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Abstract A connected graph G = (V,E) is called a quasi-tree graph if there exists a vertex

v0 ∈ V (G) such that G− v0 is a tree. In this paper, we determine all quasi-tree graphs of order

n with the second largest signless Laplacian eigenvalue greater than or equal to n − 3. As an

application, we determine all quasi-tree graphs of order n with the sum of the two largest signless

Laplacian eigenvalues greater than to 2n− 5
4
.
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eigenvalues; ordering
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1. Introduction

Let G = (V,E) be a simple undirected graph with vertex set V (G) = {v0, v1, . . . , vn−1} and

edge set E = E(G). For a graph G, A(G) is its adjacency matrix and D(G) is the diagonal

matrix of its degrees. The matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix

of G. The eigenvalues of Q(G) are called the signless Laplacian eigenvalues of G, and denoted

by q1(G) ≥ q2(G) ≥ · · · ≥ qn−1(G) ≥ qn(G) ≥ 0. The sum of the k largest signless Laplacian

eigenvalues of G is denoted by Sk(G).

The second largest signless Laplacian eigenvalue q2(G) of a graph G is well studied by sev-

eral authors. Cvetković and Simić [1] proved that algebraic connectivity a(G) ≤ q2(G) for a

non-complete connected graph of order n ≥ 2. Cvetković and Rowlinson et al. [2] gave some

conjectures involving algebraic connectivity, the largest signless Laplacian eigenvalue and the

second largest signless Laplacian eigenvalue of G. Das [3, 4] proved the conjectures involving

second largest signless Laplacian eigenvalue of graphs.

For a graph G of order n ≥ 2, Chen [5] proved that q2(G) ≤ n − 2 and the equality holds

when G is the complete graph. Wang and Belardo et al. [6] gave a necessary condition on a

graph G for which the bound is reached. They raised the problem to characterize all graphs G
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of order n ≥ 2 such that q2(G) = n − 2, and gave a partial answer to this question. For the

class of bipartite graphs, Aochiche and Hansen et al. [7] gave a complete characterization for

q2(G) = n− 2. Lima and Nikiforov [8] gave a necessary and sufficient condition for the equality

qi(G) = n− 2 (2 ≤ i ≤ n). For more results, one may refer to [1, 2] and references therein.

A connected graph G = (V,E) is called a quasi-tree graph, if there exists a vertex v0 ∈ V (G)

such that G − v0 is a tree. Let Qn denote the set of all quasi-tree graphs on n vertices with

v0 ∈ V (G) such that G− v0 is a tree, and Hk
i (i = 2, 4, 6, . . . , 14) and Hi (i = 1, 3, 5, . . . , 15, 16)

denote the quasi-tree graphs on n vertices shown in Figure 1. In this paper, we prove the following

theorem.

Theorem 1.1 Let n ≥ 47 and G ∈ Qn \ {H1,H3,H5,H
2
2}. Then

q2(G) < n− 41

16
< q2(H

2
2 ) < q2(H5) < n− 5

2
< q2(H3) = q2(H1) = n− 2.
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Figure 1 Graphs Hi (i = 1, 3, 5, . . . , 15, 16), Hk
i (i = 2, 4, 6, . . . , 14)
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For any graph G with n vertices, Ashraf et al. [9] conjectured that Sk(G) ≤ e(G) +
(
k+1
2

)
for

k = 1, . . . , n, and proved the conjecture for k = 2 for any graph and for all k for regular graphs.

As an application of Theorem 1.1, we prove the following theorem.

Theorem 1.2 Let n ≥ 47 and G ∈ Qn \ {H1, H5, H
2
2}. Then

S2(G) < 2n− 5

4
< S2(H

2
2 ) < S2(H5) < S2(H1).

The rest of the paper is organized as follows. In Section 2, we recall some basic notions and

lemmas used further, and prove a new lemma. In Section 3, we give a proof of Theorem 1.1. In

Section 4, we give a proof of Theorem 1.2.

