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Abstract In this paper we mainly investigate the behavior of tilting homological dimensions of

the categories involved in the recollement of abelian categories (A ,B,C ). In particular, when

abelian category B is hereditary, we give the connections between n-almost split sequences in

the categories of (A ,B,C ).
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1. Introduction

Throughout, we denote by N, K and Id the set of nonnegative integers, a fixed field and the

identity functor, respectively. Recall that a recollement situation between abelian categories A ,

B and C is a diagram

A
i∗ // B

i∗

ww

i!

hh
j∗ // C

j∗

hh

j!

xx

Diagram 1 The recollement of abelian categories

satisfying the following conditions:

(r1) (i∗, i∗, i
!) and (j!, j

∗, j∗) are adjoint triples;

(r2) the functors i∗, j! and j∗ are fully faithful;

(r3) Imi∗ = Kerj∗, which plays an important role in algebraic geometry, representation

theory, polynomial functor theory, ring theory and so on. The readers may refer to [1–6] and

references therein.

In analogy to the theories of tilting and almost split sequence for artin algebras [3, 7, 8], the

corresponding version of abelian categories were also studied by many authors [1, 9]. Happel,

Beligiannis and Reiten, and recently Hügel, Koenig and Liu, studied connections between recolle-

ments of triangulated categories in connection with tilting theory, homological conjectures and
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stratifications of derived categories of rings, see for example [1, 10, 11]. In 2014, Psaroudakis [6]

investigated global, finitistic, and representation dimensions of recollements of abelian categories.

Let B be an abelian category with enough projectives. Then each object has a projective

resolution. It follows that every object has a tilting projective resolution. As a generalization of

the usual projective dimension of M ∈ B, we now give the notion of tilting projective dimension

as follows. t.proj.dim(M) is defined to be the least number n such that there is a tilting projective

resolution

0 // Pn
// · · · // P1

// P0
// M // 0

where all Pi’s are tilting projective. If there is no such n, we say that the tilting projective

dimension of M is infinite, denoted by t.proj.dim(M) = ∞. Hence it is natural to define the

tilting global dimension of B as

t.gl.dim(B) = sup{t.proj.dim(M) | ∀M ∈ B}.

The tilting projective dimension is a generalization of projective dimension in the category of

modules. Moreover, tilting objects in an abelian category is also a generalization of canonical

tilting modules. Hence motivated by [6], we study the connections between the tilting global

dimension of the categories involved in a recollement (A ,B,C ).

The organization and the main results of the paper are as follows. In Section 2, we focus on

tilting global dimensions of abelian categories involved in a recollement, which can be viewed as

a generation of global dimension (compare with [6, Theorem 4.1]).

Theorem 1.1 Let (A ,B,C ) be a recollement of abelian categories such that B and C have

enough projective and injective objects. Then we have an upper bound for the tilting global

dimension of B

t.gl.dimB ≤ t.gl.dimA + t.gl.dimC + sup{t.proj.dimBi∗(P ) | P ∈ Tproj(A )}+ 1,

where Tproj(A ) is the tilting projective subcategory.

Recently, in the context of higher dimensional Auslander-Reiten theory, n-almost split se-

quences have attracted considerable attention as a generation of the classical almost split se-

quence. Guo [12] found a necessary and sufficient condition for the quadratic dual of n-translation

algebras to have n-almost split sequences in the category of its projective modules. Recall

from [9, Chapter I.4] and [13, Section IV.1] that a short exact sequence

0 // X
µ // E

π // Y // 0

in an abelian category B is called almost split if it is non-split, X and Y are indecomposable and

for f ∈ HomB(W,Y ) which is not split epimorphism there is g ∈ HomB(W,E) such that f = π◦g.
Then we say that an abelian category B has almost split sequences if for all indecomposable

non-projective objects B there is an exact sequence

0 // B′′ // B′ // B // 0
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which satisfies the above conditions. When B is hereditary, we know from [6] that A and C are

also hereditary. So it is natural for us to consider the properties of almost split sequences in a

recollement (A ,B,C ).

In Section 3, we aim to provide a criterion to decide when n-almost split sequences in B can

be preserved in A and C .

