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Abstract The change-point hazards model has received much attention, since it can not only

display the impacts of treatments or medical breakthroughs more directly, but also provide the

time point when those impacts occur. In this paper, we propose the single change-point hazards

model for current status survival data with long-term survivors and investigate the estimation

for the proposed model. Large-sample properties of the estimators are established. Simulation

studies are carried out to evaluate the finite-sample performance of the estimation.
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1. Introduction

In clinical trials, it is a common situation that the treatment effect is not immediately reflected

but takes a while or will disappear after a time lag. Detecting this time lag is very important.

The hazard model with a change point in time is a widespread research tool to deal with this

situation and is given by:

λ(t) = β + θI(t > τ), (1.1)

where the initial hazard rate β and the change point τ are positive constants, the jump θ can be

either positive or negative, which reflects a higher or lower hazard rate, and β+ θ > 0 is needed.

Model (1.1) corresponds to a piecewise exponential distribution where the jump occurs at τ .

This piecewise constant hazards model was first proposed by [1] to discuss whether the new

therapy is effective. The existence of the change point and θ < 0 indicate that the new therapy

works. Loader [2] discussed the inference about the likelihood ratio test statistic for the existence

of the change point. The estimation of the change point for right censored data was investigated

by [3]. Zhao et al. [4] extended it to the situation where there exist long-term survivors. The

change-point estimation for current status data still needs discussion. Othus et al. [5] studied the

cure model where the latency part is similar to (1.1), however they focused on the change-point

effects in covariates.
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The observation in current status data consists of a monitor time and the knowledge of

whether the failure occurs before the monitor time. Current status data would appear in cross-

sectional studies when the event of interest is a mile-stone event, such as onset of chronic disease

or occurrence of first pregnancy. The exact time-to-event data might be collected, but it would

cost too much for precision. In this case, current status data are still preferable [6].

In this article, we focus on modeling the current status survival data with long term survivors.

Compared with [4], we deal with different types of data. We apply the Iterative Convex Minorant

(ICM) method to obtain the nonparametric maximum likelihood estimator (NPMLE) instead

of the Kaplan-Meier method. The NPMLE calculated by the ICM algorithm can guarantee the

consistency which is helpful to achieve the consistency of the uncured rate’s estimator.

The rest of the article is organized as follows. In Section 2, we outline the notations and

model descriptions of the single change-point hazard model with a cure fraction for current status

data. Details of pseudo-maximum likelihood estimation are presented. Large-sample properties

are investigated in Section 3. Simulation results are reported in Section 4.

2. Model and estimation

Let T be the failure time of interest, and C be the random monitor time. For current status

data, the observation O consists of (C, δ) where δ = I(T ≤ C) is an indicator function. To

describe the long-term survivor, we introduce the cure indicator η: η = 0 if the subject is cured,

and η = 1 otherwise. Define p ≡ P (η = 1) to be the probability of being uncured. Denote by T ∗

the failure time of uncured patient. Then we can obtain that

F (t) = P (T ≤ t|η = 1)P (η = 1) + P (T ≤ t|η = 0)P (η = 0) = pP (T ∗ ≤ t) = pF ∗(t),

where F (t) and F ∗(t) are the cumulative distribution functions (c.d.f.) of T and T ∗, respectively.

And the hazard function of T has the form

λ(t) =
f(t)

1− F (t)
=

pf∗(t)

1− pF ∗(t)
, (2.1)

where f(t) and f∗(t) are density functions of T and T ∗, respectively.

Assume that the hazard function of T ∗ is specified as

λ∗(t) = β + θI, t > τ.

Then, we can obtain the density function f∗ and c.d.f. F ∗ are, respectively,

f∗(t) = λ0(t)e
−

∫ t
0
λ0(u)du =

{
βe−βt, 0 ≤ t ≤ τ,

(β + θ)e−βt−θ(t−τ), t > τ,

and

F ∗(t) =

{
1− e−βt, 0 ≤ t ≤ τ,

1− e−βt−θ(t−τ), t > τ.
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By (2.1),

λ(t) =


pβ exp(−βt)

1− p+ p exp(−βt)
, 0 ≤ t ≤ τ,

p(β + θ) exp{−βt− θ(t− τ)}
1− p+ p exp{−βt− θ(t− τ)}

, t > τ.

