On Strongly J-Semiclean Rings

Lunqun OUYANG*, Zhaoqing GONG
Department of Mathematics, Hunan University of Science and Technology, Hunan 411201, P. R. China

Abstract

We in this note introduce a new concept, so called strongly J-semiclean ring, that is a generalization of strongly J-clean rings. We first observe the basic properties of strongly J-semiclean rings, constructing typical examples. We next investigate conditions on a local ring R that imply that the upper triangular matrix ring $T_{n}(R)$ is a strongly J-semiclean ring. Also, the criteria on strong J-semicleanness of 2×2 matrices in terms of a quadratic equation are given. As a consequence, several known results relating to strongly J-clean rings are extended to a more general setting.

Keywords upper triangular matrix; local ring; strongly J-semiclean ring
MR(2010) Subject Classification 15B33; 17A99

1. Introduction

Throughout this paper all rings R are associative with identity, and all modules are unitary R-modules. Let R be a ring. We use $\mathbb{N}, U(R), J(R), T_{n}(R)$ and $M_{n}(R)$ to represent the set of all natural numbers, the set of units of R, the Jacobson radical of R, the ring of all upper triangular matrices over R and the ring of all $n \times n$ matrices over R, respectively.

An element $a \in R$ is strongly clean provided that there exist an idempotent $e^{2}=e \in R$ and a unit $u \in U(R)$ such that $a=e+u$ and $e u=u e$. A ring R is strongly clean in case every element in R is strongly clean. Strong cleanness over commutative rings was extensively studied by many authors from very different view points [1-8]. Replacing $U(R)$ by $J(R)$, in [9], Chen paralleled to introduce the concept of strong J-cleanness. An element $a \in R$ is strongly J-clean provided that there exist an idempotent $e \in R$ and an element $w \in J(R)$ such that $a=e+w$ and $e w=w e$. A ring R is strongly J-clean in case every element in R is strongly J-clean. It was shown in [9] that every strongly J-clean element is strongly clean, but the converse is not true in general [9, Example 2.2]. For more details and properties of strongly J-clean rings [9, 10].

In this note we continue the study of strongly J-clean rings. As a generalization of strongly J clean rings, we first introduce a notion of strongly J-semiclean rings and investigate its properties. We next provide some necessary and sufficient conditions for the upper triangular matrix ring $T_{n}(R)$ over a local ring R to be strongly J-semiclean. Also, a criterion in terms of solvability of a simple quadratic equation in R is obtained for $M_{2}(R)$ to be strongly J-semiclean.

[^0]
2. Examples

Let R be a ring. An element $a \in R$ is called a periodic element provided that there exist two distinct positive integers m and n such that $a^{m}=a^{n}$. Clearly, both nilpotent elements and idempotents are periodic elements. A ring R is called a periodic ring if every element of R is a periodic element.

Definition 2.1 Let R be a ring. An element $a \in R$ is strongly J-semiclean provided that there exist a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $a=\pi+w$ and $\pi w=w \pi$. A ring R is strongly J-semiclean in case every element in R is strongly J-semiclean.

Clearly, every strongly J-clean ring is strongly J-semiclean. But the following example shows that the converse is not true. Hence a strongly J-semiclean ring is not a trivial extension of a strongly J-clean ring.

Example 2.2 Let \mathbb{Z}_{p} denote the ring of integers modulo p, where p is a prime number. Consider the ring $\mathbb{Z}_{p}[x] /\left(x^{n+1}\right)$, where $\left(x^{n+1}\right)$ is the ideal generated by x^{n+1}. Denote \bar{x} in $\mathbb{Z}_{p}[x] /\left(x^{n+1}\right)$ by u. Then $\mathbb{Z}_{p}[x] /\left(x^{n+1}\right)=\mathbb{Z}_{p}[u]=\mathbb{Z}_{p}+\mathbb{Z}_{p} u+\mathbb{Z}_{p} u^{2}+\cdots+\mathbb{Z}_{p} u^{n}$. Let $f=a_{0}+a_{1} u+\cdots+a_{n} u^{n} \in$ $\mathbb{Z}_{p}[u]$. Since $a_{0}^{p}=a_{0}, a_{1} u+a_{2} u^{2}+\cdots+a_{n} u^{n} \in J\left(\mathbb{Z}_{p}[u]\right)$, we obtain that f is strongly J-semiclean. Therefore, $\mathbb{Z}_{p}[u]=\mathbb{Z}_{p}[x] /\left(x^{n+1}\right)$ is a strongly J-semiclean ring.

Now we show that $\mathbb{Z}_{p}[u]=\mathbb{Z}_{p}[x] /\left(x^{n+1}\right)$ is not a strongly J-clean ring when $p \neq 2$. Note that the idempotent in $\mathbb{Z}_{p}[u]=\mathbb{Z}_{p}[x] /\left(x^{n+1}\right)$ is $\overline{0}$ or $\overline{1}$. So for any $g=b_{0}+b_{1} u+\cdots+b_{n} u^{n} \in \mathbb{Z}_{p}[u]$ with $b_{0} \neq \overline{0}$ and $b_{0} \neq \overline{1}$, we obtain that $b_{0}+b_{1} u+\cdots+b_{n} u^{n}$ and $b_{0}-1+b_{1} u+\cdots+b_{n} u^{n}$ are units of $\mathbb{Z}_{p}[u]=\mathbb{Z}_{p}[x] /\left(x^{n+1}\right)$. So g is not a sum of an idempotent $e^{2}=e \in \mathbb{Z}_{p}[u]$ and an element $w \in J\left(\mathbb{Z}_{p}[u]\right)$. Hence g is not strongly J-clean. Therefore, $\mathbb{Z}_{p}[u]=\mathbb{Z}_{p}[x] /\left(x^{n+1}\right)$ is not a strongly J-clean ring, as desired.

Proposition 2.3 Every strongly J-semiclean element is strongly clean.
Proof Let $x \in R$ be a strongly J-semiclean element. Then there exists a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $x=\pi+w$ and $\pi w=w \pi$. Let k and $l(k>l)$ be two distinct positive integers such that $\pi^{k}=\pi^{l}$. Then we have

$$
\pi^{l}=\pi^{k}=\pi^{l} \pi^{k-l}=\pi^{l} \pi^{2(k-l)}=\cdots=\pi^{l} \cdot \pi^{l(k-l-1)} \cdot \pi^{l} .
$$

Thus $\pi^{l} \cdot \pi^{l(k-l-1)}=\pi^{l(k-l)}$ and $1-\pi^{l(k-l)}$ are idempotents. Write $x=\pi+w$ as

$$
x=\left(1-\pi^{l(k-l)}\right)+\pi-\left(1-\pi^{l(k-l)}\right)+w .
$$

Since

$$
\begin{aligned}
{[} & \left.\pi-\left(1-\pi^{l(k-l)}\right)\right]\left[\pi^{l-1} \pi^{l(k-l-1)} \pi^{l(k-l)}-\left(\sum_{i=0}^{l-1} \pi^{i}\right)\left(1-\pi^{l(k-l)}\right)\right] \\
& =\left[\pi \pi^{l(k-l)}-(1-\pi)\left(1-\pi^{l(k-l)}\right)\right]\left[\pi^{l-1} \pi^{l(k-l-1)} \pi^{l(k-l)}-\left(\sum_{i=0}^{l-1} \pi^{i}\right)\left(1-\pi^{l(k-l)}\right)\right] \\
& =\pi^{l} \pi^{l(k-l-1)} \pi^{l(k-l)}+\left(1-\pi^{l}\right)\left(1-\pi^{l(k-l)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\pi^{l(k-l)}+1-\pi^{l(k-l)}-\pi^{l}+\pi^{l} \pi^{l(k-l)}=1 \\
& =\left[\pi^{l-1} \pi^{l(k-l-1)} \pi^{l(k-l)}-\left(\sum_{i=0}^{l-1} \pi^{i}\right)\left(1-\pi^{l(k-l)}\right)\right]\left[\pi-\left(1-\pi^{l(k-l)}\right)\right],
\end{aligned}
$$

we obtain that $\pi-\left(1-\pi^{l(k-l)}\right)$ is a unit in R and so is $\pi-\left(1-\pi^{l(k-l)}\right)+w$. It follows from $\pi w=w \pi$ that

$$
\left(1-\pi^{l(k-l)}\right)\left[\pi-\left(1-\pi^{l(k-l)}\right)+w\right]=\left[\pi-\left(1-\pi^{l(k-l)}\right)+w\right]\left(1-\pi^{l(k-l)}\right) .
$$

Hence x is a strongly clean element, as required.
Corollary 2.4 ([9, Proposition 2.1]) Every strongly J-clean element is strongly clean.
Proof The result follows from Proposition 2.3.
Corollary 2.5 All strongly J-semiclean rings are strongly clean.
Proof It follows from Proposition 2.3.
The following example shows that the converse of Corollary 2.5 is not true.
Example 2.6 Let \mathbb{Q} be the field of rational numbers. Then \mathbb{Q} is strongly clean but not strongly J-semiclean.