Theorem 1.2 Let (A ,B,C ) be a recollement of abelian categories with tilting hereditary a-

belian category B. If B has n-almost split sequences, and the functor i∗ is exact, then A and

C have (at most) n-almost split sequences.

2. Recollements related to tilting theory and the tilting global dimen-
sion

Let (A ,B,C ) be a recollement of abelian categories. Some properties of a recollement are

listed as follows. The readers may refer to [3, 5, 11], [6, Remarks 2.2-2.5] and references therein.

(i) The functors j∗ : B → C and i∗ : A → B are exact. Moreover, i∗i∗ ≃ IdA , IdA ≃ i!i∗,

j∗j∗ ≃ IdC and IdC ≃ j∗j!.

(ii) If the pair (j!, j
∗) is an adjoint functor pair and the functor j∗ is exact, then the left

adjoint functor j! preserves projective objects.

(iii) If the pair (j∗, j∗) is an adjoint functor pair and the functor j∗ is exact, then the left

adjoint functor j∗ preserves projective objects.

(iv) If the pair (j!, j
∗) is an adjoint functor pair and the functor j! is exact, then the right

adjoint functor j∗ preserves injective objects.

(v) If the pair (j∗, j∗) is an adjoint functor pair and the functor j∗ is exact, then the right

adjoint functor j∗ preserves injective objects.

(vi) For any adjoint functor pair, the left adjoint functor preserves the right exactness

and commutes with any direct sums; the right adjoint functor preserves the left exactness

and commutes with any direct products, such as for the adjoint pair (j!, j
∗), we have that

Add(j!(M)) = j!(Add(M)) and Prod(j∗(N)) = j∗(Prod(N)).

Inspired by [13–15], we introduce the following notion.

Definition 2.1 Let T be a tilting object in B and T (T ) be a torsion class of the torsion

pair (T (T ),F(T )). An object M in B is called tilting projective if HomB(M,−) preserves the

exactness of sequences in T (T ).

Remark 2.2 (1) Each projective object is tilting projective; but the converse is not true.

In [13, Example 1.2(d)], the tilting object T = 100 ⊕ 111 ⊕ 001 is a tilting projective but not

projective.

(2) An object M ∈ B is tilting projective if and only if Ext1B(M,L) = 0 for any L ∈ T (T ).

From now on we always suppose that B has enough projective and injective objects. Thus

we have the derived functors ExtnB(M,−) for Homn
B(M,−) and ExtnB(−, N) for Homn

B(−, N).
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Lemma 2.3 Let T be a tilting object in B. An object M is tilting projective if and only if

Ext1B(M,L) = 0 for any L ∈ T (T ).

Proof ⇒. For any L ∈ T (T ), there exists an exact sequence

0 // L // E // N // 0

with E injective. This sequence is in T (T ) by our assumption. Applying the Hom functor

HomB(M,−), we have the following long sequence

0 // HomB(M,L) // HomB(M,E) // HomB(M,N) // Ext1B(M,L) // · · · .

By Definition 2.1, we obtain Ext1B(M,L) = 0 for any L ∈ T (T ).

⇐. Since Ext1B(M,L) = 0 for any L ∈ T (T ), it follows that for any short exact sequence

0 // N1
// N

h // N2
// 0

in T (T ) and any homomorphism f : M → N2, there exists a morphism g : M → N such that

f = g ◦ h. Applying the functor HomB(M,−), we have that the sequence

0 // HomB(M,N1) // HomB(M,N) // HomB(M,N2) // 0

is exact. Hence M is tilting projective. �

Lemma 2.4 Let T be a tilting object in B and M ∈ B. Then t.proj.dimM ≤ n if and only if

Extn+1
B (M,N) = 0 for any N ∈ T (T ).

Proof ⇐. By the definition of the tilting projective dimension, if there exists an exact sequence

0 // X // Pn−1
// · · · // P1

// P0
// M // 0

where all Pi’s are tilting projective. Now we only need to prove that X is also tilting projective.

By the Dimension-Shift, we have the following isomorphism

Extn+1
B (M,N) ∼= Ext1B(X,N) = 0.

Using Lemma 2.3, we obtain that X is tilting projective.

