exist two non-zero objects C_0 and C_1 in \mathscr{C} such that $j^*(B_0) \cong C_0 \oplus C_1$. It follows from [4, Lemmas 3.1(4) and 3.2(4)] that the exactness of the functor i^* is equivalent to the exactness of the functor $j_!$. So after applying the functor $j_!$ we obtain that $j_!j^*(B_0) \cong j_!C_0 \oplus j_!C_1$ with non-zero objects $j_!C_0$ and $j_!C_1$. Otherwise, if we suppose that $j_!C_0$ is a zero object, then we find that $j^*j_!(C_0) \cong C_0$ since $j^*j_! \simeq \mathrm{Id}_{\mathscr{C}}$, a contradiction with non-zero object C_0 . Since $\mathrm{add} j_!j^*(\mathscr{B}) \subseteq \mathrm{add} \mathscr{B}$, it follows that $j_!C_0 \in \mathrm{add} j_!j^*(B_0) \subseteq \mathrm{add} B_0$. So there exists an object $B' \in \mathscr{B}$ such that $B_0 \cong B' \oplus j_!C_0$, which is a contradiction with the indecomposable object B_0 . Similarly, one can show that $j^*(B_{n+1})$ is also indecomposable.

Step 2. We will verify that $j^*(b_i) \in \operatorname{rad}(j^*(B_i), j^*(B_{i-1}))$ for every *i*, that is, $h \circ j^*(b_i) \circ g$ is not an isomorphism for any $h : C \to j^*(B_i)$ and $g : j^*(B_{i-1}) \to C$ with indecomposable object C of \mathscr{C} .

$$j^{*}(B_{i}) \xrightarrow{f^{*}(b_{i})} j^{*}(B_{i-1})$$

Now we assume that $h \circ j^*(b_i) \circ g$ is an isomorphism. Then we can obtain the following diagram

$$j_!(C)$$

$$j_!h \qquad \uparrow j_!g$$

$$j_!j^*(B_i) \xrightarrow{j_!j^*(b_i)} j_!j^*(B_{i-1})$$

since $j_!$ is fully faithful and $\operatorname{add} j_! j^*(\mathscr{B}) \subseteq \operatorname{add} \mathscr{B}$ by applying the functor $j_!$. So we find that $j_! h \circ j_! j^*(b_i) \circ j_! g$ is also an isomorphism, a contradiction with $j_! j^*(b_i) \in \operatorname{rad}(j_! j^*(B_i), j_! j^*(B_{i-1})) \subseteq \operatorname{rad}(B_i, B_{i-1})$.

Step 3. We claim that the sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X, j^{*}(B_{n+1})) \xrightarrow{j^{*}(b_{n+1})^{*}} \operatorname{Hom}_{\mathscr{C}}(X, j^{*}(B_{n})) \longrightarrow \cdots \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X, j^{*}(B_{1}))$$
$$\xrightarrow{j^{*}(b_{1})^{*}} \operatorname{rad}_{\mathscr{C}}(X, j^{*}(B_{0})) \longrightarrow 0$$

is exact for any $X \in \operatorname{add}(j^*M)$. Since $X \in \operatorname{add}(j^*M)$ it follows that $lX \in \operatorname{add}(j_!j^*M) \subseteq \operatorname{add}M$. So we have the sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{B}}(j_!X, B_{n+1}) \xrightarrow{b_{n+1}^*} \operatorname{Hom}_{\mathscr{B}}(j_!X, B_n) \longrightarrow \cdots \longrightarrow \operatorname{Hom}_{\mathscr{B}}(j_!X, B_1)$$
$$\xrightarrow{b_1^*} \operatorname{rad}_{\mathscr{B}}(j_!X, B_0) \longrightarrow 0$$

Actually, $\operatorname{rad}_{\mathscr{C}}(X, j^*(B_0)) = \operatorname{Hom}_{\mathscr{C}}(X, j^*(B_0))$ and $\operatorname{rad}_{\mathscr{B}}(j_!X, B_0) = \operatorname{Hom}_{\mathscr{B}}(j_!X, B_0)$. The adjoint isomorphisms $\operatorname{Hom}_{\mathscr{B}}(j_!X, B_i) \cong \operatorname{Hom}_{\mathscr{C}}(X, j^*(B_i)) \ (\forall 0 < i < n+1)$ ensure that the claim holds naturally. Consequently, \mathscr{C} has (at most) *n*-almost split sequence. \Box

Acknowledgements The authors thank the referee for his/her helpful comments.

References

- L. ANGELERI HÜGEL, S. KOENIG, Qunhua LIU. Recollements and tilting objects. J. Pure Appl. Algebra, 2011, 215(4): 420–438.
- [2] A. BEILINSON, J. BERNSTEIN, P. DELIGNE. Faisceaux Pervers. Soc. Math. France, Paris, 1982. (in French)
- [3] Hongxing CHEN, Changchang XI. Good tilting modules and recollements of derived module categories. Proc. Lond. Math. Soc. (3), 2012, 104(5): 959–996.
- [4] Jian FENG, Pu ZHANG. Types of Serre subcategories of Grothendieck categories. J. Algebra, 2018, 508: 16–34.
- [5] C. PSAROUDAKIS, J. VITÓRIA. Recollements of module categories. Appl. Categ. Structures, 2014, 22(4): 579–593.
- [6] C. PSAROUDAKIS. Homological theory of recollements of abelian categories. J. Algebra, 2014, 398: 63–110.
- [7] M. AUSLANDER, I. REITEN, S. O. SMALØ. Representation Theory of Artin Algebras. Corrected reprint of the 1995 original. Cambridge University Press, Cambridge, 1997.
- [8] R. COLPI. Tilting in Grothedieck categories. Froum Mathematicum, 1999, 11: 735–759.
- D. HAPPEL, I. REITEN, S. O. SMALØ. Tilting in abelian categories and quasitilted algebras. Mem. Amer. Math. Soc., 1996, 120(575): viii+ 88 pp.
- [10] L. ANGELERI HÜGEL, S. KOENIG, Qunhua LIU. On the uniqueness of stratifications of derived module categories. J. Algebra, 2012, 359: 120–137.
- [11] D. HAPPEL. Partial Tilting Modules and Recollement. Amer. Math. Soc., Providence, RI, 1992.
- [12] Jinyun GUO. On n-translation algebras. J. Algebra, 2016, 453: 400–428.
- [13] I. ASSEM, D. SIMSON, A. SKOWROŃSKI. Elements of the Representation Theory of Associative Algebras, Vol.1. Cambridge University Press, Cambridge, 2006.
- [14] E. E. ENOCHS, O. M. G. JENDA. Relative Homological Algebra. Walter de Gruyter & Co., Berlin, 2000.
- [15] Mingyi WANG. Tilting comodules over semiperfect coalgebras. Algebra Collq., 1999, 6: 461–472.
- [16] E. GREEN, C. PASROUDAKIS. On Artin algebras arising from Morita contexts. Algebr. Represent. Theory, 2014, 17(5): 1485–1525.
- [17] O. IYAMA. Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math., 2007, 210(1): 22–50.
- [18] O. IYAMA. Cluster tilting for higher Auslander algebras. Adv. Math., 2011, 226: 1–61.