Recall that an element $a \in R$ is strongly semiclean if $a=\pi+u$, where π is a periodic element in R and u is a unit in R such that $\pi u=u \pi$. A ring R is a strongly semiclean ring if every element in R is strongly semiclean [11].

Proposition 2.7 All strongly J-semiclean rings are strongly semiclean.
Proof For any $x \in R$, there exist a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $x-1=\pi+w$ and $\pi w=w \pi$. Then $x=\pi+1+w$. Clearly, $1+w$ is a unit in R and $\pi(1+w)=(1+w) \pi$. So x is a strongly semiclean element. Therefore, R is a strongly semiclean ring.

From Proposition 2.7, one may suspect that that every strongly semiclean ring is strongly J-semiclean. But the following example eliminates the possibility.

Example 2.8 Let $R=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}\right.$ and $\left.7 \nmid n\right\}$ and $G=\left\{g, g^{2}, g^{3}\right\}$ be a cyclic group of order 3. Then by [12, Theorem 3.1], the group ring $R G$ is a strongly semiclean ring. But it is shown in [6] that $R G$ is not clean and so $R G$ is not strongly clean. So by Corollary 2.5, we obtain that $R G$ is not strongly J-semiclean.

Example 2.9 Here are some examples of strongly J-semiclean rings:
(1) Any factor ring of a strongly J-semiclean ring is strongly J-semiclean.
(2) A direct sum $R=\oplus_{i=1}^{n} R_{i}$ of rings $\left\{R_{i}\right\}$ is strongly J-semiclean if and only if so is each $R_{i}, 1 \leq i \leq n$.
(3) $R[x]$ is certainly never a strongly J-semiclean ring.
(4) Let R be a commutative ring. Then $R[x] /\left(x^{n}\right)$ is strongly J-semiclean if and only if so
is R.
(5) Every power series ring over a strongly J-semiclean commutative ring is strongly J semiclean.

Proof (1) It is directly verified.
(2) It suffices to show that if R_{1} and R_{2} are strongly J-semiclean, then so is $R_{1} \oplus R_{2}$. Let $x=\left(x_{1}, x_{2}\right) \in R_{1} \oplus R_{2}$, where $x_{1} \in R_{1}$ and $x_{2} \in R_{2}$. For each $i(1 \leq i \leq 2)$, write $x_{i}=\pi_{i}+w_{i}$, where π_{i} is a periodic element in $R_{i}, w_{i} \in J\left(R_{i}\right)$ and $\pi_{i} w_{i}=w_{i} \pi_{i}$. Then $x=\left(x_{1}, x_{2}\right)=\left(\pi_{1}, \pi_{2}\right)+\left(w_{1}, w_{2}\right)$. Let k_{i} and $l_{i}\left(k_{i}>l_{i}\right.$ for each $\left.i=1,2\right)$ be positive integers such that $\pi_{1}^{k_{1}}=\pi_{1}^{l_{1}}$ and $\pi_{2}^{k_{2}}=\pi_{2}^{l_{2}}$. Then

$$
\pi_{1}^{l_{1}}=\pi_{1}^{k_{1}}=\pi_{1}^{l_{1}} \pi_{1}^{k_{1}-l_{1}}=\pi_{1}^{l_{1}} \pi_{1}^{2\left(k_{1}-l_{1}\right)}=\cdots=\pi_{1}^{l_{1}} \pi_{1}^{\left(k_{2}-l_{2}\right)\left(k_{1}-l_{1}\right)}
$$

and

$$
\pi_{2}^{l_{2}}=\pi_{2}^{k_{2}}=\pi_{2}^{l_{2}} \pi_{2}^{k_{2}-l_{2}}=\pi_{2}^{l_{2}} \pi_{2}^{2\left(k_{2}-l_{2}\right)}=\cdots=\pi_{2}^{l_{2}} \pi_{2}^{\left(k_{1}-l_{1}\right)\left(k_{2}-l_{2}\right)} .
$$

Without loss of generality, we may assume that $l_{1}<l_{2}$. Then

$$
\pi_{1}^{l_{2}}=\pi_{1}^{l_{1}} \pi_{1}^{l_{2}-l_{1}}=\pi_{1}^{l_{1}} \pi_{1}^{\left(k_{1}-l_{1}\right)\left(k_{2}-l_{2}\right)} \pi_{1}^{l_{2}-l_{1}}=\pi_{1}^{l_{2}} \pi_{1}^{\left(k_{1}-l_{1}\right)\left(k_{2}-l_{2}\right)},
$$

and so $\left(\pi_{1}, \pi_{2}\right)^{l_{2}}=\left(\pi_{1}, \pi_{2}\right)^{\left(k_{1}-l_{1}\right)\left(k_{2}-l_{2}\right)+l_{2}}$. Thus $\left(\pi_{1}, \pi_{2}\right)$ is a periodic element in $R_{1} \oplus R_{2}$. Clearly, $\left(\pi_{1}, \pi_{2}\right)\left(w_{1}, w_{2}\right)=\left(w_{1}, w_{2}\right)\left(\pi_{1}, \pi_{2}\right)$ and $\left(w_{1}, w_{2}\right) \in J\left(R_{1} \oplus R_{2}\right)$. Hence $x=\left(x_{1}, x_{2}\right)$ is strongly J-semiclean in $R_{1} \oplus R_{2}$. Therefore, $R_{1} \oplus R_{2}$ is a strongly J-semiclean ring, as desired.
(3) It follows from the fact that $R[x]$ is not strongly clean [9, Example 2.5].
(4) It is trivial.
(5) It is trivial.

Corollary 2.10 Let $R=\oplus_{i=1}^{n} R_{i}$. Then $a=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R$ is a periodic element in R if and only if each x_{i} is a periodic element in $R_{i}(1 \leq i \leq n)$.

3. Elementary properties

Let I be an ideal of R. An element $a \in R$ is said to lift strongly modulo I, if, whenever $a^{m}-a^{n} \in I$, there exists $b^{s}=b^{t} \in R$ such that $b-a \in I$ and $a b=b a$, where $m, n, s, t \in \mathbb{N}$ and $m \neq n, s \neq t$. A ring R is said to be a J-ring if every element in R lifts strongly modulo $J(R)$. Clearly, if $a \in R$ is strongly J-semiclean, then a lifts strongly modulo $J(R)$.

Proposition 3.1 Let $R=\oplus_{i=1}^{n} R_{i}$. Then R is a J-ring if and only if so is each $R_{i}(1 \leq i \leq n)$.
Proof It suffices to show that $R=R_{1} \oplus R_{2}$ is a J-ring if and only if R_{1} and R_{2} are J-rings. Suppose that $R_{1} \oplus R_{2}$ is a J-ring. Let $x_{1} \in R_{1}$ be such that $x_{1}^{s}-x_{1}^{t} \in J\left(R_{1}\right)$ where $s \neq t \in \mathbb{N}$. Then $a=\left(x_{1}, 0\right) \in R_{1} \oplus R_{2}$ and $a^{s}-a^{t}=\left(x_{1}^{s}-x_{1}^{t}, 0\right) \in J\left(R_{1} \oplus R_{2}\right)$. So there exists a periodic element $\pi=\left(y_{1}, y_{2}\right) \in R_{1} \oplus R_{2}$ such that $a-\pi=\left(x_{1}-y_{1},-y_{2}\right) \in J\left(R_{1} \oplus R_{2}\right)$ and $a \pi=\left(x_{1} y_{1}, 0\right)=\pi a=\left(y_{1} x_{1}, 0\right)$. Thus $x_{1}-y_{1} \in J\left(R_{1}\right), x_{1} y_{1}=y_{1} x_{1}$, and by Corollary 2.10, y_{1} is a periodic element in R_{1}. So R_{1} is a J-ring. Similarly, we can show that R_{2} is a J-ring.

Assume that both R_{1} and R_{2} are J-rings. Let $a=\left(x_{1}, x_{2}\right) \in R_{1} \oplus R_{2}$ be such that $a^{s}-a^{t} \in$ $J\left(R_{1} \oplus R_{2}\right)$ where $s \neq t \in \mathbb{N}$. Then we have $x_{1}^{s}-x_{1}^{t} \in J\left(R_{1}\right)$ and $x_{2}^{s}-x_{2}^{t} \in J\left(R_{2}\right)$. So there exist a periodic element $\pi_{1} \in R_{1}$ and a periodic element $\pi_{2} \in R_{2}$ such that $x_{1}-\pi_{1} \in J\left(R_{1}\right)$, $x_{2}-\pi_{2} \in J\left(R_{2}\right)$ and $x_{1} \pi_{1}=\pi_{1} x_{1}, x_{2} \pi_{2}=\pi_{2} x_{2}$. Let $\pi=\left(\pi_{1}, \pi_{2}\right)$. Then π is a periodic element in $R_{1} \oplus R_{2}$, and $a-\pi=\left(x_{1}-\pi_{1}, x_{2}-\pi_{2}\right) \in J\left(R_{1} \oplus R_{2}\right)$, $a \pi=\pi a$. So a lifts strongly modulo $J\left(R_{1} \oplus R_{2}\right)$. Therefore, $R_{1} \oplus R_{2}$ is a J-ring.