⇒. We will prove the necessity by using induction on n: If t.proj.dimM ≤ 1, then there is

an exact sequence

0 // P1
// P0

// M // 0

with tilting projectives P0 and P1. By applying HomB(−, N), we obtain that

0 // HomB(M,N) // HomB(P0, N) // HomB(P1, N) // Ext1B(M,N)

// Ext1B(P0, N) // · · · .
Thus, Ext2B(M,N) ∼= Ext1B(P1, N) = 0 for any N ∈ T (T ). We now suppose the result holds for

t.proj.dimM ≤ n− 1, then there exists an exact sequence

0 // Pn
// Pn−1

// · · · // P1
// P0

// M // 0 .
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However, by the assumption that B has enough injective objects, so we can obtain an exact

sequence

0 // N // E // N ′ // 0

with E injective. It follows that N ′ and E are in T (T ) since T is tilting. Thus we have

Extn+1
B (M,N) ∼= ExtnB(M,N ′) = 0.

By induction assumption the necessity holds. �

Lemma 2.5 Let 0 // M1
// M2

// M3
// M4

// 0 be an exact sequence in an abelian

category B with enough projective and injective objects.

(1) If M4 = 0, then we have

(i) if t.proj.dimM1 < t.proj.dimM2, then t.proj.dimM3 = t.proj.dimM2;

(ii) if t.proj.dimM1 > t.proj.dimM2, then t.proj.dimM3 = t.proj.dimM1 + 1;

(iii) if t.proj.dimM1 = t.proj.dimM2, then t.proj.dimM3 ≤ t.proj.dimM1 + 1.

(2) If M4 ̸= 0, then

t.proj.dimM3 ≤ max{t.proj.dimM1 + 1, t.proj.dimM2, t.proj.dimM4}.

Proof When M4 = 0, for any N ∈ T (T ) and n ≥ 0, there exists a long exact sequence as follows

· · · // ExtnB(M3, N) // ExtnB(M2, N) // ExtnB(M1, N) // Extn+1
B (M3, N)

// Extn+1
B (M2, N) // Extn+1

B (M1, N) // · · ·
Case 1. If m ≥ n, and ExtmB(M1, N) = 0 but ExtnB(M2, N) ̸= 0, then ExtnB(M3, N) ̸= 0. So

for j > 0 we have the isomorphism

Extn+j
B (M3, N) ∼= Extn+j

B (M2, N).

Thus, t.proj.dimM3 = t.proj.dimM2.

Case 2. If m ≥ n, and ExtmB(M2, N) = 0 but ExtnB(M1, N) ̸= 0, then Extn+1
B (M3, N) ̸= 0

and for any j = 1, 2, . . . ,Extn+j
B (M3, N) ∼= Extn+j−1

B (M1, N). Hence

t.proj.dimM3 = t.proj.dimM1 + 1.

Case 3. If m ≥ n, and ExtmB(M2, N) = ExtmB(M1, N) = 0, then

Extn+1
B (M3, N) = 0 = Extn+2

B (M3, N).

So t.proj.dimM3 ≤ t.proj.dimM1 + 1.

The assertion for M4 ̸= 0 follows directly from the above result. �
For convenience, we define the A -relative tilting global dimension of B by

t.gl.dimA B := sup{ t.proj.dimBi∗(A) | ∀A ∈ A }.

Lemma 2.6 Let (A ,B,C ) be a recollement of abelian categories such that C has enough

projective objects. Then

t.proj.dimBj!(C) ≤ t.proj.dimCC + t.gl.dimA B + 1.
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Proof If t.proj.dimCC = ∞ or t.gl.dimA B = ∞, then the assertion is obvious. We only have

to consider the case finite dimension. We will prove by using induction on t.proj.dimCC. Write

t.gl.dimA B = n. Firstly we suppose that C is a tilting projective object in C , then it follows

from Lemma 2.3 that j!(C) is a tilting projective object in B since j! is fully faithful. And so

the result holds. Secondly we assume that t.proj.dimCC = m and that the result also holds

for any object of C with the tilting projective dimension less than m, i.e., t.proj.dimBj!(C
′) ≤

t.proj.dimCC ′ + n+1 for any object C ′ ∈ C and t.proj.dimCC ′ < m. Since t.proj.dimCC < m,