Let Pn be the empirical probability measure, and Enf ≡
∫
fdPn. Now, according to the pre-

ceding instructions, the log-likelihood function based on the observations (Ci, δi) can be written

as

ln(ϕ) =
n∑

i=1

δi(log p+ logF ∗(Ci)) + (1− δi) log(1− pF ∗(Ci))

=

n∑
i=1

[δi{log p+ I(Ci ≤ τ) log(1− e−βCi) + I(Ci > τ) log(1− e−βCi−θ(Ci−τ))}+

(1− δi){I(Ci ≤ τ) log(1− p+ pe−βCi) + I(Ci > τ) log(1− p+ pe−βCi−θ(Ci−τ))}]

≡nEnl(µ,ν), (2.2)

where ϕ = (β, θ, p, τ)T , µ = (β, θ)T , ν = (p, τ)T and

l(µ,ν) =δ{log p+ I(C ≤ τ) log(1− e−βC) + I(C > τ) log(1− e−βC−θ(C−τ))}+

(1− δ){I(C ≤ τ) log(1− p+ pe−βC) + I(C > τ) log(1− p+ pe−βC−θ(C−τ))}.

From (2.2), ln(ϕ) is not continuous with respect to τ . Hence, the sufficient conditions for

consistency of the maximum likelihood estimator (MLE) are not met. It is not appropriate to

implement MLE. Thus we apply the pseudo-likelihood approach to overcome this difficulty.

The pseudo-likelihood approach was proposed by [7] and further studied by others including

[8,9]. The key idea is to replace the true (but unknown) “nuisance” parameters p and τ in (2.2) by

their consistent estimators p̂n and τ̂n, and then treat the log-likelihood function ln((β, θ, p̂n, τ̂n)
T ),

called the pseudo log-likelihood function, as a usual likelihood function of β and θ to generate

the pseudo-MLE (β̂n, θ̂n) of (β, θ).

As in [10], the consistent estimator of p can be obtained by

p̂n = F̂n(C(n)), (2.3)

where C(n) = max{Ci; i = 1, . . . , n}, and F̂n(t) denotes the nonparametric estimate of the c.d.f.

of failure times which is achieved by the ICM algorithm. The ICM algorithm proposed by [11]

is fast in computing the NPMLE of the distribution function for current status data without

covariates. We will show that p̂n is consistent in Section 3.

As is common in change-point models, we suppose the existence of bounds τ1 and τ2 such

that 0 < τ1 ≤ τ ≤ τ2 < ∞ (see [1–4]). Note that the cumulative hazard function of T is

Λ(t) =

∫ t

0

λ(u)du =

{
− log(1− p+ pe−βt), 0 ≤ t ≤ τ,

− log(1− p+ pe−βt−θ(t−τ)), t > τ.

Let

Λ̃(t) ≡ − log[
1

p
{e−Λ(t) − 1 + p}] =

{
βt, 0 ≤ t ≤ τ,

βt+ θ(t− τ), t > τ,
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which is a piecewise linear function of t. Define

X(t) ≡
{ Λ̃(D)− Λ̃(t)

D − t
− Λ̃(t)− Λ̃(0)

t

}
{t(D − t)}, (2.4)

for 0 < t < D, where D > τ2. Then

X(t) = Λ̃(D)t−DΛ̃(t) = θ(D − τ)tI(t ≤ τ) + θτ(D − t)I(t > τ),

which is increasing (decreasing) on [0, τ ] and decreasing (increasing) on (τ,D] if θ > 0 (θ < 0).

Define Xn(t) to be the empirical version of (2.4) with the unknown cumulative hazard function

Λ(t) and p replaced by the estimator Λ̂n(t) = − log{1 − F̂n(t)} and p̂n in (2.3), respectively.

