Journal of Mathematical Research with Applications Jul., 2020, Vol. 40, No. 4, pp. 351–366 DOI:10.3770/j.issn:2095-2651.2020.04.003 Http://jmre.dlut.edu.cn

On Strongly J-Semiclean Rings

Lunqun OUYANG*, Zhaoqing GONG

Department of Mathematics, Hunan University of Science and Technology, Hunan 411201, P. R. China

Abstract We in this note introduce a new concept, so called strongly J-semiclean ring, that is a generalization of strongly J-clean rings. We first observe the basic properties of strongly J-semiclean rings, constructing typical examples. We next investigate conditions on a local ring R that imply that the upper triangular matrix ring $T_n(R)$ is a strongly J-semiclean ring. Also, the criteria on strong J-semicleanness of 2×2 matrices in terms of a quadratic equation are given. As a consequence, several known results relating to strongly J-clean rings are extended to a more general setting.

Keywords upper triangular matrix; local ring; strongly J-semiclean ring

MR(2010) Subject Classification 15B33; 17A99

1. Introduction

Throughout this paper all rings R are associative with identity, and all modules are unitary R-modules. Let R be a ring. We use \mathbb{N} , U(R), J(R), $T_n(R)$ and $M_n(R)$ to represent the set of all natural numbers, the set of units of R, the Jacobson radical of R, the ring of all upper triangular matrices over R and the ring of all $n \times n$ matrices over R, respectively.

An element $a \in R$ is strongly clean provided that there exist an idempotent $e^2 = e \in R$ and a unit $u \in U(R)$ such that a = e + u and eu = ue. A ring R is strongly clean in case every element in R is strongly clean. Strong cleanness over commutative rings was extensively studied by many authors from very different view points [1–8]. Replacing U(R) by J(R), in [9], Chen paralleled to introduce the concept of strong J-cleanness. An element $a \in R$ is strongly J-clean provided that there exist an idempotent $e \in R$ and an element $w \in J(R)$ such that a = e + wand ew = we. A ring R is strongly J-clean in case every element in R is strongly J-clean. It was shown in [9] that every strongly J-clean element is strongly clean, but the converse is not true in general [9, Example 2.2]. For more details and properties of strongly J-clean rings [9, 10].

In this note we continue the study of strongly J-clean rings. As a generalization of strongly Jclean rings, we first introduce a notion of strongly J-semiclean rings and investigate its properties. We next provide some necessary and sufficient conditions for the upper triangular matrix ring $T_n(R)$ over a local ring R to be strongly J-semiclean. Also, a criterion in terms of solvability of a simple quadratic equation in R is obtained for $M_2(R)$ to be strongly J-semiclean.

Received April 8, 2019; Accepted March 17, 2020

Supported by the Excellent Course Project for Postgraduates of Hunan University of Science and Technology (Grant No. J52112).

^{*} Corresponding author

E-mail address: ouyanglqtxy@163.com (Lunqun OUYANG); 270811021@qq.com (Zhaoqing GONG)

2. Examples

Let R be a ring. An element $a \in R$ is called a periodic element provided that there exist two distinct positive integers m and n such that $a^m = a^n$. Clearly, both nilpotent elements and idempotents are periodic elements. A ring R is called a periodic ring if every element of R is a periodic element.

Definition 2.1 Let R be a ring. An element $a \in R$ is strongly J-semiclean provided that there exist a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $a = \pi + w$ and $\pi w = w\pi$. A ring R is strongly J-semiclean in case every element in R is strongly J-semiclean.

Clearly, every strongly *J*-clean ring is strongly *J*-semiclean. But the following example shows that the converse is not true. Hence a strongly *J*-semiclean ring is not a trivial extension of a strongly *J*-clean ring.

Example 2.2 Let \mathbb{Z}_p denote the ring of integers modulo p, where p is a prime number. Consider the ring $\mathbb{Z}_p[x]/(x^{n+1})$, where (x^{n+1}) is the ideal generated by x^{n+1} . Denote \overline{x} in $\mathbb{Z}_p[x]/(x^{n+1})$ by u. Then $\mathbb{Z}_p[x]/(x^{n+1}) = \mathbb{Z}_p[u] = \mathbb{Z}_p + \mathbb{Z}_p u + \mathbb{Z}_p u^2 + \cdots + \mathbb{Z}_p u^n$. Let $f = a_0 + a_1 u + \cdots + a_n u^n \in$ $\mathbb{Z}_p[u]$. Since $a_0^p = a_0, a_1 u + a_2 u^2 + \cdots + a_n u^n \in J(\mathbb{Z}_p[u])$, we obtain that f is strongly J-semiclean. Therefore, $\mathbb{Z}_p[u] = \mathbb{Z}_p[x]/(x^{n+1})$ is a strongly J-semiclean ring.

Now we show that $\mathbb{Z}_p[u] = \mathbb{Z}_p[x]/(x^{n+1})$ is not a strongly *J*-clean ring when $p \neq 2$. Note that the idempotent in $\mathbb{Z}_p[u] = \mathbb{Z}_p[x]/(x^{n+1})$ is $\overline{0}$ or $\overline{1}$. So for any $g = b_0 + b_1 u + \cdots + b_n u^n \in \mathbb{Z}_p[u]$ with $b_0 \neq \overline{0}$ and $b_0 \neq \overline{1}$, we obtain that $b_0 + b_1 u + \cdots + b_n u^n$ and $b_0 - 1 + b_1 u + \cdots + b_n u^n$ are units of $\mathbb{Z}_p[u] = \mathbb{Z}_p[x]/(x^{n+1})$. So g is not a sum of an idempotent $e^2 = e \in \mathbb{Z}_p[u]$ and an element $w \in J(\mathbb{Z}_p[u])$. Hence g is not strongly *J*-clean. Therefore, $\mathbb{Z}_p[u] = \mathbb{Z}_p[x]/(x^{n+1})$ is not a strongly *J*-clean ring, as desired.

Proposition 2.3 Every strongly *J*-semiclean element is strongly clean.

Proof Let $x \in R$ be a strongly *J*-semiclean element. Then there exists a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $x = \pi + w$ and $\pi w = w\pi$. Let k and l (k > l) be two distinct positive integers such that $\pi^k = \pi^l$. Then we have

$$\pi^{l} = \pi^{k} = \pi^{l} \pi^{k-l} = \pi^{l} \pi^{2(k-l)} = \dots = \pi^{l} \cdot \pi^{l(k-l-1)} \cdot \pi^{l}.$$

Thus $\pi^l \cdot \pi^{l(k-l-1)} = \pi^{l(k-l)}$ and $1 - \pi^{l(k-l)}$ are idempotents. Write $x = \pi + w$ as

$$x = (1 - \pi^{l(k-l)}) + \pi - (1 - \pi^{l(k-l)}) + w.$$

Since

$$\begin{aligned} &[\pi - (1 - \pi^{l(k-l)})][\pi^{l-1} \pi^{l(k-l-1)} \pi^{l(k-l)} - (\sum_{i=0}^{l-1} \pi^i)(1 - \pi^{l(k-l)})] \\ &= [\pi \pi^{l(k-l)} - (1 - \pi)(1 - \pi^{l(k-l)})][\pi^{l-1} \pi^{l(k-l-1)} \pi^{l(k-l)} - (\sum_{i=0}^{l-1} \pi^i)(1 - \pi^{l(k-l)})] \\ &= \pi^l \pi^{l(k-l-1)} \pi^{l(k-l)} + (1 - \pi^l)(1 - \pi^{l(k-l)}) \end{aligned}$$

On strongly J-semiclean rings

$$= \pi^{l(k-l)} + 1 - \pi^{l(k-l)} - \pi^{l} + \pi^{l} \pi^{l(k-l)} = 1$$

= $[\pi^{l-1} \pi^{l(k-l-1)} \pi^{l(k-l)} - \left(\sum_{i=0}^{l-1} \pi^{i}\right) (1 - \pi^{l(k-l)})][\pi - (1 - \pi^{l(k-l)})],$

we obtain that $\pi - (1 - \pi^{l(k-l)})$ is a unit in R and so is $\pi - (1 - \pi^{l(k-l)}) + w$. It follows from $\pi w = w\pi$ that

$$(1 - \pi^{l(k-l)})[\pi - (1 - \pi^{l(k-l)}) + w] = [\pi - (1 - \pi^{l(k-l)}) + w](1 - \pi^{l(k-l)}).$$

Hence x is a strongly clean element, as required. \Box

Corollary 2.4 ([9, Proposition 2.1]) Every strongly J-clean element is strongly clean.