it follows that there exists an exact sequence as follows

0 // Tm
tm // Tm−1

// · · · // T1
t1 // T0

t0 // C // 0

with Ti ∈ TprojC (the subcategory of all tilting projective objects of C ). If we take K0 = Kert0,

then it is easy to see that t.proj.dimCK0 < m. By the induction hypothesis, we can obtain that

t.proj.dimBj!(K0) ≤ t.proj.dimCK0 + n + 1. Applying the right exact functor j! to the short

exact sequence

0 // K0
i0 // T0

a0 // C // 0 ,

we have that

0 // L1(j!C) // j!(K0)
j!i0 // j!(T0)

j!a0 // j!(C) // 0 (2.1)

with Ker(j!a0) = K ′
0. However, since j∗ : B → C is exact and IdC ≃ j∗j! it follows that

j∗Ker(j!i0) ∼= Ker(i0). Thus, j∗Ker(j!i0) = 0, and hence t.proj.dimBL1(j!C) ≤ n. Thus from

Lemma 2.3 and the short exact sequence

0 // L1j!(C) // j!(K0) // Kerj!(a0) // 0 ,

we obtain that t.proj.dimBKer(j!a0) ≤ m+ n. Therefore, it follows from (2.1) that

t.proj.dimBj!(C) ≤ m+ n+ 1

since j!(T0) ∈ TprojB. �

Theorem 2.7 Let (A ,B,C ) be a recollement of abelian categories such that B and C have

enough projective and injective objects. Then we have an upper bound for the tilting global

dimension of B

t.gl.dimB ≤ t.gl.dimA + t.gl.dimC + sup{t.proj.dimBi∗(P ) | P ∈ Tproj(A )}+ 1

where Tproj(A ) is the tilting projective subcategory of A .

Proof Let B be an object in B. Suppose that t.gl.dimA B = n < ∞ and t.gl.dimC = m < ∞.

From [6, Proposition 2.6] there exists the following exact sequence

0 // KerµB
// j!j∗(B)

µB // B // CokerµB
// 0 ,

with KerµB ∈ i∗(A ) and CokerµB ∈ i(A ). So we have

t.proj.dimBKerµB ≤ n and t.proj.dimBCokerµB ≤ n.
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By Lemmas 2.5 and 2.6, it is easy to see

t.proj.dimBB ≤ max{n+ 1, t.proj.dimBj!j
∗(B)}

≤ max{n+ 1, t.proj.dimC j∗(B) + n+ 1}

= t.proj.dimC j∗(B) + n+ 1.

Since j∗(B) is an object of C , we infer that t.proj.dimBB ≤ m + n + 1. Hence, t.gl.dimB ≤
t.gl.dimA B + t.gl.dimC + 1. Furthermore, for any A ∈ A we assume that

sup{t.proj.dimBi∗(P ) | P ∈ Tproj(A )} = n < ∞.

In order to prove

t.gl.dimB ≤ t.gl.dimA + t.gl.dimC + sup{t.proj.dimBi∗(P ) | P ∈ Tproj(A )}+ 1,

it suffices to show that

t.gl.dimA B ≤ t.gl.dimA + sup{t.proj.dimBi∗(P ) | P ∈ Tproj(A )}.

So we only need to check that t.proj.dimBi∗(A) ≤ t.proj.dimA A + n. If A is a tilting pro-

jective object of A , then t.proj.dimBi∗(A ) ≤ n and so our result holds. Now suppose that

t.proj.dimA A = m, then we have the exact sequence

0 // Tm
// Tm−1

// · · · // T1
// T0

// A // 0

with Ti ∈ TprojA for 0 ≤ i ≤ m. So we know that t.proj.dimBi∗(Ti) ≤ m + n. Therefore,

t.gl.dimA B ≤ t.gl.dimA + sup{t.proj.dimBi∗(P ) | P ∈ Tproj(A )}. We conclude that

t.gl.dimB ≤ t.gl.dimA + t.gl.dimC + sup{t.proj.dimBi∗(P ) | P ∈ Tproj(A )}+ 1. �

Here is a well-known example of recollements of abelian categories, which can be refereed

to [5, Example 2.10], [6, Example 2.7], [16, Proposition 2.7] for more details.