Then an estimator of τ is given by

τ̂n =


inf{t ∈ [τ1, τ2] : Xn(t±) = sup

u∈[τ1,τ2]

Xn(u)}, if θ > 0,

inf{t ∈ [τ1, τ2] : Xn(t±) = inf
u∈[τ1,τ2]

Xn(u)}, if θ < 0.
(2.5)

Through the asymptotic properties of Λ̂n(t) and p̂n, we can also establish the consistency of τ̂n.

3. Asymptotic results

For the sake of presentation, we introduce the notations and only consider the situation θ > 0.

Let P0 = Pϕ0 be the true probability measure, where the subscript 0 implies the true parameters

and let E0 denote the expectation of the random variables. Define the parameter spaces for µ

and ν as Θ1 = {µ : β ≥ a1, θ ≥ a2} and Θ2 = {ν : |τ − τ0| ≤ b1, |p − p0| ≤ b2}, respectively,
where a1, a2, b1 and b2 are some positive constants. The first partial derivatives of l(µ,ν) with

respect to µ are

l̇β(µ,ν) =δ
{
I(C ≤ τ)

C exp(−βC)

1− exp(−βC)
+ I(C > τ)

C exp{−βC − θ(C − τ)}
1− exp{−βC − θ(C − τ)}

}
−

(1− δ)
{
I(C ≤ τ)

Cp exp(−βC)

1− p+ p exp(−βC)
+ I(C > τ)

(C − τ)p exp{−βC − θ(C − τ)}
1− p+ p exp{−βC − θ(C − τ)}

}
,

and

l̇θ(µ,ν) = δI(C > τ)
(C − τ) exp{−βC − θ(C − τ)}
1− exp{−βC − θ(C − τ)}

−(1−δ)I(C > τ)
(C − τ)p exp{−βC − θ(C − τ)}
1− p+ p exp{−βC − θ(C − τ)}

.

The main results on asymptotic properties of p̂n, τ̂n, β̂n and θ̂n are presented in the next five

theorems. In order to describe the theorems, we need to define the right extreme τF∗ of T ∗ by

τF∗ = sup{t ≥ 0 : F ∗(t) < 1},

and the right extreme τG of C by

τG = sup{t ≥ 0 : G(t) < 1},

where G is the c.d.f. of C.

Theorem 3.1 Suppose that 0 < p < 1 and that F is continuous at τG in case τG < ∞. Then

p̂n → p in probability as n → ∞ if and only if τF∗ ≤ τG.
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Proof By the conclusion after Lemma 4.1 in page 78 of [11],

sup
t∈[0,∞]

|F̂n(t)− F (t)| → 0

in probability. Since C(n) ≤ ∞ almost surely, we obtain that |F̂n(C(n)) − F (C(n))| → 0 in

probability. Define Hn(t) =
∑n

i=1 I(Ci ≥ t). When t < τG,
Hn(t)

n → 1 − G(t) almost surely by

the strong law of large numbers, and 1−G(t) > 0. Hence, Hn(t) → ∞, which implies C(n) → τG

in probability. If τG ≤ ∞, F̂n(C(n)) → F (τG) in probability. If τG = ∞, F̂n(C(n)) → p = F (τG)

in probability. Note that

τF∗ = sup{t : F ∗(t) < 1} = sup{t : F (t) < p}.

Hence F (τG) = p if and only if τG ≥ τF∗ , and then the theorem follows. �

Theorem 3.2 Assume that F is continuous at τG in case τG < ∞ and τF∗ > D. Then the

estimator τ̂n of τ defined in (2.5) is consistent.

Proof Define:

Xn(t) =
{ ˆ̃Λn(D)− ˆ̃Λn(t)

D − t
−

ˆ̃Λn(t)− ˆ̃Λn(0)

t

}
t(D − t), 0 < t < D,

and

X0
n(t) =

{ ˆ̃Λ0
n(D)− ˆ̃Λ0

n(t)

D − t
−

ˆ̃Λ0
n(t)−

ˆ̃Λ0
n(0)

t

}
t(D − t), 0 < t < D,

where
ˆ̃Λn(t) = − log[− 1

p̂n
{exp(−Λ̂n(t))− 1 + p̂n}],

Λ̂n(t) is obtained by F̂n, and

ˆ̃Λ0
n(t) = − log[−1

p
{exp(−Λ̂n)− 1 + p}].