Proposition 3.2 Let R be a ring. If $T_{n}(R)$ is a J-ring, then so is $T_{m}(R)$ for each $1 \leq m \leq n$.
Proof Let $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 m} \\ 0 & a_{22} & \cdots & a_{2 m} \\ \hdashline 0 & 0 & \cdots & a_{m m}\end{array}\right) \in T_{m}(R)$ be such that $A^{s}-A^{t} \in J\left(T_{m}(R)\right)$ where $s \neq t \in \mathbb{N}$. Then we have $\left(A^{\prime}\right)^{s}-\left(A^{\prime}\right)^{t} \in J\left(T_{n}(R)\right)$, where

$$
A^{\prime}=\left(\begin{array}{ccccccc}
a_{11} & a_{12} & \cdots & a_{1 m} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & a_{2 m} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{m m} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & 0
\end{array}\right) \in T_{n}(R)
$$

So there exists a periodic matrix

$$
B^{\prime}=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
0 & b_{22} & \cdots & b_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & b_{n n}
\end{array}\right) \in T_{n}(R)
$$

such that $A^{\prime}-B^{\prime} \in J\left(T_{n}(R)\right)$ and $A^{\prime} B^{\prime}=B^{\prime} A^{\prime}$. Let

$$
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 m} \\
0 & b_{22} & \cdots & b_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & b_{m m}
\end{array}\right) \in T_{m}(R)
$$

Then B is a periodic upper triangular matrix in $T_{m}(R), A-B \in J\left(T_{m}(R)\right)$ and $A B=B A$. Hence A lifts strongly modulo $J\left(T_{m}(R)\right)$. Therefore, $T_{m}(R)$ is a J-ring, as required.

Proposition 3.3 Let A and B be rings and ${ }_{A} V_{B}$ a bimodule. Let $R=\left(\begin{array}{cc}A & V \\ 0 & B\end{array}\right)$. If R is a J-ring, then so are A and B.

Proof By using the same way as the proof of Proposition 3.2, we complete the proof.
Proposition 3.4 Let R be a ring. If $a \in R$ lifts strongly modulo $J(R)$, then the following statements are equivalent:
(1) a is strongly J-semiclean;
(2) a^{k} is strongly J-semiclean for any $k \in \mathbb{N}$;
(3) a^{k} is strongly J-semiclean for some $k \in \mathbb{N}$.

Proof (1) \Rightarrow (2). Suppose that a is strongly J-semiclean. Then there exist a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $a=\pi+w$ and $\pi w=w \pi$. Then for any positive integer $k \in \mathbb{N}$, we have

$$
a^{k}=(\pi+w)^{k}=\pi^{k}+C_{k}^{1} \pi^{k-1} w+C_{k}^{2} \pi^{k-2} w^{2}+\cdots+w^{k}
$$

where C_{k}^{i} is the binomial coefficient. Since π is a periodic element, there exist two distinct positive integers m and n such that $\pi^{m}=\pi^{n}$. Then $\left(\pi^{k}\right)^{m}=\left(\pi^{k}\right)^{n}$. So π^{k} is a periodic element. Clearly, $C_{k}^{1} \pi^{k-1} w+C_{k}^{2} \pi^{k-2} w^{2}+\cdots+w^{k} \in J(R)$, and $\pi^{k}\left(C_{k}^{1} \pi^{k-1} w+C_{k}^{2} \pi^{k-2} w^{2}+\cdots+w^{k}\right)=$ $\left(C_{k}^{1} \pi^{k-1} w+C_{k}^{2} \pi^{k-2} w^{2}+\cdots+w^{k}\right) \pi^{k}$. Therefore, a^{k} is strongly J-semiclean.
$(2) \Rightarrow(3)$. It is trivial.
$(3) \Rightarrow(1)$. Suppose that a^{k} is strongly J-semiclean for some $k \in \mathbb{N}$. Then $\overline{a^{k}}=(\bar{a})^{k}$ is a periodic element in $R / J(R)$, and so \bar{a} is a periodic element in $R / J(R)$. Hence there exist some $s, t \in \mathbb{N}$ such that $a^{s}-a^{t} \in J(R)$. Since a lifts strongly modulo $J(R)$, there exist a periodic element $b \in R$ and an element $j \in J(R)$ such that $a=b+j$ and $a b=b a$. So $b j=j b$. Therefore, a is strongly J-semiclean.

Proposition 3.5 Let R be a ring. Then the following statements are equivalent:
(1) R is a strongly J-semiclean ring;
(2) $R / J(R)$ is a periodic ring and R is a J-ring.

Proof $(1) \Rightarrow(2)$. It is trivial.
$(2) \Rightarrow(1)$. Let $x \in R$. Then $\bar{x} \in R / J(R)$ is a periodic element. So there exist some $k, l \in \mathbb{N}$ such that $x^{k}-x^{l} \in J(R)$. By hypothesis, there exists some periodic element $\pi \in R$ such that $x-\pi \in J(R)$ and $x \pi=\pi x$. Set $w=x-\pi$. Then $x=\pi+w, w \in J(R)$ and $\pi w=w \pi$. Hence x is strongly J-semiclean. Therefore, R is a strongly J-semiclean ring.

Proposition 3.6 Let R be a strongly J-semiclean ring with 2 being an invertible element. Then every element in R is a sum of two units.

Proof For any $x \in R$, there exists a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $\frac{x+1}{2}=\pi+w$ and $\pi w=w \pi$. According to [12, Lemma 5.1], there exist $e^{2}=e \in R$ and $u \in U(R)$ such that $\pi=e+u$. Hence, $x=2 e-1+2 u+2 w$ where $2 e-1$ and $2 u+2 w$ are units, as required.

Let R be a ring and let $a \in R$. Let $\operatorname{ann}_{l}(a)=\{u \in R \mid u a=0\}$ and $\operatorname{ann}_{r}(a)=\{u \in R \mid a u=$ $0\}$.

Proposition 3.7 Let R be a ring and let $a=\pi+w$ be a strongly J-semiclean decomposition of a in R. Then there exists some positive integer $k \in \mathbb{N}$ such that $\operatorname{ann}_{l}(a) \subseteq \operatorname{ann}_{l}\left(\pi^{k}\right)$ and $\operatorname{ann}_{r}(a) \subseteq \operatorname{ann}_{r}\left(\pi^{k}\right)$.

Proof Let $r \in \operatorname{ann}_{l}(a)$. Then $r a=0$. Write $a=\pi+w$, where π is a periodic element in R, $w \in J(R)$ and $\pi w=w \pi$. Then $r \pi=-r w$. Since π is a periodic element in R, by [13, Lemma 1], there exists some $k \in \mathbb{N}$ such that π^{k} is an idempotent. Hence $r \pi^{k}=r \pi^{k} \pi^{k}=-r \pi^{k} \pi^{k-1} w$.

It follows that $r \pi^{k}\left(1+\pi^{k-1} w\right)=0$ and so $r \pi^{k}=0$, that is, $r \in \operatorname{ann}_{l}\left(\pi^{k}\right)$. Therefore, $\operatorname{ann}_{l}(a) \subseteq$ $\operatorname{ann}_{l}\left(\pi^{k}\right)$. A similar argument shows that $\operatorname{ann}_{r}(a) \subseteq \operatorname{ann}_{r}\left(\pi^{k}\right)$.

Proposition 3.8 Let R be a ring, $f \in R$ an idempotent and $a \in f R f$ lifts strongly modulo $J(f R f)$. Then a is strongly J-semiclean in R if and only if a is strongly J-semiclean in $f R f$.

Proof Suppose that a is strongly J-semiclean in $f R f$. Then $a=\pi+w$, where π is a periodic element in $f R f$ and $w \in J(f R f)$ and $\pi w=w \pi$. Obviously, $w \in f J(R) f \subseteq J(R)$. Hence $a \in f R f$ is strongly J-semiclean in R.

Conversely, assume that $a \in f R f$ is strongly J-semiclean in R. Then $a=\pi+w$, where π is a periodic element in $R, w \in J(R)$ and $\pi w=w \pi$. By [13, Lemma 1], there exists some $k \in \mathbb{N}$ such that $\pi^{k}=e$ is an idempotent. Thus $a^{k}=e+v$ where $v=C_{k}^{1} \pi^{k-1} w+C_{k}^{2} \pi^{k-2} w^{2}+\cdots+w^{k} \in J(R)$ and $e v=v e$. So $a^{k} \in f R f$ is strongly J-clean in R. By [9, Theorem 3.4], we obtain that a^{k} is strongly J-clean in $f R f$ and so a^{k} is strongly J-semiclean in $f R f$. Then by Proposition 3.4, a is strongly J-semiclean in $f R f$.