Example 2.8 Let Λ =
[
A M
0 B

]
be the triangular matrix algebra defined above. Then there exists

a recollement as follows

Mod(A)
i∗=inc // Mod(Λ)

i∗=A⊗Λ−

vv

i!=HomΛ(A,−)

jj
j∗=HomΛ(B,−) // Mod(B)

j∗=HomB(B,−)

jj

j!=B⊗B−

ww

Diagram 2 The recollement of module categories over the triangular matrix algebra

Clearly,

t.gl.dimMod(Λ) ≤t.gl.dimMod(A) + t.gl.dimMod(B)+

sup{t.proj.dimΛi∗(P ) | P ∈ Tproj(Mod(A))}+ 1.

We say an abelian category B is tilting hereditary if t.gl.dimB ≤ 1. That is, if T is a tilting

object in B, we always have Ext2B(B,L) = 0 for all B ∈ B and L ∈ T (T ). As a corollary
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of Theorem 2.7, the following result shows the properties of tilting hereditary in a recollement

(A ,B,C ), which plays a crucial role in studying almost split sequences in the categories involved

in a recollement (A ,B,C ).

Corollary 2.9 Let (A ,B,C ) be a recollement of abelian categories such that B and C have

enough projective objects. If B is tilting hereditary, then A and C are also tilting hereditary.

3. The Auslander-Reiten theory

Now it is convenient to recall the following notions [6]. Let A be an abelian category and

K(A ) the homotopy category of complexes over A . Then there exists a triangulated category

D(A ), which is the derived category of A . Denote by Db(A ) the full subcategory of D(A ) with

objects being those complexes which have bound cohomology. In particular, there is a canonical

embedding of A into D(A ).

Theorem 3.1 Let (A ,B,C ) be a recollement of abelian categories and B be a hereditary

abelian category with a tilting object T , and suppose that B and C have enough projectives. If

the functors j! and j∗ are exact, then both A and C have almost split sequences.

Proof Firstly, it is easy to see from [6, Theorem 4.8] that A and C are also hereditary.

Secondly, we also know that i∗T and j∗T are tilting objects in A and C , respectively. If we take

ΛA = End(i∗T )op, ΛC = End(j∗T )op and ΛB = End(T )op, then Db(A ) and Db(ΛA ), Db(B)

and Db(ΛB), Db(C ) and Db(ΛC ) are derived equivalent. Finally, we conclude by [9, Proposition

4.8] that both A and C have almost split sequences. Now we will give a proof by using the

definition of the almost split sequence directly. We only prove that C has almost split sequences,

it is similar for A . For any indecomposable non-projective object C in C , it suffices to show

that there exists an exact sequence

0 // C ′′ f // C ′ g // C // 0 (3.1)

satisfying the following conditions

(i) C and C ′′ are indecomposable in C ;

(ii) It is non-split;

(iii) Any morphism h : W → C which is not a split epimorphism factors through g.

Now we give the proof in three steps:

Step 1. We have that the sequence

0 // j!C ′′ j!f // j!C ′ j!g // j!C // 0 (3.2)

is an almost split sequence in B by applying the exact functor j! to (3.1). According to the

definition of almost split sequences, we only need to verify that j!C is indecomposable non-

projective. Firstly, we claim that j!C is indecomposable. Otherwise, there is an isomorphism

j!C ∼= B1 ⊕ B2 with nonzero objects B1 and B2 in B. Since IdC ≃ j∗j! and j∗ commutes with
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any direct sums, it follows that

C ∼= j∗j!C ∼= j∗(B1 ⊕B2) ∼= j∗B1 ⊕ j∗B2.

So we have C ∼= j∗B1 ⊕ j∗B2, which is a contradiction. Hence j!C is indecomposable. Similarly,

we can show that j!C
′′ is also indecomposable. Secondly, we claim that j!C is non-projective.

Otherwise, the sequence (3.2) is split. After applying the exact functor j∗ it derives the exact

sequence (3.1) since IdC ≃ j∗j!, which contradicts the hypothesis that C is non-projective. Thus,

j!C is non-projective. So j!C is indecomposable non-projective.