Notice that Λ̃(0) = ˆ̃Λ0
n(0) = Λ(0) = 0. Then X(t) = tΛ̃(D) − DΛ̃(t). For any ε > 0, let

c1 ∈ (0,min{X(τ)−X(τ − ε), X(τ)−X(τ + ε)}) relying on ε, τ1, τ2, p, θ. Then, if |t− τ | > ε,

we have X(τ) − X(τ + ε) > c1. Noting that Xn(t) attains its maximum at τ̂n, for sufficiently

large n, we have

P0(|τ̂n − τ | > ε) ≤ P0(X(τ)−X(τ̂n)| > c1)

≤ P0(|Xn(τ̂)−X(τ̂n)|+ |X(τ)−Xn(τ)| > c1)

= P0(|Xn(τ̂n)−X(τ̂n)|+ |X(τ)−Xn(τ)| > c1, sup
τ1<t<τ2

|Xn(t)−X(t)| > c1
2
)+

P0(|Xn(τ̂n)−X(τ̂n)|+ |X(τ)−Xn(τ)| > c1, sup
τ1<t<τ2

|Xn(t)−X(t)| ≤ c1
2
)

≤ P0( sup
τ1<t<τ2

|Xn(t)−X(t)| > c1
2
)

≤ P0( sup
τ1<t<τ2

|Xn(t)−X0
n(t)| >

c1
4
) + P0( sup

τ1<t<τ2

|X0
n(t)−X(t)| > c1

4
)

≤ P0(D sup
τ1<t<τ2

|U0
n(t)|+ τ2U

0
n(D) >

c1
4
) + P0( sup

τ1<t<τ2

|Xn(t)−X0
n(t)| >

c1
4
).
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We can obtain the last inequality by

X0
n(t)−X(t) =t{ ˆ̃Λ0

n(D)− Λ̃(D)} −D{ ˆ̃Λ0
n(t)− Λ̃(t)}

=tU0
n(D)−DU0

n(t) ≤ t|U0
n(D)|+D|U0

n(t)|,

where U0
n(t) =

ˆ̃Λ0
n(t) − Λ̃(t). Consequently, there exist c2 > 0 and c3 > 0, depending on c1, τ1,

τ2, D and q, such that

P0(|τ̂n − τ | > ε) ≤ P0( sup
τ1<t<τ2

|U0
n(t)| > c2) + P0(U

0
n(D) > c3) + P0( sup

τ1<t<τ2

|Xn(t)−X0
n(t)| >

c1
4
)

= I1 + I2 + I3. (3.1)

From the definition of Λ̃(t), we find that

|U0
n(t)| =| log(−1

p
{e−Λ̂n(t) − 1 + p})− log(−1

p
{e−Λ(t) − 1 + p})|

=
∣∣ e−α(t)

e−α(t) − 1 + p

∣∣ · |Λ̂n(t)− Λ(t)|, (3.2)

where α(t) is between Λ̂n(t) and Λ(t). Thus, exp(−α(t)) lies on the segment between Ŝ(t) =

1 − F̂n(t) and Sn(t) = 1 − F (t) = 1 − pF ∗(t). For current status data, according to [11],

supt∈[0,τF∗ ] |F̂n(t)− F (t)| → 0 almost surely for τF∗ ≤ τG. Thus for any α < 1− pF ∗(D),

exp(−α(t)) > [1− F (D)]− α = [1− pF ∗(D)]− α = ϕ(D),

provided that τF∗ > D. It follows (3.2) that

|U0
n(t)| ≤

1

ϕ(D)− 1 + p
|Λ̂n(t)− Λ(t)| = 1

ϕ(D)− 1 + p
|Un(t)|.