2. Preliminaries

Let G − u denote the graph that arises from a graph G by deleting the vertex u ∈ V (G)

and all the edges incident with u. The join of two disjoint graphs G and H, denoted by G ∨H,

is the graph obtained by joining each vertex of G to each vertex of H. For v ∈ V (G), NG(v)

(or N(v)) denotes the neighborhood of v in G, and d(v) = dG(v) = |NG(v)| denotes the degree

of vertex v in G. We denote by ∆(G) the maximum degree of the vertices of G. The matrix

L(G) = D(G) − A(G) is called the Laplacian matrix of G. The largest eigenvalue of L(G) is

called the Laplacian spectral radius of G, denoted by µ1(G). Two distinct edges in a graph G

are independent if they do not have a common end vertex in G. A set of pairwise independent

edges of G is called a matching in G, while a matching of maximum cardinality is a maximum

matching in G. The matching number β(G) of G is the cardinality of a maximum matching of

G. The signless Laplacian characteristic polynomial of a graph G is equal to det(xIn − Q(G)),

denoted by ϕ(G, x). Let Ip be the p × p identity matrix and Jp,q be the p × q matrix in which

every entry is 1, or simply Jp if p = q. Let M be a matrix of order n, σ(M) be the spectrum of

the matrix M .

Definition 2.1 ([10]) Let M be a real matrix of order n described in the following block form
M11 · · · M1t

...
. . .

...

Mt1 · · · Mtt

 , (2.1)

where the diagonal blocks Mii are ni×ni matrices for any i ∈ {1, 2, . . . , t} and n = n1+ · · ·+nt.
For any i, j ∈ {1, 2, . . . , t}, let bij denote the average row sum of Mij , i.e., bij is the sum of all

entries in Mij divided by the number of rows. Then B(M) = (bij) (simply by B) is called the

quotient matrix of M .

Lemma 2.2 ( [11]) Let M = (mij)n×n be defined as (2.1), and for any i, j ∈ {1, 2, . . . , t},
Mii = liJni + piIni , Mij = sijJni,nj , for i ̸= j, where li, pi, sij are real numbers, B = B(M) be

the quotient matrix of M . Then

σ(M) = σ(B) ∪ {p[ni−1]
i | i = 1, 2, . . . , t},
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where p
[ni−1]
i means that pi is an eigenvalue with multiplicity ni − 1.

Lemma 2.3 ([12]) Suppose G is a connected graph with n ≥ 3 vertices. Then

q1(G) ≤ max{d(v) +m(v) | v ∈ V (G) and d(v) > 1},

and equality holds if and only if G is either a regular graph or a semiregular bipartite graph,

where m(v) =
∑

u∈N(v) d(u)/d(v).

Lemma 2.4 ([13]) Let G be a graph of order n and v ∈ V (G). Then

qi+1(G)− 1 ≤ qi(G− v) ≤ qi(G)

for i = 1, 2, . . . , n− 1, where the right equality holds if and only if v is an isolated vertex.

Let Tn
m (2m ≤ n + 1) denote the tree of order n obtained from the star K1, n−m by joining

m− 1 pendant vertices of K1, n−m to m− 1 isolated vertices by m− 1 edges.

Lemma 2.5 ([14]) Let T be a tree on n vertices with matching number β. Then µ1(T ) ≤ r,

where r is the maximum root of the equation

x3 − (n− β + 4)x2 + (3n− 3β + 4)x− n = 0.

The equality holds if and only if T = Tn
β .

Lemma 2.6 ([15]) If G is connected, then µ1(G) ≤ q1(G), where the equality holds if and only

if G is bipartite.

Lemma 2.7 ([3]) Let G be a connected graph with second maximum degree d2(G). Then

d2(G)− 1 ≤ q2(G) ≤ n− 2.