Proof The result follows from Proposition 2.3. \Box

Corollary 2.5 All strongly J-semiclean rings are strongly clean.

Proof It follows from Proposition 2.3. \Box

The following example shows that the converse of Corollary 2.5 is not true.

Example 2.6 Let \mathbb{Q} be the field of rational numbers. Then \mathbb{Q} is strongly clean but not strongly *J*-semiclean.

Recall that an element $a \in R$ is strongly semiclean if $a = \pi + u$, where π is a periodic element in R and u is a unit in R such that $\pi u = u\pi$. A ring R is a strongly semiclean ring if every element in R is strongly semiclean [11].

Proposition 2.7 All strongly J-semiclean rings are strongly semiclean.

Proof For any $x \in R$, there exist a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $x - 1 = \pi + w$ and $\pi w = w\pi$. Then $x = \pi + 1 + w$. Clearly, 1 + w is a unit in R and $\pi(1+w) = (1+w)\pi$. So x is a strongly semiclean element. Therefore, R is a strongly semiclean ring. \Box

From Proposition 2.7, one may suspect that that every strongly semiclean ring is strongly *J*-semiclean. But the following example eliminates the possibility.

Example 2.8 Let $R = \{\frac{m}{n} \mid m, n \in \mathbb{Z} \text{ and } 7 \nmid n\}$ and $G = \{g, g^2, g^3\}$ be a cyclic group of order 3. Then by [12, Theorem 3.1], the group ring RG is a strongly semiclean ring. But it is shown in [6] that RG is not clean and so RG is not strongly clean. So by Corollary 2.5, we obtain that RG is not strongly J-semiclean.

Example 2.9 Here are some examples of strongly *J*-semiclean rings:

(1) Any factor ring of a strongly *J*-semiclean ring is strongly *J*-semiclean.

(2) A direct sum $R = \bigoplus_{i=1}^{n} R_i$ of rings $\{R_i\}$ is strongly *J*-semiclean if and only if so is each $R_i, 1 \le i \le n$.

(3) R[x] is certainly never a strongly J-semiclean ring.

(4) Let R be a commutative ring. Then $R[x]/(x^n)$ is strongly J-semiclean if and only if so

is R.

(5) Every power series ring over a strongly *J*-semiclean commutative ring is strongly *J*-semiclean.

Proof (1) It is directly verified.

(2) It suffices to show that if R_1 and R_2 are strongly J-semiclean, then so is $R_1 \oplus R_2$. Let $x = (x_1, x_2) \in R_1 \oplus R_2$, where $x_1 \in R_1$ and $x_2 \in R_2$. For each i $(1 \le i \le 2)$, write $x_i = \pi_i + w_i$, where π_i is a periodic element in R_i , $w_i \in J(R_i)$ and $\pi_i w_i = w_i \pi_i$. Then $x = (x_1, x_2) = (\pi_1, \pi_2) + (w_1, w_2)$. Let k_i and l_i $(k_i > l_i$ for each i = 1, 2) be positive integers such that $\pi_1^{k_1} = \pi_1^{l_1}$ and $\pi_2^{k_2} = \pi_2^{l_2}$. Then

$$\pi_1^{l_1} = \pi_1^{k_1} = \pi_1^{l_1} \pi_1^{k_1 - l_1} = \pi_1^{l_1} \pi_1^{2(k_1 - l_1)} = \dots = \pi_1^{l_1} \pi_1^{(k_2 - l_2)(k_1 - l_1)}$$

and

$$\pi_2^{l_2} = \pi_2^{k_2} = \pi_2^{l_2} \pi_2^{k_2 - l_2} = \pi_2^{l_2} \pi_2^{2(k_2 - l_2)} = \dots = \pi_2^{l_2} \pi_2^{(k_1 - l_1)(k_2 - l_2)}.$$

Without loss of generality, we may assume that $l_1 < l_2$. Then

$$\pi_1^{l_2} = \pi_1^{l_1} \pi_1^{l_2 - l_1} = \pi_1^{l_1} \pi_1^{(k_1 - l_1)(k_2 - l_2)} \pi_1^{l_2 - l_1} = \pi_1^{l_2} \pi_1^{(k_1 - l_1)(k_2 - l_2)},$$

and so $(\pi_1, \pi_2)^{l_2} = (\pi_1, \pi_2)^{(k_1-l_1)(k_2-l_2)+l_2}$. Thus (π_1, π_2) is a periodic element in $R_1 \oplus R_2$. Clearly, $(\pi_1, \pi_2)(w_1, w_2) = (w_1, w_2)(\pi_1, \pi_2)$ and $(w_1, w_2) \in J(R_1 \oplus R_2)$. Hence $x = (x_1, x_2)$ is strongly *J*-semiclean in $R_1 \oplus R_2$. Therefore, $R_1 \oplus R_2$ is a strongly *J*-semiclean ring, as desired.

- (3) It follows from the fact that R[x] is not strongly clean [9, Example 2.5].
- (4) It is trivial.
- (5) It is trivial. \Box

Corollary 2.10 Let $R = \bigoplus_{i=1}^{n} R_i$. Then $a = (x_1, x_2, \dots, x_n) \in R$ is a periodic element in R if and only if each x_i is a periodic element in R_i $(1 \le i \le n)$.

3. Elementary properties

Let *I* be an ideal of *R*. An element $a \in R$ is said to lift strongly modulo *I*, if, whenever $a^m - a^n \in I$, there exists $b^s = b^t \in R$ such that $b - a \in I$ and ab = ba, where *m*, *n*, *s*, $t \in \mathbb{N}$ and $m \neq n, s \neq t$. A ring *R* is said to be a *J*-ring if every element in *R* lifts strongly modulo J(R). Clearly, if $a \in R$ is strongly *J*-semiclean, then *a* lifts strongly modulo J(R).

Proposition 3.1 Let $R = \bigoplus_{i=1}^{n} R_i$. Then R is a J-ring if and only if so is each R_i $(1 \le i \le n)$.

Proof It suffices to show that $R = R_1 \oplus R_2$ is a *J*-ring if and only if R_1 and R_2 are *J*-rings. Suppose that $R_1 \oplus R_2$ is a *J*-ring. Let $x_1 \in R_1$ be such that $x_1^s - x_1^t \in J(R_1)$ where $s \neq t \in \mathbb{N}$. Then $a = (x_1, 0) \in R_1 \oplus R_2$ and $a^s - a^t = (x_1^s - x_1^t, 0) \in J(R_1 \oplus R_2)$. So there exists a periodic element $\pi = (y_1, y_2) \in R_1 \oplus R_2$ such that $a - \pi = (x_1 - y_1, -y_2) \in J(R_1 \oplus R_2)$ and $a\pi = (x_1y_1, 0) = \pi a = (y_1x_1, 0)$. Thus $x_1 - y_1 \in J(R_1)$, $x_1y_1 = y_1x_1$, and by Corollary 2.10, y_1 is a periodic element in R_1 . So R_1 is a *J*-ring. Similarly, we can show that R_2 is a *J*-ring. Assume that both R_1 and R_2 are *J*-rings. Let $a = (x_1, x_2) \in R_1 \oplus R_2$ be such that $a^s - a^t \in J(R_1 \oplus R_2)$ where $s \neq t \in \mathbb{N}$. Then we have $x_1^s - x_1^t \in J(R_1)$ and $x_2^s - x_2^t \in J(R_2)$. So there exist a periodic element $\pi_1 \in R_1$ and a periodic element $\pi_2 \in R_2$ such that $x_1 - \pi_1 \in J(R_1)$, $x_2 - \pi_2 \in J(R_2)$ and $x_1\pi_1 = \pi_1x_1, x_2\pi_2 = \pi_2x_2$. Let $\pi = (\pi_1, \pi_2)$. Then π is a periodic element in $R_1 \oplus R_2$, and $a - \pi = (x_1 - \pi_1, x_2 - \pi_2) \in J(R_1 \oplus R_2)$, $a\pi = \pi a$. So a lifts strongly modulo $J(R_1 \oplus R_2)$. Therefore, $R_1 \oplus R_2$ is a *J*-ring. \Box

Proposition 3.2 Let R be a ring. If $T_n(R)$ is a J-ring, then so is $T_m(R)$ for each $1 \le m \le n$.