As is well known, every corner of a strongly clean ring is strongly clean [3, Theorem 2.4], and every corner of a strongly J-clean ring is strongly J-clean [9, Corollary 3.5]. Analogously, we can derive the following corollary.

Corollary 3.9 Let $e \in R$ be an idempotent and let $e R e$ be a J-ring. If R is a strongly J semiclean ring, then so is e Re.

Proof Let $a \in e R e$. As R is strongly J-semiclean, we see that $a \in e R e$ is strongly J-semiclean in R. According to Proposition 3.8, $a \in e R e$ is strongly J-semiclean in $e R e$. Therefore, $e R e$ is a strongly J-semiclean ring.

4. Triangular matrix ring

The main purpose of this section is to investigate the strongly J-semicleanness of $T_{n}(R)$. These results also hold for the ring of all lower triangular matrices by a similar route.

Let R be a ring, and let

$$
\begin{gathered}
S_{n}(R)=\left\{\left.\left(\begin{array}{cccc}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}, \\
U_{n}(R)=\left\{\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
0 & a_{1} & \cdots & a_{n-1} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{1}
\end{array}\right) \right\rvert\, a_{i} \in R, 1 \leq i \leq n\right\} .
\end{gathered}
$$

Then $S_{n}(R)$ and $U_{n}(R)$ are subrings of $T_{n}(R)$ under usual matrix operations.
Proposition 4.1 Let R be a commutative ring. Then the following statements are equivalent:
(1) R is a strongly J-semiclean ring;
(2) $S_{n}(R)$ is a strongly J-semiclean ring;
(3) $U_{n}(R)$ is a strongly J-semiclean ring.

Proof $(1) \Rightarrow(2)$. Suppose that R is a strongly J-semiclean ring. Then for any

$$
A=\left(\begin{array}{cccc}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a
\end{array}\right) \in S_{n}(R)
$$

there exist a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $a=\pi+w$. Let

$$
P=\left(\begin{array}{cccc}
\pi & 0 & \cdots & 0 \\
0 & \pi & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \pi
\end{array}\right), \quad W=\left(\begin{array}{cccc}
w & a_{12} & \cdots & a_{1 n} \\
0 & w & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & w
\end{array}\right)
$$

Then P is a periodic element in $S_{n}(R)$ and $W \in J\left(S_{n}(R)\right)$. By the condition that R is a commutative ring, we obtain that $P W=W P$. So $A=P+W$ is a strongly J-semiclean decomposition of A. Hence A is strongly J-semiclean in $S_{n}(R)$. Therefore, $S_{n}(R)$ is a strongly J-semiclean ring.
$(2) \Rightarrow(1)$. Assume that $S_{n}(R)$ is a strongly J-semiclean ring. Let

$$
Q=\left\{\left.\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & 0 & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right) \right\rvert\, a_{i j} \in R\right\}
$$

Then Q is an ideal of $S_{n}(R)$ and $R \cong S_{n}(R) / Q$. So by Example $2.9, R$ is strongly J-semiclean.
$(1) \Leftrightarrow(3)$. The proof is similar to that of $(1) \Leftrightarrow(2)$.
Based on Proposition 4.1, we derive the following corollary.
Corollary 4.2 Let R be a commutative ring. Then the following statements are equivalent:
(1) R is a strongly J-semiclean ring;
(2) The trivial extension $R \bowtie R$ of R by R is a strongly J-semiclean ring.

Let R be a ring and let

$$
W(R)=\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
a_{21} & a & a_{23} \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

Then $W(R)$ is a ring under usual matrix operations. By using the same way as the proof of Proposition 4.1, we obtain the following proposition.

Proposition 4.3 Let R be a commutative ring. Then the following statements are equivalent:
(1) R is a strongly J-semiclean ring;
(2) $W(R)$ is a strongly J-semiclean ring.

Proposition 4.4 Let R be a ring. Then the following statements are equivalent:
(1) $T_{n}(R)$ is a strongly J-semiclean ring;
(2) $T_{m}(R)$ is a strongly J-semiclean ring for all $1 \leq m \leq n$.

Proof $(1) \Rightarrow(2)$. Suppose that $T_{n}(R)$ is a strongly J-semiclean ring. Then by Proposition 3.5, $T_{n}(R)$ is a J-ring. In view of Proposition $3.2, T_{m}(R)$ is a J-ring for all $1 \leq m \leq n$. Let $e=\operatorname{diag}(\underbrace{1,1, \ldots, 1}_{m}, 0, \ldots, 0) \in T_{n}(R)$. Then $T_{m}(R) \cong e T_{n}(R) e$. It follows from Corollary 3.9 that $T_{m}(R)$ is strongly J-semiclean for all $1 \leq m \leq n$.
$(2) \Rightarrow(1)$. It is trivial.
Corollary 4.5 Let A and B be rings and ${ }_{A} V_{B}$ a bimodule. Let $R=\left(\begin{array}{cc}A & V \\ 0 & B\end{array}\right)$. If R is a strongly J-semiclean ring, then so are A and B.

Proof By using the same way as the the proof of Proposition 4.4, we complete the proof.
Let $a \in R, l_{a}: R \longrightarrow R$ and $r_{a}: R \longrightarrow R$ denote, respectively, the abelian group endomorphisms given by $l_{a}(r)=a r$ and $r_{a}(r)=r a$ for all $r \in R$. Thus $l_{a}-r_{b}$ is an abelian group endomorphism such that $\left(l_{a}-r_{b}\right)(r)=a r-r b$ for any $r \in R$. Following Diesl [4], a local ring R is bleached provided that for any $a \in U(R), b \in J(R), l_{a}-r_{b}$, and $l_{b}-r_{a}$ are both surjective.

Lemma 4.6 Let R be a local ring, and suppose that $A \in T_{n}(R)$. Then for any set $\left\{e_{i i}\right\}$ of idempotents in R such that $e_{i i}=e_{j j}$ whenever $l_{A_{i i}}-r_{A_{j j}}$ is not a surjective abelian group endomorphism of R, there exists an idempotent $E \in T_{n}(R)$ such that $A E=E A$ and $E_{i i}=e_{i i}$ for any $i \in\{1,2, \ldots, n\}$.

Proof See [1, Lemma 7].
Proposition 4.7 Let R be a local ring, and let $n \geq 2$. Then the following statements are equivalent:
(1) $T_{n}(R)$ is strongly J-semiclean;
(2) $T_{n}(R)$ is a J-ring, R is bleached and $R / J(R)$ is a periodic ring.

Proof $(1) \Rightarrow(2)$. Suppose that $T_{n}(R)$ is strongly J-semiclean. In view of Proposition 3.5, $T_{n}(R)$ is a J-ring. According to Proposition 4.4, R is a strongly J-semiclean ring. Then it follows from Proposition 3.5, R/J(R) is a periodic ring. Now we show that R is bleached. In view of Proposition 4.4, $T_{2}(R)$ is strongly J-semiclean. Let $a \in U(R)$ and $b \in J(R)$. We will show that $l_{a}-r_{b}: R \longrightarrow R$ is surjective. For any $v \in R$, it suffices to find some $x \in R$ such that $a x-x b=v$. Let $r=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$. Since $T_{2}(R)$ is strongly J-semiclean, there exist a periodic element $\pi=\left(\begin{array}{ll}e & g \\ 0 & f\end{array}\right) \in T_{2}(R)$, and an element $w \in J\left(T_{2}(R)\right)$ such that $r=\pi+w$ and $\pi w=w \pi$. So $r \pi=\pi r$. Since R is a local ring, for periodic elements $e, f \in R$, there exists some $l \in \mathbb{N}$ such that $e^{l}=1$ or $e^{l}=0$ and $f^{l}=1$ or $f^{l}=0$. As $J(R)$ is a maximal ideal of $R, R / J(R)$ is a periodic ring implies that $R / J(R)$ is a periodic field. So for $a \in U(R)$, there exists some $m \in \mathbb{N}$
such that $a^{m} \in 1+J(R)$. Thus we can find some $k \in \mathbb{N}$ such that $r^{k} \in\left(\begin{array}{cc}1+J(R) & R \\ 0 & J(R)\end{array}\right)$ and π^{k} is one of the following:

$$
\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & x \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & x \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