By the likelihood function ln(ϕ), there exists c4 > 0 relying on c1, c2, τ1, τ2, D, q, p and F ∗,

satisfying

I1 ≤P0( sup
τ1<t<τ2

|Un(t)| > c4, τ2 ≤ C(n)) + P0(C(n) < τ2)

≤P0( sup
τ1<t<τ2

|Un(t ∧ C(n))| > c4) +
n∏

i=1

P (Ci < τ2). (3.3)

We know that

Λ̂n(t ∧ C(n))− Λ(t ∧ C(n)) = log
1− F̂n(t ∧ C(n))

1− F (t ∧ C(n))
. (3.4)

By P0(limn→∞ supt∈R |F̂n(t)−F (t)| = 0) = 1 obtained by [11], the first term on the right side of

last inequality of (3.3) converges to 0 as n → ∞. Next, by (3.1), I2 ≤ P0(|Un(D)| > c3, C(n) ≥
D) + P0(C(n) < D). Similarly, I2 converges to 0 as n → ∞.

In order to prove I3 → 0, we rewrite Xn(t) and X0
n(t) as

Xn(t) = t{ ˆ̃Λn(t)− ˆ̃Λn(t)} − (D − t) ˆ̃Λn(t),

and

X0
n(t) = t{ ˆ̃Λ0

n(D)− ˆ̃Λ0
n(t)} − (D − t) ˆ̃Λ0

n(t).
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By (3.3) and (3.4),

I3 ≤P0( sup
τ1<t<τ2

|Xn(t)−X0
n(t)| >

c1
4
, C(n) ≥ D) + P0(C(n) < D)

≤P0(2 sup
τ1<t<τ2

| ˆ̃Λ0
n(t)−

ˆ̃Λ0
n(t)|τ2 >

c4
8
)+

P0( sup
τ1<t<τ2

| ˆ̃Λ0
n(t)−

ˆ̃Λ0
n(t)|(D − τ2) >

c4
8
) + P0(C(n) < D)

=I31 + I32 +
n∏

i=1

P (Ci < D).

We can see that

I31 ≤ P0(| log(p̂n)− log(p)|+ sup
τ1<t<τ2

∣∣ log eΛ̂n(t) − 1 + p̂n

eΛ̂n(t) − 1 + p

∣∣ > c4
8
).

Since p̂n converges to p in probability, and sup0<t<D |Λ̂n(t) − Λ(t)| → 0, we have I31 → 0.

Similarly, I32 → 0. This completes the proof of Theorem 3.2. �

Theorem 3.3 Suppose that p̂n and τ̂n are obtained by (2.3) and (2.4), respectively. Then

En l̇µ(µ̂n, ν̂n) = op∗(n−1/2) almost surely, where l̇µ(µ,ν) denotes the first partial derivative of

l(µ,ν) with respect to µ, and µ̂n converges in probability to µ0.

Proof To prove the consistency of the pseudo estimator µ̂, we first need to prove

sup
µ∈Θ1,|ν−ν0|≤ηn

|En l̇µ(µ,ν)− E0 l̇µ(µ,ν0)| = op(1)

for every sequence {ηn} ↓ 0. Since

|En l̇µ(µ,ν)− E0 l̇µ(µ,ν0)| ≤ |(En − E0)l̇µ(µ,ν)|+ |E0(l̇µ(µ,ν)− l̇µ(µ,ν0))|,

and E0 l̈µµ(µ,ν) obviously tends to zero when |ν − ν0| ≤ α ↓ 0, where l̈µµ(µ,ν) denotes

l̇µ(µ,ν)l̇
T
µ(µ,ν). We need to show that the class of functions Fα ≡ {l̇µ(µ,ν) : µ ∈ Θ1 ⊂

R2, |ν − ν0| ≤ ηn} is a VC-class for some ηn > 0, where Θ1 = {µ = (β, θ)T : β ≥ A1, θ ≥ A2}.
This implies that the uniform strong law of large numbers holds, i.e., supf∈Fα