Proof Let $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ 0 & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{mm} \end{pmatrix} \in T_m(R)$ be such that $A^s - A^t \in J(T_m(R))$ where $s \neq t \in \mathbb{N}$. Then we have $(A')^s - (A')^t \in J(T_n(R))$, where

$$A' = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} & 0 & \cdots & 0\\ 0 & a_{22} & \cdots & a_{2m} & 0 & \cdots & 0\\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{mm} & 0 & \cdots & 0\\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \end{pmatrix} \in T_n(R).$$

So there exists a periodic matrix

$$B' = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix} \in T_n(R)$$

such that $A' - B' \in J(T_n(R))$ and A'B' = B'A'. Let

$$B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ 0 & b_{22} & \cdots & b_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & b_{mm} \end{pmatrix} \in T_m(R).$$

Then B is a periodic upper triangular matrix in $T_m(R)$, $A - B \in J(T_m(R))$ and AB = BA. Hence A lifts strongly modulo $J(T_m(R))$. Therefore, $T_m(R)$ is a J-ring, as required. \Box

Proposition 3.3 Let A and B be rings and $_{A}V_{B}$ a bimodule. Let $R = \begin{pmatrix} A & V \\ 0 & B \end{pmatrix}$. If R is a J-ring, then so are A and B.

Proof By using the same way as the proof of Proposition 3.2, we complete the proof. \Box

Proposition 3.4 Let R be a ring. If $a \in R$ lifts strongly modulo J(R), then the following statements are equivalent:

- (1) a is strongly J-semiclean;
- (2) a^k is strongly J-semiclean for any $k \in \mathbb{N}$;
- (3) a^k is strongly J-semiclean for some $k \in \mathbb{N}$.

Proof (1) \Rightarrow (2). Suppose that *a* is strongly *J*-semiclean. Then there exist a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $a = \pi + w$ and $\pi w = w\pi$. Then for any positive integer $k \in \mathbb{N}$, we have

$$a^{k} = (\pi + w)^{k} = \pi^{k} + C_{k}^{1} \pi^{k-1} w + C_{k}^{2} \pi^{k-2} w^{2} + \dots + w^{k}$$

where C_k^i is the binomial coefficient. Since π is a periodic element, there exist two distinct positive integers m and n such that $\pi^m = \pi^n$. Then $(\pi^k)^m = (\pi^k)^n$. So π^k is a periodic element. Clearly, $C_k^1 \pi^{k-1} w + C_k^2 \pi^{k-2} w^2 + \dots + w^k \in J(R)$, and $\pi^k (C_k^1 \pi^{k-1} w + C_k^2 \pi^{k-2} w^2 + \dots + w^k) = (C_k^1 \pi^{k-1} w + C_k^2 \pi^{k-2} w^2 + \dots + w^k) \pi^k$. Therefore, a^k is strongly J-semiclean.

 $(2) \Rightarrow (3)$. It is trivial.

 $(3) \Rightarrow (1)$. Suppose that a^k is strongly J-semiclean for some $k \in \mathbb{N}$. Then $\overline{a^k} = (\overline{a})^k$ is a periodic element in R/J(R), and so \overline{a} is a periodic element in R/J(R). Hence there exist some $s, t \in \mathbb{N}$ such that $a^s - a^t \in J(R)$. Since a lifts strongly modulo J(R), there exist a periodic element $b \in R$ and an element $j \in J(R)$ such that a = b + j and ab = ba. So bj = jb. Therefore, a is strongly J-semiclean. \Box

Proposition 3.5 Let R be a ring. Then the following statements are equivalent:

- (1) R is a strongly J-semiclean ring;
- (2) R/J(R) is a periodic ring and R is a J-ring.

Proof $(1) \Rightarrow (2)$. It is trivial.

 $(2) \Rightarrow (1)$. Let $x \in R$. Then $\overline{x} \in R/J(R)$ is a periodic element. So there exist some $k, l \in \mathbb{N}$ such that $x^k - x^l \in J(R)$. By hypothesis, there exists some periodic element $\pi \in R$ such that $x - \pi \in J(R)$ and $x\pi = \pi x$. Set $w = x - \pi$. Then $x = \pi + w, w \in J(R)$ and $\pi w = w\pi$. Hence x is strongly J-semiclean. Therefore, R is a strongly J-semiclean ring. \Box

Proposition 3.6 Let R be a strongly J-semiclean ring with 2 being an invertible element. Then every element in R is a sum of two units.

Proof For any $x \in R$, there exists a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $\frac{x+1}{2} = \pi + w$ and $\pi w = w\pi$. According to [12, Lemma 5.1], there exist $e^2 = e \in R$ and $u \in U(R)$ such that $\pi = e + u$. Hence, x = 2e - 1 + 2u + 2w where 2e - 1 and 2u + 2w are units, as required. \Box

Let R be a ring and let $a \in R$. Let $\operatorname{ann}_l(a) = \{u \in R \mid ua = 0\}$ and $\operatorname{ann}_r(a) = \{u \in R \mid au = 0\}$.

Proposition 3.7 Let R be a ring and let $a = \pi + w$ be a strongly J-semiclean decomposition of a in R. Then there exists some positive integer $k \in \mathbb{N}$ such that $\operatorname{ann}_{l}(a) \subseteq \operatorname{ann}_{l}(\pi^{k})$ and $\operatorname{ann}_{r}(a) \subseteq \operatorname{ann}_{r}(\pi^{k})$.

Proof Let $r \in \operatorname{ann}_l(a)$. Then ra = 0. Write $a = \pi + w$, where π is a periodic element in R, $w \in J(R)$ and $\pi w = w\pi$. Then $r\pi = -rw$. Since π is a periodic element in R, by [13, Lemma 1], there exists some $k \in \mathbb{N}$ such that π^k is an idempotent. Hence $r\pi^k = r\pi^k \pi^k = -r\pi^k \pi^{k-1}w$.

356

It follows that $r\pi^k(1 + \pi^{k-1}w) = 0$ and so $r\pi^k = 0$, that is, $r \in \operatorname{ann}_l(\pi^k)$. Therefore, $\operatorname{ann}_l(a) \subseteq \operatorname{ann}_l(\pi^k)$. A similar argument shows that $\operatorname{ann}_r(a) \subseteq \operatorname{ann}_r(\pi^k)$. \Box

Proposition 3.8 Let R be a ring, $f \in R$ an idempotent and $a \in fRf$ lifts strongly modulo J(fRf). Then a is strongly J-semiclean in R if and only if a is strongly J-semiclean in fRf.

Proof Suppose that a is strongly J-semiclean in fRf. Then $a = \pi + w$, where π is a periodic element in fRf and $w \in J(fRf)$ and $\pi w = w\pi$. Obviously, $w \in fJ(R)f \subseteq J(R)$. Hence $a \in fRf$ is strongly J-semiclean in R.

Conversely, assume that $a \in fRf$ is strongly J-semiclean in R. Then $a = \pi + w$, where π is a periodic element in R, $w \in J(R)$ and $\pi w = w\pi$. By [13, Lemma 1], there exists some $k \in \mathbb{N}$ such that $\pi^k = e$ is an idempotent. Thus $a^k = e + v$ where $v = C_k^1 \pi^{k-1} w + C_k^2 \pi^{k-2} w^2 + \cdots + w^k \in J(R)$ and ev = ve. So $a^k \in fRf$ is strongly J-clean in R. By [9, Theorem 3.4], we obtain that a^k is strongly J-clean in fRf and so a^k is strongly J-semiclean in fRf. Then by Proposition 3.4, a is strongly J-semiclean in fRf. \Box

As is well known, every corner of a strongly clean ring is strongly clean [3, Theorem 2.4], and every corner of a strongly J-clean ring is strongly J-clean [9, Corollary 3.5]. Analogously, we can derive the following corollary.