Since $r^{k}-\pi^{k}=\left(C_{k}^{1} \pi^{k-1}+C_{k}^{2} \pi^{k-2} w+\cdots+w^{k-1}\right) w \in J\left(T_{2}(R)\right)$, we have $\pi^{k}=\left(\begin{array}{ll}1 & x \\ 0 & 0\end{array}\right)$, otherwise $r^{k}-\pi^{k} \notin J\left(T_{2}(R)\right)$. It follows from $r \pi=\pi r$ that $r \pi^{k}=\pi^{k} r$. Thus we deduce that $a x-x b=v$. Thus $l_{a}-r_{b}: R \longrightarrow R$ is surjective. Analogously, we show that $l_{b}-r_{a}: R \longrightarrow R$ is surjective. Therefore, R is bleached.
$(2) \Rightarrow(1)$. Let $A=\left(a_{i j}\right) \in T_{n}(R)$. As R is a local ring and $R / J(R)$ is a periodic ring, there exists some $k \in \mathbb{N}$ such that $\left\{a_{i i}^{k} \mid i=1,2, \ldots, n\right\} \subseteq J(R) \cup(1+J(R))$. In order to show that A^{k} is strongly J-semiclean, it suffices to construct a periodic element $E \in T_{n}(R)$ such that $E A^{k}=A^{k} E$ and such that $A^{k}-E \in J\left(T_{n}(R)\right)$. Begin by constructing the main diagonal of E. Set $e_{i i}=0$ if $a_{i i}^{k} \in J(R)$, and set $e_{i i}=1$ otherwise. Thus $a_{i i}^{k}-e_{i i} \in J(R)$ for every i. If $e_{i i} \neq e_{j j}$, then it must be the case (without loss of generality) that $a_{i i}^{k} \in U(R)$ and $a_{j j}^{k} \in J(R)$. As R is bleached, $l_{a_{i i}^{k}}-r_{a_{j j}^{k}}: R \longrightarrow R$ is surjective. According to Lemma 4.6, there exists an idempotent $E \in T_{n}(R)$ such that $A^{k} E=E A^{k}$ and $E_{i i}=e_{i i}$ for every $i \in\{1,2, \ldots, n\}$. In addition, $A^{k}-E \in J\left(T_{n}(R)\right)$. Hence A^{k} is strongly J-clean and so A^{k} is strongly J-semiclean. Since $T_{n}(R)$ is a J-ring, by Proposition 3.4, A is a strongly J-semiclean element. Therefore, $T_{n}(R)$ is a strongly J-semiclean ring.

Corollary 4.8 Let R be a commutative local ring and let $n \geq 2$. Then the following statements are equivalent:
(1) $T_{n}(R)$ is strongly J-semiclean;
(2) $R / J(R)$ is a periodic ring and $T_{n}(R)$ is a J-ring.

Proof $(1) \Rightarrow(2)$ is obvious from Proposition 4.7.
$(2) \Rightarrow(1)$. As R is a commutative local ring, it is bleached. Therefore, the result follows from Proposition 4.7.

Corollary 4.9 Let R be a local ring. Then $T_{2}(R)$ is strongly J-semiclean if and only if:
(1) $R / J(R)$ is a periodic ring and $T_{2}(R)$ is a J-ring,
(2) For any $a \in U(R), b \in J(R)$ and $v \in R$, there exists $P, Q \in U\left(T_{2}(R)\right)$ such that $P^{-1}\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) P=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ and $Q^{-1}\left(\begin{array}{ll}b & v \\ 0 & a\end{array}\right) Q=\left(\begin{array}{ll}b & 0 \\ 0 & a\end{array}\right)$.

Proof Suppose that $T_{2}(R)$ is strongly J-semiclean. By virtue of Proposition 4.7, $T_{2}(R)$ is a J-ring, R is bleached and $R / J(R)$ is a periodic ring. Then by using the same way as the proof of Corollary 4.6 in [9], it is easy to see that there exist $P, Q \in U\left(T_{2}(R)\right)$ such that $P^{-1}\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) P=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ and $Q^{-1}\left(\begin{array}{ll}b & v \\ 0 & a\end{array}\right) Q=\left(\begin{array}{ll}b & 0 \\ 0 & a\end{array}\right)$.

Conversely, assume that (1) and (2) hold. Let $A=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) \in T_{2}(R)$.
Case I. Both a and b are in $J(R)$. Then $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) \in J\left(T_{2}(R)\right)$ and so $A=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$ is strongly J-semiclean.

Case II. Both a and b are in $U(R)$. Since R is a local ring and $R / J(R)$ is a periodic ring, we can find some $k \in \mathbb{N}$ such that $a^{k} \in 1+J(R)$ and $b^{k} \in 1+J(R)$. Then it is easy to see that $A^{k}=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{k}$ is strongly J-semiclean. As $T_{2}(R)$ is a J-ring, by Proposition 3.4, $A=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$ is strongly J-semiclean.

Case III. $a \in U(R)$ and $b \in J(R)$. Then there exists some $P \in U\left(T_{2}(R)\right)$ such that $P^{-1}\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) P=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$. As $T_{2}(R)$ is a J-ring, by Proposition $3.2, R$ is a J-ring. Then by Proposition $3.5, R$ is a strongly J-semiclean ring. Thus we have a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $a=\pi+w$ and $\pi w=w \pi$. Then $P^{-1}\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) P=\left(\begin{array}{ll}\pi & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}w & 0 \\ 0 & b\end{array}\right)$, and so $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)=P\left(\begin{array}{cc}\pi & 0 \\ 0 & 0\end{array}\right) P^{-1}+P\left(\begin{array}{cc}w & 0 \\ 0 & b\end{array}\right) P^{-1}$. Clearly, $P\left(\begin{array}{ll}\pi & 0 \\ 0 & 0\end{array}\right) P^{-1}$ is a periodic element in $T_{2}(R)$, $P\left(\begin{array}{cc}w & 0 \\ 0 & b\end{array}\right) P^{-1} \in J\left(T_{2}(R)\right)$ and

$$
P\left(\begin{array}{ll}
\pi & 0 \\
0 & 0
\end{array}\right) P^{-1} P\left(\begin{array}{cc}
w & 0 \\
0 & b
\end{array}\right) P^{-1}=P\left(\begin{array}{cc}
w & 0 \\
0 & b
\end{array}\right) P^{-1} P\left(\begin{array}{cc}
\pi & 0 \\
0 & 0
\end{array}\right) P^{-1} .
$$

Thus $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$ is a strongly J-semiclean element in $T_{2}(R)$.
Case IV. $a \in J(R)$ and $b \in U(R)$. Then there exists some $Q \in U\left(T_{2}(R)\right)$ such that $Q^{-1}\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) Q=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$. By using the same way as the proof of Case III, we can show that $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$ is strongly J-semiclean.

In any case, we conclude that $A=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$ is a strongly J-clean element. Therefore, $T_{2}(R)$ is a strongly J-semiclean ring.

Proposition 4.10 Let A and B be local rings and ${ }_{A} V_{B}$ a bimodule. Let $R=\left(\begin{array}{cc}A & V \\ 0 & B\end{array}\right)$. Then $£=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) \in R$ is strongly J-semiclean if and only if :
(1) $£$ lifts strongly modulo $J(R)$;
(2) There exist some $s, t \in \mathbb{N}$ such that $a^{s} \in J(A)$ and $b^{t} \in J(B)$, or
(3) There exist some $u, v \in \mathbb{N}$ and some invertible periodic elements $p \in A$ and $q \in B$ such that $a^{u} \in p+J(A)$ and $b^{v} \in q+J(B)$, or
(4) There exist $x \in V, k \in \mathbb{N}$ and an invertible periodic element $c \in A$ such that $c\left(a^{k-1} v+\right.$ $\left.a^{k-2} v b+\cdots+v b^{k-1}\right)=a^{k} x-x b^{k}$ and that $c a-a^{k+1} \in J(A), b \in J(B), a^{k} c=c a^{k}$, or
(5) There exist $y \in V, l \in \mathbb{N}$ and an invertible periodic element $d \in A$ such that ($a^{l-1} v+$ $\left.a^{l-2} v b+\cdots+v b^{l-1}\right) d=y b^{l}-a^{l} y$ and that $b d-b^{l+1} \in J(B), a \in J(A), b^{l} d=d b^{l}$.