(En − E0)f
p−→ 0;

see [12], Chap. 2.6-2.7, for details. Let F1α = {I(C ≤ τ) : |τ − τ0| ≤ α1}. Then the VC-indexes

of the class of functions F1α is 2 by Example 2.6.1 of [12]. Thus the class of functions

{I(Ci ≤ τ)
Ci(1− δi)p exp(−βCi)

1− p+ p exp(−βCi)
: µ ∈ Θ1, |ν − ν0| ≤ α}

is Donsker by Lemma 2.6.18 and Example 2.10.8 of [12], because (1 − δi)(1 − p)/(1 − p +

p exp(−βCi)) is bounded. It is similar to show that the other classes of functions are also

Donsker. Thus the class of functions Fα is VC-class by applying Example 2.10.7 and Theorem

2.10.6 of [12]. Since µ0 is the unique solution to E0 l̇µ(µ,ν0) = 0, ν̂n → ν0, and µ̂n is the unique

solution of En l̇µ(µ, ν̂n), µ̂n converges in probability to µ0. �

Theorem 3.4 Under the conditions in Theorem 3.3,
√
n(µ̂n − µ0) = Op(1).
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Proof We first verify the stochastic equicontinuity condition:

|
√
n(En − E0){l̇µ(µ̂n, ν̂n)− l̇µ(µ0,ν0)}| = op(1). (3.5)

Let Fγ = {l̇µ(µ,ν) − l̇µ(µ0,ν0) : |µ − µ0| ≤ γ, |ν − ν0| ≤ γ}. Similar to the proof of Theorem

3, we can show that Fγ is a VC-class. Thus (3.5) follows from Lemma 3.1.1 of [8], together with

E0(l̇µ(µ̂n, ν̂n) − l̇µ(µ0,ν0))
2 = op(1). Next, since E0 l̇µ(µ,ν) < ∞ and E0 l̈µµ(µ,ν) < ∞, we

obtain that for (µ,ν) ∈ Dn,

|E0 l̇µ(µ,ν)− E0 l̇µ(µ0,ν0)− E0 l̈µµ(µ0,ν0)(µ− µ0)− E0 l̈µν(µ0,ν0)(ν − ν0)|

= o(|µ− µ0|) + o(|ν − ν0|),

where Dn = {(µ,ν) : |µ−µ0| ≤ ηn ↓ 0, |ν − ν0| ≤ cn1/2} for some constant c, and En l̇µ(µ0,ν0)

converges in distribution to a normal random variable by the central limit theorem. Thus
√
n|µ̂n − µ| = Op(1) by Theorem 3.1.3 of [8]. �

Theorem 3.5 Under the conditions in Theorem 3.3,
√
n(µ̂n − µ0) is asymptotically normal

with mean 0 and variance {E0 l̈µµ(µ0,ν0)}−2V , where V = Var{Λ1 + P0 l̈µν(µ0,ν0)Λ2}, and
Λ1 and Λ2 are random vectors satisfying

√
n

[
(En−E0)l̇µ(µ0,ν0)

ν̂n − ν0

]
d−→

[
Λ1

Λ2

]
.

Proof By the consistency of p̂n and τ̂n together with the Slutsky’s theorem and the central

limit theorem, we can show that

√
n

[
(En−E0)l̇µ(µ0,ν0)

ν̂ − ν0

]
d−→ Λ =

[
Λ1

Λ2

]
holds for normally distributed Λ1 with mean zero and positive variance. Hence by Corollary 3.1.2

of [8],
√
n(µ̂n −µ0) is asymptotically normal with mean 0 and variance {E0 l̈µµ(µ0,ν0)}−2V . �

4. Simulation results

To access the finite-sample performance of the estimation, we do many simulations through

different settings. Particularly, we want to explore the impacts of the jump size, the change-point

location and the monitor time.