Corollary 3.9 Let $e \in R$ be an idempotent and let eRe be a *J*-ring. If *R* is a strongly *J*-semiclean ring, then so is eRe.

Proof Let $a \in eRe$. As R is strongly J-semiclean, we see that $a \in eRe$ is strongly J-semiclean in R. According to Proposition 3.8, $a \in eRe$ is strongly J-semiclean in eRe. Therefore, eRe is a strongly J-semiclean ring. \Box

4. Triangular matrix ring

The main purpose of this section is to investigate the strongly J-semicleanness of $T_n(R)$. These results also hold for the ring of all lower triangular matrices by a similar route.

Let R be a ring, and let

$$S_n(R) = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\},\$$
$$U_n(R) = \left\{ \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 0 & a_1 & \cdots & a_{n-1} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_1 \end{pmatrix} \mid a_i \in R, 1 \le i \le n \right\}$$

Then $S_n(R)$ and $U_n(R)$ are subrings of $T_n(R)$ under usual matrix operations.

Proposition 4.1 Let R be a commutative ring. Then the following statements are equivalent:

- (1) R is a strongly J-semiclean ring;
- (2) $S_n(R)$ is a strongly J-semiclean ring;
- (3) $U_n(R)$ is a strongly J-semiclean ring.

Proof (1) \Rightarrow (2). Suppose that R is a strongly J-semiclean ring. Then for any

$$A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in S_n(R),$$

there exist a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $a = \pi + w$. Let

$$P = \begin{pmatrix} \pi & 0 & \cdots & 0 \\ 0 & \pi & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \pi \end{pmatrix}, \quad W = \begin{pmatrix} w & a_{12} & \cdots & a_{1n} \\ 0 & w & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & w \end{pmatrix}.$$

Then P is a periodic element in $S_n(R)$ and $W \in J(S_n(R))$. By the condition that R is a commutative ring, we obtain that PW = WP. So A = P + W is a strongly J-semiclean decomposition of A. Hence A is strongly J-semiclean in $S_n(R)$. Therefore, $S_n(R)$ is a strongly J-semiclean ring.

 $(2) \Rightarrow (1)$. Assume that $S_n(R)$ is a strongly J-semiclean ring. Let

$$Q = \left\{ \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mid a_{ij} \in R \right\}.$$

Then Q is an ideal of $S_n(R)$ and $R \cong S_n(R)/Q$. So by Example 2.9, R is strongly J-semiclean.

(1) \Leftrightarrow (3). The proof is similar to that of (1) \Leftrightarrow (2). \Box

Based on Proposition 4.1, we derive the following corollary.

Corollary 4.2 Let R be a commutative ring. Then the following statements are equivalent:

- (1) R is a strongly J-semiclean ring;
- (2) The trivial extension $R \bowtie R$ of R by R is a strongly J-semiclean ring.

Let R be a ring and let

$$W(R) = \left\{ \begin{pmatrix} a & 0 & 0 \\ a_{21} & a & a_{23} \\ 0 & 0 & a \end{pmatrix} \mid a, a_{ij} \in R \right\}.$$

Then W(R) is a ring under usual matrix operations. By using the same way as the proof of Proposition 4.1, we obtain the following proposition.

Proposition 4.3 Let R be a commutative ring. Then the following statements are equivalent:

(1) R is a strongly J-semiclean ring;

358

On strongly J-semiclean rings

(2) W(R) is a strongly J-semiclean ring.

Proposition 4.4 Let R be a ring. Then the following statements are equivalent:

- (1) $T_n(R)$ is a strongly J-semiclean ring;
- (2) $T_m(R)$ is a strongly J-semiclean ring for all $1 \le m \le n$.

Proof (1) \Rightarrow (2). Suppose that $T_n(R)$ is a strongly *J*-semiclean ring. Then by Proposition 3.5, $T_n(R)$ is a *J*-ring. In view of Proposition 3.2, $T_m(R)$ is a *J*-ring for all $1 \le m \le n$. Let $e = \text{diag}(\underbrace{1, 1, \ldots, 1}_{m}, 0, \ldots, 0) \in T_n(R)$. Then $T_m(R) \cong eT_n(R)e$. It follows from Corollary 3.9

that $T_m(R)$ is strongly J-semiclean for all $1 \le m \le n$.

 $(2) \Rightarrow (1)$. It is trivial. \Box

Corollary 4.5 Let A and B be rings and $_AV_B$ a bimodule. Let $R = \begin{pmatrix} A & V \\ 0 & B \end{pmatrix}$. If R is a strongly J-semiclean ring, then so are A and B.

Proof By using the same way as the proof of Proposition 4.4, we complete the proof. \Box

Let $a \in R$, $l_a : R \longrightarrow R$ and $r_a : R \longrightarrow R$ denote, respectively, the abelian group endomorphisms given by $l_a(r) = ar$ and $r_a(r) = ra$ for all $r \in R$. Thus $l_a - r_b$ is an abelian group endomorphism such that $(l_a - r_b)(r) = ar - rb$ for any $r \in R$. Following Diesl [4], a local ring Ris bleached provided that for any $a \in U(R)$, $b \in J(R)$, $l_a - r_b$, and $l_b - r_a$ are both surjective.

Lemma 4.6 Let R be a local ring, and suppose that $A \in T_n(R)$. Then for any set $\{e_{ii}\}$ of idempotents in R such that $e_{ii} = e_{jj}$ whenever $l_{A_{ii}} - r_{A_{jj}}$ is not a surjective abelian group endomorphism of R, there exists an idempotent $E \in T_n(R)$ such that AE = EA and $E_{ii} = e_{ii}$ for any $i \in \{1, 2, ..., n\}$.

Proof See [1, Lemma 7]. \Box

Proposition 4.7 Let R be a local ring, and let $n \ge 2$. Then the following statements are equivalent:

- (1) $T_n(R)$ is strongly J-semiclean;
- (2) $T_n(R)$ is a J-ring, R is bleached and R/J(R) is a periodic ring.

Proof (1) \Rightarrow (2). Suppose that $T_n(R)$ is strongly J-semiclean. In view of Proposition 3.5, $T_n(R)$ is a J-ring. According to Proposition 4.4, R is a strongly J-semiclean ring. Then it follows from Proposition 3.5, R/J(R) is a periodic ring. Now we show that R is bleached. In view of Proposition 4.4, $T_2(R)$ is strongly J-semiclean. Let $a \in U(R)$ and $b \in J(R)$. We will show that $l_a - r_b : R \longrightarrow R$ is surjective. For any $v \in R$, it suffices to find some $x \in R$ such that ax - xb = v. Let $r = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$. Since $T_2(R)$ is strongly J-semiclean, there exist a periodic element $\pi = \begin{pmatrix} e & g \\ 0 & f \end{pmatrix} \in T_2(R)$, and an element $w \in J(T_2(R))$ such that $r = \pi + w$ and $\pi w = w\pi$. So $r\pi = \pi r$. Since R is a local ring, for periodic elements $e, f \in R$, there exists some $l \in \mathbb{N}$ such that $e^l = 1$ or $e^l = 0$ and $f^l = 1$ or $f^l = 0$. As J(R) is a maximal ideal of R, R/J(R) is a periodic ring implies that R/J(R) is a periodic field. So for $a \in U(R)$, there exists some $m \in \mathbb{N}$

such that $a^m \in 1 + J(R)$. Thus we can find some $k \in \mathbb{N}$ such that $r^k \in \begin{pmatrix} 1+J(R) & R \\ 0 & J(R) \end{pmatrix}$ and π^k is one of the following:

$$\left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right), \quad \left(\begin{array}{cc} 0 & x \\ 0 & 1 \end{array}\right), \quad \left(\begin{array}{cc} 1 & x \\ 0 & 0 \end{array}\right), \quad \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array}\right)$$

Since $r^k - \pi^k = (C_k^1 \pi^{k-1} + C_k^2 \pi^{k-2} w + \dots + w^{k-1}) w \in J(T_2(R))$, we have $\pi^k = \begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix}$, otherwise $r^k - \pi^k \notin J(T_2(R))$. It follows from $r\pi = \pi r$ that $r\pi^k = \pi^k r$. Thus we deduce that ax - xb = v. Thus $l_a - r_b : R \longrightarrow R$ is surjective. Analogously, we show that $l_b - r_a : R \longrightarrow R$ is surjective. Therefore, R is bleached.