Step 2. We now claim that C ′′ is indecomposable. It is known from the hypothesis that C

is already indecomposable. If C ′′ is not indecomposable, then there are two nonzero objects C1

and C2 in C such that C ′′ ∼= C1 ⊕ C2. it deduces that j!C
′′ ∼= j!(C1 ⊕ C2) ∼= j!C1 ⊕ j!C2 by

applying the exact functor j!. This is a contradiction with the indecomposable object j!C
′′.

Step 3. We next prove that the assertion for condition (iii) holds. For any morphism h :

W → C which is not a split epimorphism, then we have that j!h : j!W → j!C is also not a split

epimorphism in B since j! is a right exact functor. Thus for the sequence (3.2), there exists a

morphism j!t : j!W → j!C
′ such that j!h = j!g ◦ j!t. Applying the exact functor j∗ again, we get

a morphism t : W → C ′ such that h = g ◦ t, this means that h factors through g.

Finally, the condition (ii) can be verified easily by reduction to absurdity. This shows that

for any indecomposable non-projective object C in C , there exists an almost split sequence.

Consequently, C has almost split sequences. �
The final main result of this section is to show that the above theorem holds for the situation

of n-almost split sequences [12,17]. Now let us give the definition of the n-almost split sequence

in a Krull-Schmidt abelian category B. It is easy to see from [6, Section 6] that A and C

involved in a recollement (A ,B,C ) are Krull-Schmidt abelian categories, and if B is of finite

representation type, then it follows that A and C are of finite representation type.

Definition 3.2 ([18]) Let B be a representation finite abelian category and let n ∈ Z>0. An

n-cluster tilting object M in B is an object such that

addM = {X ∈ B | ExtiB(M,X) = 0, ∀ 0 < i < n}

= {X ∈ B | ExtiB(X,M) = 0, ∀ 0 < i < n}

Lemma 3.3 Let (A ,B,C ) be a recollement of abelian categories with the exact functor i∗.

If M is an n-cluster tilting object in B, then j∗M and i∗M are n-cluster tilting in C and A ,

respectively.

Proof We only prove that j∗M is an n-cluster tilting object in C . It can be proved similarly

that i∗M is n-cluster tilting in A . By Definition 3.2, we have to check that the following equality

holds

add(j∗M) = {Y ∈ C | ExtiC (j∗M,Y ) = 0, ∀ 0 < i < n}

= {Y ∈ C | ExtiC (Y, j∗M) = 0, ∀ 0 < i < n}.
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Since the exact functor j∗ commutes with any direct sums, it follows that

add(j∗M) = j∗(addM) = j∗{X ∈ B | ExtiB(M,X) = 0, ∀ 0 < i < n}

= j∗{X ∈ B | ExtiB(X,M) = 0, ∀ 0 < i < n}

= {j∗X ∈ C | ExtiC (j∗M, j∗X) = 0,∀ 0 < i < n}

= {j∗X ∈ C | ExtiC (j∗X, j∗M) = 0,∀ 0 < i < n}.

Therefore, all objects Y are actually j∗X with X in addM . �

Definition 3.4 Let B be a representation finite abelian category, and M be the n-cluster tilting

object in B. An exact sequence

0 // Cn+1

fn+1 // Cn
// · · · // C1

f1 // C0
// 0

with Ci ∈ addM is said to be an n-almost split sequences if the following holds

(i) For every i, we have fi ∈ rad(Ci, Ci−1).

(ii) The objects Cn+1 and C0 are indecomposable.

(iii) The sequence

0 // HomB(X,Cn+1)
f∗
n+1 // HomB(X,Cn) // · · · // HomB(X,C1)

f∗
1 // radB(X,C0) // 0

is exact for any X ∈ addM .

Remark 3.5 (i) radB(−,−) is the subfunctor of HomB(−,−), which is defined by

radB(X,Y ) = {f ∈ HomB(X,Y ) | hfg is not an isomorphism for any g : A →

X and h : Y → A with A ind(B)},

where ind(B) denotes the subcategory of B consisting of all indecomposable objects of B.

(ii) An abelian category B is n-representation-finite if gl.dimB ≤ n and there exists an n-

cluster tilting object M in B. Note from [6] that if B is an representation-finite abelian category,

then it follows that A and C are representation-finite abelian categories since A and C are fully

embedded in B. In fact, if the functor i∗ and j∗ are exact, for an n-cluster tilting object M ,

then j∗M and i∗M are (at most) n-cluster tilting in C and A , respectively.