The data are simulated from the hazard function (2.1) and the corresponding distribution

function is

F (t) =

{
1− p+ pe−βt, 0 ≤ t ≤ τ,

1− p+ pe−βt−θ(t−τ), t > τ,

where p = 0.8, and β = 1. We set θ ∈ {0.5, 1, 1.5} to check the influence of the jumping size, and

set τ ∈ {0.5, 1, 1.5} to see the effect of the change-point location. The change-point search range

(τ1, τ2) is set to (0.25, 1.75). The failure time T̃i is generated by solving F (t) = ui numerically,

where ui ∼ U(0, 1). The c.d.f. of the monitor time follows an exponential distribution and

the left censored rate is 50%. The sample size n ∈ {200, 400, 800}. All results are based on
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500 replications. We compare our estimation with the MLE suggested by [7]. They obtain the

estimators as follows: with a fixed τ , let ξ̂n(τ) be the value of ξ = (β, θ, p) maximizing ln(ϕ).

Then τ is estimated by

τ̂n = inf{τ ∈ [τ1, τ2] : max(ln(ξ̂n(τ), τ), ln(ξ̂n(τ±), τ±)) = sup
τ∈[τ1,τ2]

ln(ξ̂n(τ), τ)}.

Then the maximum likelihood estimator of ξ is obtained as ξ̂n = ξ̂n(τ̂n).

θ n
MLE PMLE

τ̂n p̂n β̂n θ̂n τ̂n p̂n β̂n θ̂n

0.5 200 bias 0.121 0.008 0.113 0.476 0.041 0.027 0.107 0.270

sd 0.479 0.066 0.295 0.757 0.330 0.064 0.269 0.707

400 bias 0.081 0.005 0.035 0.325 0.036 0.011 0.037 0.090

sd 0.472 0.044 0.235 0.737 0.317 0.038 0.200 0.496

800 bias 0.075 0.001 0.062 0.279 0.037 0.005 0.035 0.197

sd 0.304 0.030 0.172 0.668 0.288 0.032 0.161 0.348

1 200 bias 0.112 0.009 0.136 0.369 0.013 0.047 0.137 0.268

sd 0.454 0.063 0.263 0.779 0.319 0.065 0.213 0.732

400 bias 0.078 0.005 0.040 0.203 0.001 0.044 0.055 0.168

sd 0.405 0.048 0.219 0.676 0.307 0.055 0.191 0.532

800 bias 0.046 0.001 0.053 0.213 0.021 0.002 0.036 0.155

sd 0.275 0.030 0.173 0.648 0.207 0.033 0.160 0.370

1.5 200 bias 0.084 0.001 0.035 0.410 0.047 0.005 0.102 0.189

sd 0.412 0.064 0.274 0.854 0.290 0.076 0.278 0.748

400 bias 0.034 0.004 0.040 0.310 0.021 0.001 0.001 0.082

sd 0.302 0.043 0.219 0.834 0.260 0.044 0.240 0.518

800 bias 0.034 0.006 0.054 0.154 0.013 0.003 0.030 0.142

sd 0.219 0.027 0.177 0.428 0.183 0.030 0.135 0.342

Table 1 Simulation results for the change point τ , uncure rate p, hazard rate β and jump size θ (τ=0.5)

Table 1 shows the empirical biases and sample standard deviations (sd) of the estimators

considering θ ∈ {0.5, 1, 1.5}, τ = 0.5, and the sample size n ∈ {200, 400, 800}. From Table 1,

the results indicate that both MLE and PMLE perform reasonably well. More specifically, the

biases and sd of the change-point estimator are smaller with a larger jump size. The performances

of the other estimators are not affected by the jump size. Additionally, the proposed method

PMLE provides smaller biases and sd in most cases than MLE. Tables 2 and 3 display the results

with τ = 1, 1.5, respectively. As in Table 1, the same conclusion can be obtained from the results

in Tables 2 and 3. And by comparing Tables 1–3, we obtain that the change-point location has

no obvious influence on the estimation.

5. Discussion

In this paper, we suggest the PMLE to handle the single change-point hazards cure model for

current status data. To obtain consistent estimators of the “nuisance” parameters, uncured rate

and change point, we apply ICM method to calculate the NPMLE of the distribution function.