 $(2) \Rightarrow (1)$. Let $A = (a_{ij}) \in T_n(R)$. As R is a local ring and R/J(R) is a periodic ring, there exists some $k \in \mathbb{N}$ such that $\{a_{ii}^k \mid i = 1, 2, \ldots, n\} \subseteq J(R) \cup (1 + J(R))$. In order to show that A^k is strongly J-semiclean, it suffices to construct a periodic element $E \in T_n(R)$ such that $EA^k = A^k E$ and such that $A^k - E \in J(T_n(R))$. Begin by constructing the main diagonal of E. Set $e_{ii} = 0$ if $a_{ii}^k \in J(R)$, and set $e_{ii} = 1$ otherwise. Thus $a_{ii}^k - e_{ii} \in J(R)$ for every i. If $e_{ii} \neq e_{jj}$, then it must be the case (without loss of generality) that $a_{ii}^k \in U(R)$ and $a_{jj}^k \in J(R)$. As R is bleached, $l_{a_{ii}^k} - r_{a_{jj}^k} : R \longrightarrow R$ is surjective. According to Lemma 4.6, there exists an idempotent $E \in T_n(R)$ such that $A^k E = EA^k$ and $E_{ii} = e_{ii}$ for every $i \in \{1, 2, \ldots, n\}$. In addition, $A^k - E \in J(T_n(R))$. Hence A^k is strongly J-clean and so A^k is strongly J-semiclean. Since $T_n(R)$ is a J-ring, by Proposition 3.4, A is a strongly J-semiclean element. Therefore, $T_n(R)$ is a strongly J-semiclean ring. \Box

Corollary 4.8 Let *R* be a commutative local ring and let $n \ge 2$. Then the following statements are equivalent:

- (1) $T_n(R)$ is strongly J-semiclean;
- (2) R/J(R) is a periodic ring and $T_n(R)$ is a J-ring.

Proof $(1) \Rightarrow (2)$ is obvious from Proposition 4.7.

(2) \Rightarrow (1). As R is a commutative local ring, it is bleached. Therefore, the result follows from Proposition 4.7. \Box

Corollary 4.9 Let R be a local ring. Then $T_2(R)$ is strongly J-semiclean if and only if:

(1) R/J(R) is a periodic ring and $T_2(R)$ is a J-ring,

(2) For any $a \in U(R)$, $b \in J(R)$ and $v \in R$, there exists $P, Q \in U(T_2(R))$ such that $P^{-1}\begin{pmatrix}a & v \\ 0 & b\end{pmatrix}P = \begin{pmatrix}a & 0 \\ 0 & b\end{pmatrix}$ and $Q^{-1}\begin{pmatrix}b & v \\ 0 & a\end{pmatrix}Q = \begin{pmatrix}b & 0 \\ 0 & a\end{pmatrix}$.

Proof Suppose that $T_2(R)$ is strongly *J*-semiclean. By virtue of Proposition 4.7, $T_2(R)$ is a *J*-ring, *R* is bleached and R/J(R) is a periodic ring. Then by using the same way as the proof of Corollary 4.6 in [9], it is easy to see that there exist $P, Q \in U(T_2(R))$ such that $P^{-1}\begin{pmatrix}a & v \\ 0 & b\end{pmatrix}P = \begin{pmatrix}a & 0 \\ 0 & b\end{pmatrix}$ and $Q^{-1}\begin{pmatrix}b & v \\ 0 & a\end{pmatrix}Q = \begin{pmatrix}b & 0 \\ 0 & a\end{pmatrix}$.

Conversely, assume that (1) and (2) hold. Let $A = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix} \in T_2(R)$.

Case I. Both a and b are in J(R). Then $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} \in J(T_2(R))$ and so $A = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ is strongly J-semiclean.

On strongly J-semiclean rings

Case II. Both a and b are in U(R). Since R is a local ring and R/J(R) is a periodic ring, we can find some $k \in \mathbb{N}$ such that $a^k \in 1 + J(R)$ and $b^k \in 1 + J(R)$. Then it is easy to see that $A^k = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^k$ is strongly J-semiclean. As $T_2(R)$ is a J-ring, by Proposition 3.4, $A = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ is strongly J-semiclean.

Case III. $a \in U(R)$ and $b \in J(R)$. Then there exists some $P \in U(T_2(R))$ such that $P^{-1}\begin{pmatrix}a & v \\ 0 & b\end{pmatrix}P = \begin{pmatrix}a & 0 \\ 0 & b\end{pmatrix}$. As $T_2(R)$ is a *J*-ring, by Proposition 3.2, R is a *J*-ring. Then by Proposition 3.5, R is a strongly *J*-semiclean ring. Thus we have a periodic element $\pi \in R$ and an element $w \in J(R)$ such that $a = \pi + w$ and $\pi w = w\pi$. Then $P^{-1}\begin{pmatrix}a & v \\ 0 & b\end{pmatrix}P = \begin{pmatrix}\pi & 0 \\ 0 & 0\end{pmatrix} + \begin{pmatrix}w & 0 \\ 0 & b\end{pmatrix}$, and so $\begin{pmatrix}a & v \\ 0 & b\end{pmatrix} = P\begin{pmatrix}\pi & 0 \\ 0 & 0\end{pmatrix}P^{-1} + P\begin{pmatrix}w & 0 \\ 0 & b\end{pmatrix}P^{-1}$. Clearly, $P\begin{pmatrix}\pi & 0 \\ 0 & 0\end{pmatrix}P^{-1}$ is a periodic element in $T_2(R)$, $P\begin{pmatrix}w & 0 \\ 0 & b\end{pmatrix}P^{-1} \in J(T_2(R))$ and

$$P\left(\begin{array}{cc}\pi & 0\\0 & 0\end{array}\right)P^{-1}P\left(\begin{array}{cc}w & 0\\0 & b\end{array}\right)P^{-1} = P\left(\begin{array}{cc}w & 0\\0 & b\end{array}\right)P^{-1}P\left(\begin{array}{cc}\pi & 0\\0 & 0\end{array}\right)P^{-1}.$$

Thus $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ is a strongly *J*-semiclean element in $T_2(R)$.

Case IV. $a \in J(R)$ and $b \in U(R)$. Then there exists some $Q \in U(T_2(R))$ such that $Q^{-1}\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}Q = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. By using the same way as the proof of Case III, we can show that $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ is strongly *J*-semiclean.

In any case, we conclude that $A = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ is a strongly *J*-clean element. Therefore, $T_2(R)$ is a strongly *J*-semiclean ring. \Box

Proposition 4.10 Let A and B be local rings and $_AV_B$ a bimodule. Let $R = \begin{pmatrix} A & V \\ 0 & B \end{pmatrix}$. Then $\pounds = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix} \in R$ is strongly J-semiclean if and only if :

- (1) \pounds lifts strongly modulo J(R);
- (2) There exist some $s, t \in \mathbb{N}$ such that $a^s \in J(A)$ and $b^t \in J(B)$, or

(3) There exist some $u, v \in \mathbb{N}$ and some invertible periodic elements $p \in A$ and $q \in B$ such that $a^u \in p + J(A)$ and $b^v \in q + J(B)$, or

(4) There exist $x \in V$, $k \in \mathbb{N}$ and an invertible periodic element $c \in A$ such that $c(a^{k-1}v + a^{k-2}vb + \dots + vb^{k-1}) = a^kx - xb^k$ and that $ca - a^{k+1} \in J(A)$, $b \in J(B)$, $a^kc = ca^k$, or

(5) There exist $y \in V$, $l \in \mathbb{N}$ and an invertible periodic element $d \in A$ such that $(a^{l-1}v + a^{l-2}vb + \dots + vb^{l-1})d = yb^l - a^ly$ and that $bd - b^{l+1} \in J(B)$, $a \in J(A)$, $b^l d = db^l$.