Proof (\Rightarrow). Suppose that $£$ is strongly J-semiclean. Then $£$ lifts strongly modulo $J(R)$. If there exists some $m \in \mathbb{N}$ such that $£^{m} \in J(R)$, then $a^{m} \in J(A), b^{m} \in J(B)$ and so the condition (2) holds. If there exist some invertible periodic elements $p \in A$ and $q \in B$, and a positive integer $n \in \mathbb{N}$ such that $\left(\begin{array}{cc}p & 0 \\ 0 & q\end{array}\right)-\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{n} \in J(R)$, then $a^{n} \in p+J(A), b^{n} \in q+J(B)$, and so the condition (3) holds. Now we assume that for any $m \in \mathbb{N}, £^{m} \notin J(R)$, and for any invertible periodic elements $p \in A, q \in B$, any $n \in \mathbb{N},\left(\begin{array}{cc}p & 0 \\ 0 & q\end{array}\right)-£^{n} \notin J(R)$. Since $£$ is strongly J-semiclean, there exists some periodic element $E=\left(\begin{array}{cc}e & w \\ 0 & f\end{array}\right) \in R$ such that $£-E \in J(R)$ and $£ E=E £$. Since E is a periodic element in R, we obtain that e and f are periodic elements in A and B, respectively. If both e and f are invertible periodic elements, then $\left(\begin{array}{ll}e & 0 \\ 0 & f\end{array}\right)-£ \in J(R)$, a contradiction. If both e and f are nilpotent elements, the $E \in J(R)$ and so $£ \in J(R)$, a
contradiction. So e is an invertible periodic element in A and f is a nilpotent element in B, or e is a nilpotent element in A and f is an invertible element in B. Firstly, we assume that e is an invertible periodic element in A and f is a nilpotent element in B. It follows from $\mathscr{L}-E \in J(R)$ that $b \in J(B)$. Let $k \in \mathbb{N}$ be such that $f^{k}=0$. Then $E^{k}=\left(\begin{array}{cc}e^{k} & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}c & x \\ 0 & 0\end{array}\right)$ where $c=e^{k}$ is an invertible periodic element in A and $x \in V$. It follows from $£ E=E £$ that $£^{k} E^{k}=E^{k} £^{k}$. So $\left(\begin{array}{cc}a^{k} a^{k-1} v+a^{k-2} v b+\cdots+v b^{k-1} \\ 0 & b^{k}\end{array}\right)\left(\begin{array}{cc}c & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}c & x \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}a^{k} a^{k-1} v+a^{k-2} v b+\cdots+v b^{k-1} \\ 0 & b^{k}\end{array}\right)$. Thus $c\left(a^{k-1} v+a^{k-2} v b+\cdots+v b^{k-1}\right)=a^{k} x-x b^{k}$ and $a^{k} c=c a^{k}$. Since $£-E \in J(R)$ and $£ E=E £$, there exists $U \in J(R)$ such that $£=E+U$ and $E U=U E$. Then $£^{k}=E^{k}+U^{\prime}$ where $U^{\prime}=C_{k}^{1} E^{k-1} U+C_{k}^{2} E^{k-2} U^{2}+\cdots+U^{k} \in J(R)$. Hence $e^{k}-a^{k}=c-a^{k} \in J(A)$ and so $c a-a^{k+1} \in J(A)$. Secondly, assume that e is a nilpotent element in A and f is an invertible element in B. Then similarly, we show that there exist $y \in V, l \in \mathbb{N}$ and an invertible periodic element $d \in A$ such that $\left(a^{l-1} v+a^{l-2} v b+\cdots+v b^{l-1}\right) d=y b^{l}-a^{l} y$ and that $b d-b^{l+1} \in J(B)$, $a \in J(A), b^{l} d=d b^{l}$.
(\Leftarrow). Suppose that $£=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) \in R$ lifts strongly modulo $J(R)$.
Case I. There exist some $s, t \in \mathbb{N}$ such that $a^{s} \in J(A)$ and $b^{t} \in J(B)$. Then $£^{s t}=\left(\begin{array}{cc}a^{s t} & x \\ 0 & b^{s t}\end{array}\right) \in$ $J(R)$ where $x \in V$. Then $£^{s t}$ is strongly J-semiclean and so $£$ is strongly J-semiclean by Proposition 3.4.

Case II. There exist some $u, v \in \mathbb{N}$ and some invertible periodic elements $p \in A$ and $q \in B$ such that $a^{u} \in p+J(A)$ and $b^{v} \in q+J(B)$. Let $k \in \mathbb{N}$ be such that $p^{k}=1_{A}$ and $q^{k}=1_{B}$. Then $£^{u v k}=\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{u v k}=\left(\begin{array}{cc}a^{u v k} & x \\ 0 & b^{u v k}\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array} 1\right)+W^{\prime}$ where $W^{\prime} \in J(R)$ and $x \in V$. Hence $£^{u v k}$ is strongly J-semiclean and so $£$ is strongly J-semiclean by Proposition 3.4.

Case III. There exist $x \in V, k \in \mathbb{N}$ and an invertible periodic element $c \in A$ such that $c\left(a^{k-1} v+a^{k-2} v b+\cdots+v b^{k-1}\right)=a^{k} x-x b^{k}$ and that $c a-a^{k+1} \in J(A), b \in J(B)$ and $a^{k} c=c a^{k}$. Since $J(A)$ is a maximal ideal of $A, a \in J(A)$ or $c-a^{k} \in J(A)$. If $a \in J(A)$, then $£ \in J(R)$ and so $£$ is strongly J-semiclean. Now assume that $c-a^{k} \in J(A), b \in J(B), a^{k} c=c a^{k}$ and $c\left(a^{k-1} v+a^{k-2} v b+\cdots+v b^{k-1}\right)=a^{k} x-x b^{k}$. Choose $E=\left(\begin{array}{cc}c & x \\ 0 & 0\end{array}\right)$. Since c is an invertible periodic element, there exists $l \in \mathbb{N}$ such that $c^{l}=1_{A}$ and so $E^{2 l}=E^{l}$. Hence E is a periodic matrix in R. Since $£^{k}-E \in J(R)$ and $£^{k} E=E £^{k}$, we obtain that $£^{k}$ is strongly J-semiclean, and so $£$ is strongly J-semiclean.

Case IV. There exist $y \in V, l \in \mathbb{N}$ and an invertible periodic element $d \in A$ such that $\left(a^{l-1} v+a^{l-2} v b+\cdots+v b^{l-1}\right) d=y^{l} b-a^{l} y$ and that $b d-b^{l+1} \in J(B), a \in J(A), d b^{l}=b^{l} d$. By using the same way as the proof of Case III, we can show that $£$ is strongly J-semiclean.

Therefore in any case, we conclude that $£ \in R$ is strongly J-semiclean.
Proposition 4.11 Let A and B be local rings and $A_{A} V_{B}$ a bimodule. Let $R=\left(\begin{array}{cc}A & V \\ 0 & B\end{array}\right)$. Then R is strongly J-semiclean if and only if:
(1) R is a J-ring;
(2) Both $A / J(A)$ and $B / J(B)$ are periodic rings;
(3) If $a \in 1_{A}+J(A), b \in J(B)$, and $v \in V$, there exists $x \in V$ such that $v=a x-x b$.

Proof (\Rightarrow). Suppose that R is strongly J-semiclean. Then by Proposition $3.5, R$ is a J -
ring. In view of Corollary 4.5, A and B are strongly J-semiclean rings. Then by Proposition 3.5, both $A / J(A)$ and $B / J(B)$ are periodic rings. Suppose that $a \in 1_{A}+J(A), b \in J(B)$, and $v \in V$. Then $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) \in R$ is a strongly J-semiclean element in R. So there exists a periodic element $E=\left(\begin{array}{ll}e & w \\ 0 & f\end{array}\right) \in R$ such that $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)-E \in J(R)$ and $\left(\begin{array}{cc}a & v \\ 0 & b\end{array}\right) E=E\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$. Since E is a periodic element in R, we obtain that both e and f are periodic elements. If f is an invertible periodic element in B, then $b-f$ is an invertible element in B and so $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)-E \notin J(R)$, a contradiction. If e is a nilpotent element in A, then $a-e$ is an invertible element in A and so $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)-E \notin J(R)$, a contradiction. Hence e is an invertible periodic element in A and f is a nilpotent element in B. Let $k \in \mathbb{N}$ be such that $e^{k}=1_{A}$ and $f^{k}=0$. Then $E^{k}=\left(\begin{array}{cc}1_{A} & x \\ 0 & 0\end{array}\right)$ where $x=e^{k-1} w+e^{k-2} w f+\cdots+w f^{k-1} \in V$. It follows from $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) E=E\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$ that $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) E^{k}=E^{k}\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$. Hence $\left(\begin{array}{cc}a & v \\ 0 & b\end{array}\right)\left(\begin{array}{cc}1_{A} & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}1_{A} & x \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$. Thus $v=a x-x b$.
(\Leftarrow). Suppose that the conditions (1), (2) and (3) are satisfied. Let $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) \in R$. Since R is a J-ring, by Proposition 3.3, A and B are J-rings. As both $A / J(A)$ and $B / J(B)$ are periodic rings, we obtain that $a \in J(A)$ or $a \in p+J(A)$, that $b \in J(B)$ or $b \in q+J(B)$, where p is an invertible periodic element in A and q is an invertible periodic element in B.

Case I. $a \in J(A)$ and $b \in J(B)$. Then $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) \in J(R)$, and so $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right) \in R$ is strongly J-semiclean.
Case II. $a \in p+J(A), b \in q+J(B)$, where p and q are invertible periodic elements. Let $s \in \mathbb{N}$ be such that $p^{s}=1_{A}$ and $q^{s}=1_{B}$. Then $a^{s} \in 1_{A}+J(A)$ and $q^{s} \in 1_{B}+J(B)$ and so
 Hence $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{s}$ is strongly J-semiclean and so $\left(\begin{array}{l}a \\ 0 \\ 0\end{array}\right)$ is strongly J-semiclean.