Theorem 3.6 Let (A ,B,C ) be a recollement of abelian categories, and B be the representation-

finite abelian category with an n-cluster tilting object M . If B has n-almost split sequences,

addj!j
∗(B) ⊆ addB, the functor i∗ is exact, then A and C have (at most) n-almost split

sequences.

Proof Here we only show that C has (at most) n-almost split sequence. It is similar to the

proof of A . Let

0 // Bn+1

bn+1 // Bn
// · · · // B1

b1 // B0
// 0

be an n-almost split sequence in B with Bi ∈ addM . Applying the exact functor j∗, we get the
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following exact sequence

0 // j∗(Bn+1)
j∗(bn+1) // j∗(Bn) // · · · // j∗(B1)

j∗(b1)// j∗(B0) // 0

with j∗(Bi) ∈ addj∗M . It suffices to prove that it is an n-almost split sequence in C .

Step 1. We firstly show that j∗(Bn+1) and j∗(B0) are indecomposable in C . Here we

only prove that j∗(B0) is indecomposable, it is similar for j∗(Bn+1). Now we assume that

j∗(B0) is decomposable, that is, there exist two non-zero objects C0 and C1 in C such that

j∗(B0) ∼= C0 ⊕ C1. It follows from [4, Lemmas 3.1(4) and 3.2(4)] that the exactness of the

functor i∗ is equivalent to the exactness of the functor j!. So after applying the functor j! we

obtain that j!j
∗(B0) ∼= j!C0⊕j!C1 with non-zero objects j!C0 and j!C1. Otherwise, if we suppose

that j!C0 is a zero object, then we find that j∗j!(C0) ∼= C0 since j∗j! ≃ IdC , a contradiction with

non-zero object C0. Since addj!j
∗(B) ⊆ addB, it follows that j!C0 ∈ addj!j

∗(B0) ⊆ addB0.

So there exists an object B′ ∈ B such that B0
∼= B′ ⊕ j!C0, which is a contradiction with the

indecomposable object B0. Similarly, one can show that j∗(Bn+1) is also indecomposable.

Step 2. We will verify that j∗(bi) ∈ rad(j∗(Bi), j
∗(Bi−1)) for every i, that is, h ◦ j∗(bi) ◦ g is

not an isomorphism for any h : C → j∗(Bi) and g : j∗(Bi−1) → C with indecomposable object

C of C .

COO

g
h

yyrrr
rrr

rrr
rr

j∗(Bi)
j∗(bi)// j∗(Bi−1)

Now we assume that h ◦ j∗(bi) ◦ g is an isomorphism. Then we can obtain the following diagram

j!(C)
OO

j!g
j!h

xxqqq
qqq

qqq
q

j!j
∗(Bi)

j!j
∗(bi)// j!j∗(Bi−1)

since j! is fully faithful and addj!j
∗(B) ⊆ addB by applying the functor j!. So we find that j!h◦

j!j
∗(bi) ◦ j!g is also an isomorphism, a contradiction with j!j

∗(bi) ∈ rad(j!j
∗(Bi), j!j

∗(Bi−1)) ⊆
rad(Bi, Bi−1).

Step 3. We claim that the sequence

0 // HomC (X, j∗(Bn+1))
j∗(bn+1)

∗
// HomC (X, j∗(Bn)) // · · · // HomC (X, j∗(B1))

j∗(b1)
∗

// radC (X, j∗(B0)) // 0

is exact for any X ∈ add(j∗M). Since X ∈ add(j∗M) it follows that lX ∈ add(j!j
∗M) ⊆ addM .

So we have the sequence

0 // HomB(j!X,Bn+1)
b∗n+1 // HomB(j!X,Bn) // · · · // HomB(j!X,B1)

b∗1// radB(j!X,B0) // 0
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Actually, radC (X, j∗(B0)) = HomC (X, j∗(B0)) and radB(j!X,B0) = HomB(j!X,B0). The ad-

joint isomorphisms HomB(j!X,Bi) ∼= HomC (X, j∗(Bi)) (∀ 0 < i < n+ 1) ensure that the claim

holds naturally. Consequently, C has (at most) n-almost split sequence. �
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