Proof (\Rightarrow). Suppose that \pounds is strongly *J*-semiclean. Then \pounds lifts strongly modulo J(R). If there exists some $m \in \mathbb{N}$ such that $\pounds^m \in J(R)$, then $a^m \in J(A)$, $b^m \in J(B)$ and so the condition (2) holds. If there exist some invertible periodic elements $p \in A$ and $q \in B$, and a positive integer $n \in \mathbb{N}$ such that $\binom{p \ 0}{0 \ q} - \binom{a \ v}{0 \ b}^n \in J(R)$, then $a^n \in p + J(A)$, $b^n \in q + J(B)$, and so the condition (3) holds. Now we assume that for any $m \in \mathbb{N}$, $\pounds^m \notin J(R)$, and for any invertible periodic elements $p \in A$, $q \in B$, any $n \in \mathbb{N}$, $\binom{p \ 0}{0 \ q} - \pounds^n \notin J(R)$. Since \pounds is strongly *J*-semiclean, there exists some periodic element $E = \begin{pmatrix} e \ 0 \ f \end{pmatrix} \in R$ such that $\pounds - E \in J(R)$ and $\pounds E = E\pounds$. Since *E* is a periodic element in *R*, we obtain that *e* and *f* are periodic elements in *A* and *B*, respectively. If both *e* and *f* are nilpotent elements, then $\binom{e \ 0}{0 \ f} - \pounds \in J(R)$, a contradiction. If both *e* and *f* are nilpotent elements, the $E \in J(R)$ and so $\pounds \in J(R)$, a tion. So e is an invertil

contradiction. So e is an invertible periodic element in A and f is a nilpotent element in B, or e is a nilpotent element in A and f is an invertible element in B. Firstly, we assume that e is an invertible periodic element in A and f is a nilpotent element in B. It follows from $\pounds - E \in J(R)$ that $b \in J(B)$. Let $k \in \mathbb{N}$ be such that $f^k = 0$. Then $E^k = \begin{pmatrix} e^k & x \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} c & x \\ 0 & 0 \end{pmatrix}$ where $c = e^k$ is an invertible periodic element in A and $x \in V$. It follows from $\pounds E = E\pounds$ that $\pounds^k E^k = E^k \pounds^k$. So $\begin{pmatrix} a^k & a^{k-1}v + a^{k-2}vb + \cdots + vb^{k-1} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} c & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a^k & a^{k-1}v + a^{k-2}vb + \cdots + vb^{k-1} \\ 0 & 0 \end{pmatrix} = a^k x - xb^k$ and $a^k c = ca^k$. Since $\pounds - E \in J(R)$ and $\pounds E = E\pounds$, there exists $U \in J(R)$ such that $\pounds = E + U$ and EU = UE. Then $\pounds^k = E^k + U'$ where $U' = C_k^1 E^{k-1}U + C_k^2 E^{k-2}U^2 + \cdots + U^k \in J(R)$. Hence $e^k - a^k = c - a^k \in J(A)$ and so $ca - a^{k+1} \in J(A)$. Secondly, assume that e is a nilpotent element in A and f is an invertible element in B. Then similarly, we show that there exist $y \in V$, $l \in \mathbb{N}$ and an invertible periodic element $d \in A$ such that $(a^{l-1}v + a^{l-2}vb + \cdots + vb^{l-1})d = yb^l - a^ly$ and that $bd - b^{l+1} \in J(B)$, $a \in J(A), b^l d = db^l$.

(\Leftarrow). Suppose that $\pounds = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix} \in R$ lifts strongly modulo J(R).

Case I. There exist some $s, t \in \mathbb{N}$ such that $a^s \in J(A)$ and $b^t \in J(B)$. Then $\pounds^{st} = \begin{pmatrix} a^{st} & x \\ 0 & b^{st} \end{pmatrix} \in J(R)$ where $x \in V$. Then \pounds^{st} is strongly *J*-semiclean and so \pounds is strongly *J*-semiclean by Proposition 3.4.

Case II. There exist some $u, v \in \mathbb{N}$ and some invertible periodic elements $p \in A$ and $q \in B$ such that $a^u \in p + J(A)$ and $b^v \in q + J(B)$. Let $k \in \mathbb{N}$ be such that $p^k = 1_A$ and $q^k = 1_B$. Then $\pounds^{uvk} = \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^{uvk} = \begin{pmatrix} a^{uvk} & x \\ 0 & b^{uvk} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + W'$ where $W' \in J(R)$ and $x \in V$. Hence \pounds^{uvk} is strongly J-semiclean and so \pounds is strongly J-semiclean by Proposition 3.4.

Case III. There exist $x \in V$, $k \in \mathbb{N}$ and an invertible periodic element $c \in A$ such that $c(a^{k-1}v + a^{k-2}vb + \dots + vb^{k-1}) = a^kx - xb^k$ and that $ca - a^{k+1} \in J(A)$, $b \in J(B)$ and $a^kc = ca^k$. Since J(A) is a maximal ideal of A, $a \in J(A)$ or $c - a^k \in J(A)$. If $a \in J(A)$, then $\pounds \in J(R)$ and so \pounds is strongly J-semiclean. Now assume that $c - a^k \in J(A)$, $b \in J(B)$, $a^kc = ca^k$ and $c(a^{k-1}v + a^{k-2}vb + \dots + vb^{k-1}) = a^kx - xb^k$. Choose $E = \begin{pmatrix} c & a \\ 0 & 0 \end{pmatrix}$. Since c is an invertible periodic element, there exists $l \in \mathbb{N}$ such that $c^l = 1_A$ and so $E^{2l} = E^l$. Hence E is a periodic matrix in R. Since $\pounds^k - E \in J(R)$ and $\pounds^k E = E\pounds^k$, we obtain that \pounds^k is strongly J-semiclean, and so \pounds is strongly J-semiclean.

Case IV. There exist $y \in V$, $l \in \mathbb{N}$ and an invertible periodic element $d \in A$ such that $(a^{l-1}v + a^{l-2}vb + \cdots + vb^{l-1})d = y^lb - a^ly$ and that $bd - b^{l+1} \in J(B)$, $a \in J(A)$, $db^l = b^ld$. By using the same way as the proof of Case III, we can show that \pounds is strongly J-semiclean.

Therefore in any case, we conclude that $\pounds \in R$ is strongly *J*-semiclean. \Box

Proposition 4.11 Let A and B be local rings and $_AV_B$ a bimodule. Let $R = \begin{pmatrix} A & V \\ 0 & B \end{pmatrix}$. Then R is strongly J-semiclean if and only if:

- (1) R is a J-ring;
- (2) Both A/J(A) and B/J(B) are periodic rings;
- (3) If $a \in 1_A + J(A)$, $b \in J(B)$, and $v \in V$, there exists $x \in V$ such that v = ax xb.

Proof (\Rightarrow) . Suppose that R is strongly J-semiclean. Then by Proposition 3.5, R is a J-

ring. In view of Corollary 4.5, A and B are strongly J-semiclean rings. Then by Proposition 3.5, both A/J(A) and B/J(B) are periodic rings. Suppose that $a \in 1_A + J(A)$, $b \in J(B)$, and $v \in V$. Then $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} \in R$ is a strongly J-semiclean element in R. So there exists a periodic element $E = \begin{pmatrix} e & w \\ 0 & f \end{pmatrix} \in R$ such that $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} - E \in J(R)$ and $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} E = E \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$. Since E is a periodic element in R, we obtain that both e and f are periodic elements. If f is an invertible periodic element in B, then b-f is an invertible element in B and so $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} - E \notin J(R)$, a contradiction. If e is a nilpotent element in A, then a - e is an invertible element in A and so $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} - E \notin J(R)$, a contradiction. Hence e is an invertible periodic element in A and f is a nilpotent element in B. Let $k \in \mathbb{N}$ be such that $e^k = 1_A$ and $f^k = 0$. Then $E^k = \begin{pmatrix} 1_A & x \\ 0 & b \end{pmatrix}$ where $x = e^{k-1}w + e^{k-2}wf + \cdots + wf^{k-1} \in V$. It follows from $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} + E = E \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ that $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} + E^k = E^k \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$. Hence $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1_A & x \\ 0 & b \end{pmatrix}$. Thus v = ax - xb.

(\Leftarrow). Suppose that the conditions (1), (2) and (3) are satisfied. Let $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} \in R$. Since R is a *J*-ring, by Proposition 3.3, A and B are *J*-rings. As both A/J(A) and B/J(B) are periodic rings, we obtain that $a \in J(A)$ or $a \in p + J(A)$, that $b \in J(B)$ or $b \in q + J(B)$, where p is an invertible periodic element in A and q is an invertible periodic element in B.