Case III. $a \in p+J(A), b \in J(B)$ where p is an invertible periodic element. Let $s \in \mathbb{N}$ be such that $p^{s}=1_{A}$. Then $a^{s} \in 1_{A}+J(A), b^{s} \in J(B)$. Consider $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{s}=\left(\begin{array}{cc}a^{s} & v^{\prime} \\ 0 & b^{s}\end{array}\right) \in R$ where $v^{\prime}=a^{s-1} v+a^{s-2} v b+\cdots+v b^{s-1} \in V$. By hypothesis there exists some $x \in V$ such that $v^{\prime}=a^{s} x-x b^{s}$. Let $E=\left(\begin{array}{rr}1_{A} & x \\ 0 & 0\end{array}\right)$. Then E is a periodic element in $R,\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{s}-E \in J(R)$ and $\left(\begin{array}{ll}a & v^{\prime} \\ 0 & b\end{array}\right)^{s} E=E\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{s}$. Hence $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{s}$ is strongly J-semiclean and so $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$ is strongly J-semiclean.

Case IV. $a \in J(A), b \in q+J(B)$, where q is an invertible periodic element in B. Let $l \in \mathbb{N}$ be such that $q^{l}=1_{B}$. Then $a^{l} \in J(A), b^{l} \in 1_{B}+J(B)$, and so $1_{A}-a^{l} \in 1_{A}+J(A)$ and $1_{B}-b^{l} \in J(B)$. Consider $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{l}=\left(\begin{array}{cc}a^{l} & u \\ 0 & b^{l}\end{array}\right) \in R$ where $u=a^{l-1} v+a^{l-2} v b+\cdots+v b^{l-1} \in V$. By the hypothesis there exists $x \in V$ such that $u=\left(1_{A}-a^{l}\right) x-x\left(1_{B}-b^{l}\right)$, i.e., $u=a^{l}(-x)-(-x) b^{l}$. Let $E=\left(\begin{array}{cc}0 & -x \\ 0 & 1_{B}\end{array}\right) \in R$. Then E is a periodic element in $R,\left(\begin{array}{cc}a & v \\ 0 & b\end{array}\right)^{l}-E \in J(R)$ and $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{l} E=E\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{l}$. Hence $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)^{l}$ is strongly J-semiclean and so $\left(\begin{array}{ll}a & v \\ 0 & b\end{array}\right)$ is strongly J-semiclean. Therefore, R is a strongly J-semiclean ring.

Let R be a local ring. As an immediate consequence, we deduce that $T_{2}(R)$ is strongly J semiclean if and only if R is a J-ring, $R / J(R)$ is a periodic ring and R is bleached.

Corollary 4.12 Let A and B be local rings and ${ }_{A} V_{B}$ a bimodule. Let $R=\left(\begin{array}{cc}A & V \\ 0 & B\end{array}\right)$. Then R is strongly J-semiclean if and only if:
(1) R is a J-ring;
(2) Both $A / J(A)$ and $B / J(B)$ are periodic rings;
(3) R is strongly clean.

Proof According to [7, Example 2], R is strongly clean if and only if whenever $a-1_{A} \in J(A)$, $b \in J(B)$, and $v \in V$, there exists $x \in V$ such that $v=a x-x b$. Therefore we complete the proof by Proposition 4.11 .

5. 2×2 matrix rings

The main purpose of this section is to investigate the strong J-semicleanness of a single 2×2 matrix over a commutative local rings.

Lemma 5.1 Let R be a commutative local ring, and let $E \in M_{2}(R)$ be a periodic matrix. Then there exists some $k \in \mathbb{N}$ such that E^{k} is similar to a periodic diagonal matrix $\left(\begin{array}{cc}f_{1} & 0 \\ 0 & f_{2}\end{array}\right)$, where f_{1} and f_{2} are periodic elements in R.

Proof Since E is a periodic matrix, by [13, Lemma 1], there exists some $k \in \mathbb{N}$ such that E^{k} is an idempoten [9, Lemma 5.1], we complete the proof.

Proposition 5.2 Let R be a commutative local ring. Then $A \in M_{2}(R)$ is strongly J-semiclean if and only if A lifts strongly modulo $J\left(M_{2}(R)\right)$ and there exist some $k, l, m \in \mathbb{N}$ and some invertible periodic element p and q in R such that $A^{k} \in J\left(M_{2}(R)\right.$), or $p I_{2}-A^{l} \in J\left(M_{2}(R)\right)$, or A^{m} is similar to a matrix $\left(\begin{array}{cc}q+w_{1} & 0 \\ 0 & w_{2}\end{array}\right)$, where I_{2} is the identity matrix of $M_{2}(R)$ and $w_{1}, w_{2} \in J(R)$.

Proof If either $A^{k} \in J\left(M_{2}(R)\right)$ or $p I_{2}-A^{l} \in J\left(M_{2}(R)\right)$ for some $k, l \in \mathbb{N}$ and some invertible periodic element $p \in R$, then A^{k} or A^{l} is strongly J-semiclean, and so A is strongly J-semiclean by Proposition 3.4. For $w_{1}, w_{2} \in J(R),\left(\begin{array}{cc}q+w_{1} & 0 \\ 0 & w_{2}\end{array}\right)=\left(\begin{array}{cc}q & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}w_{1} & 0 \\ 0 & w_{2}\end{array}\right)$ is strongly J-semiclean. Thus A^{m} is strongly J-semiclean and so A is strongly J-semiclean. Hence, one direction is obvious.

Conversely, assume that $A \in M_{2}(R)$ is strongly J-semiclean. Then A lifts strongly modulo $J\left(M_{2}(R)\right)$ and there exist a periodic matrix $E \in M_{2}(R)$ and a $W \in J\left(M_{2}(R)\right)$ such that $A=E+W$ with $E W=W E$. Suppose that for any $k, l \in \mathbb{N}$ and any invertible periodic element $p \in R, A^{k}$ and $p I_{2}-A^{l}$ are not in $J\left(M_{2}(R)\right)$. According to Lemma 5.1, there exist some $t \in \mathbb{N}$ and $J \in G L_{2}(R)$ such that $J E^{t} J^{-1}=\left(\begin{array}{cc}f_{1} & 0 \\ 0 & f_{2}\end{array}\right)$, where f_{1}, f_{2} are periodic elements. If both f_{1}, f_{2} are nilpotent periodic elements, then there exists $s \in \mathbb{N}$ such that $f_{1}^{s}=f_{2}^{s}=0$. Then $J E^{s t} J^{-1}=0$. It follows from $A=E+W$ and $E W=W E$ that

$$
J A^{s t} J^{-1}=J\left(C_{s t}^{1} E^{s t-1} W+C_{s t}^{2} E^{s t-2} W^{2}+\cdots+W^{s t}\right) J^{-1} \in J\left(M_{2}(R)\right)
$$

Hence $A^{s t} \in J\left(M_{2}(R)\right)$. This contradicts the hypothesis that for any $k \in \mathbb{N}, A^{k}$ is not in $J\left(M_{2}(R)\right)$. If both f_{1} and f_{2} are invertible periodic elements, then there exists some $u \in \mathbb{N}$ such that $f_{1}^{u}=f_{2}^{u}=1$ and so $J E^{u t} J^{-1}=I_{2}$. Thus $E^{u t}=I_{2}$ and so $I_{2}-A^{u t}=C_{u t}^{1} E^{u t-1} W+$ $C_{u t}^{2} E^{u t-2} W^{2}+\cdots+W^{u t} \in J\left(M_{2}(R)\right)$. This contradicts the fact that for any $l \in \mathbb{N}$ and any invertible periodic element $p \in R, p I_{2}-A^{l} \notin J\left(M_{2}(R)\right)$. Thus f_{1} is an invertible periodic element, f_{2} is a nilpotent periodic element, or f_{1} is a nilpotent periodic element, f_{2} is an invertible periodic element. So there exist some $v, v^{\prime} \in \mathbb{N}$ such that $J E^{t v} J^{-1}=\left(\begin{array}{cc}f_{1}^{v} & 0 \\ 0 & 0\end{array}\right)$ or $J E^{t v} J^{-1}=\left(\begin{array}{cc}0 & 0 \\ 0 & f_{2}^{v^{\prime}}\end{array}\right)$, where
f_{1}^{v} and $f_{2}^{v^{\prime}}$ are invertible periodic elements. Therefore there exist some $m \in \mathbb{N}, H \in G L_{2}(R)$ and some invertible periodic element $q \in R$ such that $H A^{m} H^{-1}=\left(\begin{array}{cc}q & 0 \\ 0 & 0\end{array}\right)+H W^{\prime} H^{-1}$, where $W^{\prime}=$ $C_{m}^{1} E^{m-1} W+C_{m}^{2} E^{m-2} W^{2}+\cdots+W^{m} \in J\left(M_{2}(R)\right)$. Set $V=\left(v_{i j}\right)=H W^{\prime} H^{-1} \in J\left(M_{2}(R)\right)$. It follows from $E W=W E$ that $\left(\begin{array}{cc}q & 0 \\ 0 & 0\end{array}\right) V=V\left(\begin{array}{cc}q & 0 \\ 0 & 0\end{array}\right)$. Hence $v_{12}=v_{21}=0$ and $v_{11}, v_{22} \in J(R)$. Therefore A^{m} is similar to a matrix $\left(\begin{array}{cc}q+w_{1} & 0 \\ 0 & w_{2}\end{array}\right)$ where $w_{1}, w_{2} \in J(R), q$ is an invertible periodic element.