PMLE in the hazard cure model with a single change point for current status data 329

θ n
MLE PMLE

τ̂n p̂n β̂n θ̂n τ̂n p̂n β̂n θ̂n

0.5 200 bias 0.046 0.004 0.037 0.226 0.069 0.040 0.081 0.253

sd 0.460 0.070 0.262 0.918 0.414 0.069 0.206 0.721

400 bias 0.030 0.002 0.002 0.290 0.044 0.016 0.029 0.203

sd 0.415 0.053 0.178 0.740 0.341 0.044 0.153 0.508

800 bias 0.060 0.001 0.061 0.259 0.027 0.003 0.055 0.118

sd 0.312 0.032 0.174 0.679 0.288 0.041 0.136 0.340

1 200 bias 0.032 0.008 0.058 0.144 0.063 0.037 0.093 0.224

sd 0.454 0.064 0.232 0.923 0.336 0.062 0.199 0.744

400 bias 0.014 0.007 0.002 0.335 0.026 0.025 0.036 0.174

sd 0.324 0.052 0.188 0.776 0.284 0.046 0.146 0.540

800 bias 0.043 0.005 0.057 0.232 0.026 0.005 0.039 0.155

sd 0.232 0.030 0.173 0.618 0.207 0.040 0.131 0.365

1.5 200 bias 0.022 0.019 0.076 0.235 0.035 0.031 0.082 0.120

sd 0.437 0.057 0.238 0.917 0.320 0.053 0.215 0.718

400 bias 0.013 0.006 0.016 0.167 0.011 0.018 0.025 0.020

sd 0.309 0.040 0.178 0.828 0.250 0.034 0.145 0.548

800 bias 0.026 0.001 0.052 0.199 0.022 0.003 0.040 0.133

sd 0.213 0.027 0.164 0.434 0.180 0.032 0.135 0.350

Table 2 Simulation results for the change point τ , uncure rate p, hazard rate β and jump size θ (τ=1)

θ n
MLE PMLE

τ̂n p̂n β̂n θ̂n τ̂n p̂n β̂n θ̂n

0.5 200 bias 0.105 0.008 0.039 0.361 0.045 0.039 0.091 0.192

sd 0.618 0.059 0.232 0.950 0.426 0.051 0.197 0.778

400 bias 0.130 0.001 0.065 0.295 0.041 0.002 0.037 0.113

sd 0.412 0.044 0.164 0.820 0.275 0.041 0.146 0.578

800 bias 0.084 0.001 0.065 0.295 0.041 0.002 0.037 0.213

sd 0.360 0.034 0.164 0.638 0.275 0.041 0.125 0.378

1 200 bias 0.051 0.013 0.058 0.316 0.048 0.027 0.070 0.155

sd 0.597 0.058 0.235 0.916 0.353 0.061 0.198 0.766

400 bias 0.015 0.002 0.007 0.378 0.058 0.013 0.013 0.058

sd 0.417 0.045 0.159 0.748 0.252 0.042 0.144 0.576

800 bias 0.056 0.004 0.064 0.190 0.031 0.002 0.040 0.178

sd 0.312 0.032 0.162 0.648 0.211 0.040 0.122 0.371

1.5 200 bias 0.036 0.013 0.064 0.255 0.041 0.032 0.084 0.141

sd 0.552 0.062 0.237 0.938 0.302 0.059 0.194 0.802

400 bias 0.067 0.006 0.075 0.187 0.053 0.014 0.065 0.089

sd 0.423 0.046 0.171 0.753 0.275 0.043 0.167 0.598

800 bias 0.036 0.006 0.046 0.198 0.028 0.011 0.025 0.180

sd 0.202 0.037 0.153 0.643 0.234 0.038 0.126 0.365

Table 3 Simulation results for the change point τ , uncure rate p, hazard rate β and jump size θ (τ=1.5)
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Compared with the MLE, the PMLE possesses a smaller bias and standard deviation. The

simulation studies illustrate that the proposed method can effectively deal with the change-point

problem in current status data.
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