Case I. $a \in J(A)$ and $b \in J(B)$. Then $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} \in J(R)$, and so $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix} \in R$ is strongly J-semiclean. Case II. $a \in p + J(A)$, $b \in q + J(B)$, where p and q are invertible periodic elements. Let $s \in \mathbb{N}$ be such that $p^s = 1_A$ and $q^s = 1_B$. Then $a^s \in 1_A + J(A)$ and $q^s \in 1_B + J(B)$ and so $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^s = \begin{pmatrix} 1_A & 0 \\ 0 & 1_B \end{pmatrix} + \begin{pmatrix} a^{s-1_A} & a^{s-1}v + a^{s-2}vb + \dots + vb^{s-1} \\ b^s - 1_B \end{pmatrix}$, where $\begin{pmatrix} a^s - 1_A & a^{s-1}v + a^{s-2}vb + \dots + vb^{s-1} \\ b^s - 1_B \end{pmatrix} \in J(R)$. Hence $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^s$ is strongly J-semiclean and so $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ is strongly J-semiclean.

Case III. $a \in p + J(A), b \in J(B)$ where p is an invertible periodic element. Let $s \in \mathbb{N}$ be such that $p^s = 1_A$. Then $a^s \in 1_A + J(A), b^s \in J(B)$. Consider $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^s = \begin{pmatrix} a^s & v' \\ 0 & b^s \end{pmatrix} \in R$ where $v' = a^{s-1}v + a^{s-2}vb + \cdots + vb^{s-1} \in V$. By hypothesis there exists some $x \in V$ such that $v' = a^s x - xb^s$. Let $E = \begin{pmatrix} 1_A & x \\ 0 & b \end{pmatrix}^s$. Then E is a periodic element in R, $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^s - E \in J(R)$ and $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^s E = E \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^s$. Hence $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^s$ is strongly J-semiclean and so $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ is strongly J-semiclean.

Case IV. $a \in J(A)$, $b \in q + J(B)$, where q is an invertible periodic element in B. Let $l \in \mathbb{N}$ be such that $q^l = 1_B$. Then $a^l \in J(A)$, $b^l \in 1_B + J(B)$, and so $1_A - a^l \in 1_A + J(A)$ and $1_B - b^l \in J(B)$. Consider $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^l = \begin{pmatrix} a^l & u \\ 0 & b^l \end{pmatrix} \in R$ where $u = a^{l-1}v + a^{l-2}vb + \cdots + vb^{l-1} \in V$. By the hypothesis there exists $x \in V$ such that $u = (1_A - a^l)x - x(1_B - b^l)$, i.e., $u = a^l(-x) - (-x)b^l$. Let $E = \begin{pmatrix} 0 & -x \\ 0 & 1_B \end{pmatrix} \in R$. Then E is a periodic element in R, $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^l - E \in J(R)$ and $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^l E = E \begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^l$. Hence $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}^l$ is strongly J-semiclean and so $\begin{pmatrix} a & v \\ 0 & b \end{pmatrix}$ is strongly J-semiclean. Therefore, R is a strongly J-semiclean ring. \Box

Let R be a local ring. As an immediate consequence, we deduce that $T_2(R)$ is strongly Jsemiclean if and only if R is a J-ring, R/J(R) is a periodic ring and R is bleached.

Corollary 4.12 Let A and B be local rings and $_AV_B$ a bimodule. Let $R = \begin{pmatrix} A & V \\ 0 & B \end{pmatrix}$. Then R is strongly J-semiclean if and only if:

- (1) R is a J-ring;
- (2) Both A/J(A) and B/J(B) are periodic rings;
- (3) R is strongly clean.

Proof According to [7, Example 2], R is strongly clean if and only if whenever $a - 1_A \in J(A)$, $b \in J(B)$, and $v \in V$, there exists $x \in V$ such that v = ax - xb. Therefore we complete the proof by Proposition 4.11. \Box

5. 2×2 matrix rings

The main purpose of this section is to investigate the strong J-semicleanness of a single 2×2 matrix over a commutative local rings.

Lemma 5.1 Let R be a commutative local ring, and let $E \in M_2(R)$ be a periodic matrix. Then there exists some $k \in \mathbb{N}$ such that E^k is similar to a periodic diagonal matrix $\begin{pmatrix} f_1 & 0 \\ 0 & f_2 \end{pmatrix}$, where f_1 and f_2 are periodic elements in R.

Proof Since E is a periodic matrix, by [13, Lemma 1], there exists some $k \in \mathbb{N}$ such that E^k is an idempoten [9, Lemma 5.1], we complete the proof. \Box

Proposition 5.2 Let R be a commutative local ring. Then $A \in M_2(R)$ is strongly J-semiclean if and only if A lifts strongly modulo $J(M_2(R))$ and there exist some k, l, $m \in \mathbb{N}$ and some invertible periodic element p and q in R such that $A^k \in J(M_2(R))$, or $pI_2 - A^l \in J(M_2(R))$, or A^m is similar to a matrix $\begin{pmatrix} q+w_1 & 0 \\ 0 & w_2 \end{pmatrix}$, where I_2 is the identity matrix of $M_2(R)$ and $w_1, w_2 \in J(R)$.

Proof If either $A^k \in J(M_2(R))$ or $pI_2 - A^l \in J(M_2(R))$ for some $k, l \in \mathbb{N}$ and some invertible periodic element $p \in R$, then A^k or A^l is strongly *J*-semiclean, and so *A* is strongly *J*-semiclean by Proposition 3.4. For $w_1, w_2 \in J(R), \begin{pmatrix} q+w_1 & 0\\ 0 & w_2 \end{pmatrix} = \begin{pmatrix} q & 0\\ 0 & 0 \end{pmatrix} + \begin{pmatrix} w_1 & 0\\ 0 & w_2 \end{pmatrix}$ is strongly *J*-semiclean. Thus A^m is strongly *J*-semiclean and so *A* is strongly *J*-semiclean. Hence, one direction is obvious.

Conversely, assume that $A \in M_2(R)$ is strongly J-semiclean. Then A lifts strongly modulo $J(M_2(R))$ and there exist a periodic matrix $E \in M_2(R)$ and a $W \in J(M_2(R))$ such that A = E + W with EW = WE. Suppose that for any $k, l \in \mathbb{N}$ and any invertible periodic element $p \in R, A^k$ and $pI_2 - A^l$ are not in $J(M_2(R))$. According to Lemma 5.1, there exist some $t \in \mathbb{N}$ and $J \in GL_2(R)$ such that $JE^tJ^{-1} = \begin{pmatrix} f_1 & 0 \\ 0 & f_2 \end{pmatrix}$, where f_1, f_2 are periodic elements. If both f_1, f_2 are nilpotent periodic elements, then there exists $s \in \mathbb{N}$ such that $f_1^s = f_2^s = 0$. Then $JE^{st}J^{-1} = 0$. It follows from A = E + W and EW = WE that

$$JA^{st}J^{-1} = J(C_{st}^{1}E^{st-1}W + C_{st}^{2}E^{st-2}W^{2} + \dots + W^{st})J^{-1} \in J(M_{2}(R)).$$