Let R be a commutative local ring. Then $M_{2}(R)$ is not strongly J-clean by [9, Corollary 5.4]. But the following example shows that this is not true for strongly J-semiclean rings.

Example 5.3 Let \mathbb{Z}_{4} denote the ring of integers modulo 4 . Then \mathbb{Z}_{4} is a commutative local ring. Since $M_{2}\left(\mathbb{Z}_{4}\right)$ is a finite ring, each matrix in $M_{2}\left(\mathbb{Z}_{4}\right)$ is a periodic matrix. Hence $M_{2}\left(\mathbb{Z}_{4}\right)$ is a strongly J-semiclean ring.

Based on Example 5.3, we obtain the following proposition.
Proposition 5.4 If R is a finite ring, then $M_{n}(R)$ is a strongly J-semiclean ring.
Lemma 5.5 Let R be a commutative local ring, and let $A \in M_{2}(R)$ be strongly J-semiclean. Then there exist some $k, l, m \in \mathbb{N}$ and some invertible periodic element $p \in R$ such that $A^{k} \in J\left(M_{2}(R)\right)$, or $p I_{2}-A^{l} \in J\left(M_{2}(R)\right)$, or A^{m} is similar to a matrix $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R)$, $\mu \in 1+J(R)$.

Proof If for any $k, l \in \mathbb{N}$ and any invertible periodic element $p \in R, A^{k} \notin J\left(M_{2}(R)\right)$ and $p I_{2}-A^{l} \notin J\left(M_{2}(R)\right)$, then it follows from Proposition 5.2 that there exist some $s \in \mathbb{N}$, some $P \in G L_{2}(R)$ and some invertible periodic element $q \in R$ such that $P^{-1} A^{s} P=\left(\begin{array}{ll}u & 0 \\ 0 & v\end{array}\right)$ where $u \in q+J(R), v \in J(R)$. Let $t \in \mathbb{N}$ be such that $q^{t}=1$. Then $u^{t} \in 1+J(R)$, and so $P^{-1} A^{s t} P=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ where $\alpha=u^{t} \in 1+J(R), \beta=v^{t} \in J(R)$. So $\alpha-\beta$ is an invertible element in R. Note that $\left(\begin{array}{cc}-\beta & -\alpha \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}(\alpha-\beta)^{-1} & \alpha(\alpha-\beta)^{-1} \\ -(\alpha-\beta)^{-1} & -\beta(\alpha-\beta)^{-1}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and

$$
\left(\begin{array}{cc}
-\beta & -\alpha \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)\left(\begin{array}{cc}
(\alpha-\beta)^{-1} & \alpha(\alpha-\beta)^{-1} \\
-(\alpha-\beta)^{-1} & -\beta(\alpha-\beta)^{-1}
\end{array}\right)=\left(\begin{array}{cc}
0 & -\alpha \beta \\
1 & \alpha+\beta
\end{array}\right)
$$

Let $m=s t$. Then A^{m} is similar to $\left(\begin{array}{ll}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda=-\alpha \beta \in J(R), \mu=\alpha+\beta \in 1+J(R)$.
Let R be a commutative ring with an identity, and let $A=\left(a_{i j}\right) \in M_{2}(R)$. Denote $\operatorname{Tr}(A)=$ $a_{11}+a_{22}$ and $\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}$. The following proposition shows that the strong J semicleanness of a 2×2 matrix over a commutative local ring can be characterize by a kind of quadratic equation.

Proposition 5.6 Let R be a commutative local ring. Then the following statements are equivalent:
(1) $A \in M_{2}(R)$ is strongly J-semiclean.
(2) A lifts strongly modulo $J\left(M_{2}(R)\right)$ and there exist some $k, l, m \in \mathbb{N}$ and some invertible periodic element $p \in R$ such that $A^{k} \in J\left(M_{2}(R)\right.$), or $p I_{2}-A^{l} \in J\left(M_{2}(R)\right)$, or the equation $x^{2}-\operatorname{Tr} A^{m} x+\operatorname{det} A^{m}=0$ has a root in $J(R)$ and a root in $1+J(R)$.

Proof $(1) \Rightarrow(2)$. Let $A \in M_{2}(R)$ be strongly J-semiclean. Then A lifts strongly modulo $J\left(M_{2}(R)\right)$. Assume that for any $k, l \in \mathbb{N}$ and any invertible periodic element $p \in R, A^{k} \notin$ $J\left(M_{2}(R)\right)$ and $p I_{2}-A^{l} \notin J\left(M_{2}(R)\right)$. In view of Lemma 5.5 , there exists some $m \in \mathbb{N}$ such that A^{m} is similar to a matrix $B=\left(\begin{array}{cc}0 & \lambda \\ 1 & \mu\end{array}\right)$, where $\lambda \in J(R), \mu \in 1+J(R)$. By using the same way as the proof of [9, Theorem 6.3], we obtain that the equation $x^{2}-\operatorname{Tr} A^{m} x+\operatorname{det} A^{m}=0$ has a root in $J(R)$ and a root in $1+J(R)$.
$(2) \Rightarrow(1)$. Suppose that $A \in M_{2}(R)$ lifts strongly modulo $J(R)$. If there exists some $k, l \in \mathbb{N}$ and some invertible periodic element $p \in R$ such that $A^{k} \in J\left(M_{2}(R)\right)$ or $p I_{2}-A^{l} \in J\left(M_{2}(R)\right)$, then A^{k} or A^{l} are strongly J-semiclean and so A is strongly J-semiclean. Otherwise, we obtain that $A^{m} \notin J\left(M_{2}(R)\right)$ and $I_{2}-A^{m} \notin J\left(M_{2}(R)\right)$ for all $m \in \mathbb{N}$. Then by [9, Theorem 6.3], we obtain that A^{m} is strongly J-clean and so A^{m} is strongly J-semiclean. In view of Proposition 3.4, A is strongly J-semiclean, as desired.

Acknowledgements The authors would like to thank the referees for their careful reading and valuable remarks that improved the presentation of this work.

References

[1] G. BOROOAH, A. J. DIESL. Strongly clean matrix rings over commutative local rings. J. Pure Appl. Algebra, 2008, 212(1): 281-296.
[2] Huanyin CHEN. Rings Related Stable Range Condition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
[3] Wenxing CHEN. A question on strongly clean rings. Comm. Algebra., 2006, 34(7): 2347-2350.
[4] A. J. DIESL. Classes of strongly clean rings. Thesis (Ph.D.)-University of California, Berkeley, 2006.
[5] T. J. DORSEY. Cleanness and strong cleanness of rings of matrices. Thesis (Ph.D.)-University of California, Berkeley, 2006.
[6] J. HAN, W. K. NICHOLSON. Extensions of clean rings. Comm. Algebra, 2001, 29(6): 2589-2595.
[7] W. K. NICHOLSON. Strongly clean rings and Fitting's lemma. Comm. Algebra, 1999, 27(8): 3583-3592.
[8] Xiande YANG, Yiqiang ZHOU. Some families of strongly clean rings. Linear Algebra Appl., 2007, 425(1): 119-129.
[9] Huanyin CHEN. On strongly J-clean rings. Comm. Algebra, 2010, 38(10): 3790-3804.
[10] Huanyin CHEN. Strongly J-clean matrices over local rings. Comm. Algebra, 2012 40(4): 1352-1362.
[11] Xiaoqin SUN, Yanfeng LUO. On strongly semiclean rings. Int. Math. Forum, 2010, 5(33-36): 1715-1724.
[12] Yuanqing YE. Semiclean rings. Comm. Algebra, 2003, 31(11): 5609-5625.
[13] H. E. BELL. A commutativity study for periodic rings. Pacific J. Math., 1977, 70(1): 29-36.

[^0]: Received April 8, 2019; Accepted March 17, 2020
 Supported by the Excellent Course Project for Postgraduates of Hunan University of Science and Technology (Grant No. J52112).

 * Corresponding author

 E-mail address: ouyanglqtxy@163.com (Lunqun OUYANG); 270811021@qq.com (Zhaoqing GONG)