Hence $A^{st} \in J(M_2(R))$. This contradicts the hypothesis that for any $k \in \mathbb{N}$, A^k is not in $J(M_2(R))$. If both f_1 and f_2 are invertible periodic elements, then there exists some $u \in \mathbb{N}$ such that $f_1^u = f_2^u = 1$ and so $JE^{ut}J^{-1} = I_2$. Thus $E^{ut} = I_2$ and so $I_2 - A^{ut} = C_{ut}^1 E^{ut-1}W + C_{ut}^2 E^{ut-2}W^2 + \cdots + W^{ut} \in J(M_2(R))$. This contradicts the fact that for any $l \in \mathbb{N}$ and any invertible periodic element $p \in R$, $pI_2 - A^l \notin J(M_2(R))$. Thus f_1 is an invertible periodic element, f_2 is a nilpotent periodic element, or f_1 is a nilpotent periodic element, f_2 is an invertible periodic element, where $v, v' \in \mathbb{N}$ such that $JE^{tv}J^{-1} = \begin{pmatrix} f_1^v & 0 \\ 0 & 0 \end{pmatrix}$ or $JE^{tv}J^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & f_2^{v'} \end{pmatrix}$, where

 f_1^v and $f_2^{v'}$ are invertible periodic elements. Therefore there exist some $m \in \mathbb{N}$, $H \in GL_2(R)$ and some invertible periodic element $q \in R$ such that $HA^mH^{-1} = \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix} + HW'H^{-1}$, where $W' = C_m^1 E^{m-1}W + C_m^2 E^{m-2}W^2 + \dots + W^m \in J(M_2(R))$. Set $V = (v_{ij}) = HW'H^{-1} \in J(M_2(R))$. It follows from EW = WE that $\begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix} V = V\begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}$. Hence $v_{12} = v_{21} = 0$ and $v_{11}, v_{22} \in J(R)$. Therefore A^m is similar to a matrix $\begin{pmatrix} q+w_1 & 0 \\ 0 & w_2 \end{pmatrix}$ where $w_1, w_2 \in J(R), q$ is an invertible periodic element. \Box

Let R be a commutative local ring. Then $M_2(R)$ is not strongly J-clean by [9, Corollary 5.4]. But the following example shows that this is not true for strongly J-semiclean rings.

Example 5.3 Let \mathbb{Z}_4 denote the ring of integers modulo 4. Then \mathbb{Z}_4 is a commutative local ring. Since $M_2(\mathbb{Z}_4)$ is a finite ring, each matrix in $M_2(\mathbb{Z}_4)$ is a periodic matrix. Hence $M_2(\mathbb{Z}_4)$ is a strongly *J*-semiclean ring.

Based on Example 5.3, we obtain the following proposition.

Proposition 5.4 If R is a finite ring, then $M_n(R)$ is a strongly J-semiclean ring.

Lemma 5.5 Let R be a commutative local ring, and let $A \in M_2(R)$ be strongly J-semiclean. Then there exist some k, l, $m \in \mathbb{N}$ and some invertible periodic element $p \in R$ such that $A^k \in J(M_2(R))$, or $pI_2 - A^l \in J(M_2(R))$, or A^m is similar to a matrix $\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$, where $\lambda \in J(R)$, $\mu \in 1 + J(R)$.

Proof If for any $k, l \in \mathbb{N}$ and any invertible periodic element $p \in R$, $A^k \notin J(M_2(R))$ and $pI_2 - A^l \notin J(M_2(R))$, then it follows from Proposition 5.2 that there exist some $s \in \mathbb{N}$, some $P \in GL_2(R)$ and some invertible periodic element $q \in R$ such that $P^{-1}A^sP = \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix}$ where $u \in q + J(R), v \in J(R)$. Let $t \in \mathbb{N}$ be such that $q^t = 1$. Then $u^t \in 1 + J(R)$, and so $P^{-1}A^{st}P = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ where $\alpha = u^t \in 1 + J(R), \beta = v^t \in J(R)$. So $\alpha - \beta$ is an invertible element in R. Note that $\begin{pmatrix} -\beta & -\alpha \\ 1 & 1 \end{pmatrix} \begin{pmatrix} (\alpha - \beta)^{-1} & \alpha(\alpha - \beta)^{-1} \\ -(\alpha - \beta)^{-1} & -\beta(\alpha - \beta)^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, and

$$\begin{pmatrix} -\beta & -\alpha \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} (\alpha - \beta)^{-1} & \alpha(\alpha - \beta)^{-1} \\ -(\alpha - \beta)^{-1} & -\beta(\alpha - \beta)^{-1} \end{pmatrix} = \begin{pmatrix} 0 & -\alpha\beta \\ 1 & \alpha + \beta \end{pmatrix}.$$

Let m = st. Then A^m is similar to $\begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$, where $\lambda = -\alpha\beta \in J(R)$, $\mu = \alpha + \beta \in 1 + J(R)$. \Box

Let R be a commutative ring with an identity, and let $A = (a_{ij}) \in M_2(R)$. Denote $Tr(A) = a_{11} + a_{22}$ and $det(A) = a_{11}a_{22} - a_{12}a_{21}$. The following proposition shows that the strong J-semicleanness of a 2 × 2 matrix over a commutative local ring can be characterize by a kind of quadratic equation.

Proposition 5.6 Let R be a commutative local ring. Then the following statements are equivalent:

(1) $A \in M_2(R)$ is strongly J-semiclean.

(2) A lifts strongly modulo $J(M_2(R))$ and there exist some $k, l, m \in \mathbb{N}$ and some invertible periodic element $p \in R$ such that $A^k \in J(M_2(R))$, or $pI_2 - A^l \in J(M_2(R))$, or the equation $x^2 - TrA^m x + detA^m = 0$ has a root in J(R) and a root in 1 + J(R). **Proof** (1) \Rightarrow (2). Let $A \in M_2(R)$ be strongly *J*-semiclean. Then *A* lifts strongly modulo $J(M_2(R))$. Assume that for any $k, l \in \mathbb{N}$ and any invertible periodic element $p \in R$, $A^k \notin J(M_2(R))$ and $pI_2 - A^l \notin J(M_2(R))$. In view of Lemma 5.5, there exists some $m \in \mathbb{N}$ such that A^m is similar to a matrix $B = \begin{pmatrix} 0 & \lambda \\ 1 & \mu \end{pmatrix}$, where $\lambda \in J(R), \mu \in 1 + J(R)$. By using the same way as the proof of [9, Theorem 6.3], we obtain that the equation $x^2 - TrA^mx + detA^m = 0$ has a root in J(R) and a root in 1 + J(R).

 $(2) \Rightarrow (1)$. Suppose that $A \in M_2(R)$ lifts strongly modulo J(R). If there exists some $k, l \in \mathbb{N}$ and some invertible periodic element $p \in R$ such that $A^k \in J(M_2(R))$ or $pI_2 - A^l \in J(M_2(R))$, then A^k or A^l are strongly J-semiclean and so A is strongly J-semiclean. Otherwise, we obtain that $A^m \notin J(M_2(R))$ and $I_2 - A^m \notin J(M_2(R))$ for all $m \in \mathbb{N}$. Then by [9, Theorem 6.3], we obtain that A^m is strongly J-clean and so A^m is strongly J-semiclean. In view of Proposition 3.4, A is strongly J-semiclean, as desired. \Box

Acknowledgements The authors would like to thank the referees for their careful reading and valuable remarks that improved the presentation of this work.

References

- G. BOROOAH, A. J. DIESL. Strongly clean matrix rings over commutative local rings. J. Pure Appl. Algebra, 2008, 212(1): 281–296.
- [2] Huanyin CHEN. Rings Related Stable Range Condition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
- [3] Wenxing CHEN. A question on strongly clean rings. Comm. Algebra., 2006, 34(7): 2347–2350.
- [4] A. J. DIESL. Classes of strongly clean rings. Thesis (Ph.D.)-University of California, Berkeley, 2006.
- [5] T. J. DORSEY. Cleanness and strong cleanness of rings of matrices. Thesis (Ph.D.)-University of California, Berkeley, 2006.
- [6] J. HAN, W. K. NICHOLSON. Extensions of clean rings. Comm. Algebra, 2001, 29(6): 2589–2595.
- [7] W. K. NICHOLSON. Strongly clean rings and Fitting's lemma. Comm. Algebra, 1999, 27(8): 3583–3592.
- [8] Xiande YANG, Yiqiang ZHOU. Some families of strongly clean rings. Linear Algebra Appl., 2007, 425(1): 119–129.
- [9] Huanyin CHEN. On strongly J-clean rings. Comm. Algebra, 2010, 38(10): 3790–3804.
- [10] Huanyin CHEN. Strongly J-clean matrices over local rings. Comm. Algebra, 2012 40(4): 1352–1362.
- [11] Xiaoqin SUN, Yanfeng LUO. On strongly semiclean rings. Int. Math. Forum, 2010, 5(33-36): 1715–1724.
- [12] Yuanqing YE. Semiclean rings. Comm. Algebra, 2003, **31**(11): 5609–5625.
- [13] H. E. BELL. A commutativity study for periodic rings. Pacific J. Math., 1977, 70(1): 29–36.