Lemma 2.8 ([2]) Let G be a graph with order n and e ∈ E(G). Then

q1(G) ≥ q1(G− e) ≥ q2(G) ≥ q2(G− e) ≥ · · · ≥ qn(G) ≥ qn(G− e) ≥ 0.

Lemma 2.9 ([16]) Let n > 3, G ∈ Qn. Then

q1(G) < max{2 + d(v0) + n− 3

2
,∆(G) +

d(v0) + n− 3

∆(G)
}+ 1.

Lemma 2.10 ([17]) Let G be a connected graph and q1(G) be the spectral radius of Q(G). Let

u, v be two vertices of G and d(v) be the degree of vertex v. Suppose v1, v2, . . . , vs (1 ≤ s ≤ d(v))

are some vertices of NG(v)\NG(u) and x = (x1, x2, . . . , xn)
T is the Perron vector of Q(G), where

xi corresponds to the vertex vi (1 ≤ i ≤ n). Let G∗ be the graph obtained from G by deleting

the edges (v, vi) and adding the edges (u, vi) (1 ≤ i ≤ s). If xu ≥ xv, then q1(G) < q1(G
∗).

Lemma 2.11 Let n ≥ 11 and T k denote the trees of order n− 1 shown in Figure 2. Then

ϕ(K1 ∨ T k, x) =(x− 2)n−5{x5 − 2(n+ 2)x4 + [n2 + (k + 6)n− k2 + k + 6)x3−

[(k + 2)n2 − (k2 − 2k − 12)n− k2 + k − 6]x2 + [(k + 2)n2 − (k2 − 9k − 2)n−

8k2 + 8k − 16]x− 4(3k − 2)n+ 12k2 − 12k + 8}.
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Proof It is easy to see that

Q(K1 ∨ T k) =



n− 1 1 1 1 1 · · · 1 1 1 1 · · · 1

1 k 1 1 1 · · · 1 0 0 0 · · · 0

1 1 n− k + 1 0 0 · · · 0 1 1 1 · · · 1

1 1 0 2 0 · · · 0 0 0 0 · · · 0

1 1 0 0 2 · · · 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

...
...

...
. . .

...

1 1 0 0 0 · · · 2 0 0 0 · · · 0

1 0 1 0 0 · · · 0 2 0 0 · · · 0

1 0 1 0 0 · · · 0 0 2 0 · · · 0

1 0 1 0 0 · · · 0 0 0 2 · · · 0
...

...
...

...
...

. . .
...

...
...

...
. . .

...

1 0 1 0 0 · · · 0 0 0 0 · · · 2



.

It can be written as follows:

Q(K1 ∨ T k) =


(n− 2)J1 + I1 J1 J1 J1,k J1,n−k−1

J1 kJ1 J1 J1,k 0

J1 J1 (n− k + 1)J1 0 J1,n−k−1

Jk−2,1 Jk−2,1 0 2Ik−2 0

Jn−k−1,1 0 Jn−k−1,1 0 2In−k−1

 .

Let B(K1 ∨ T k) be the corresponding quotient matrix of Q(K1 ∨ T k). Then

B(K1 ∨ T k) =


n− 1 1 1 k − 2 n− k − 1

1 k 1 k − 2 0

1 1 n− k + 1 0 n− k − 1

1 1 0 2 0

1 0 1 0 2

 .

By Lemma 2.2, we have

σ(Q(K1 ∨ T k)) = σ(B(K1 ∨ T k)) ∪ {2[n−5]}. (2.2)

By direct computing, we know the characteristic polynomial of B(K1 ∨ T k) is as follows:

φ(x) =x5 − 2(n+ 2)x4 + [n2 + (k + 6)n− k2 + k + 6)x3 − [(k + 2)n2 − (k2 − 2k−

12)n− k2 + k − 6]x2 + [(k + 2)n2 − (k2 − 9k − 2)n− 8k2 + 8k − 16]x−

4(3k − 2)n+ 12k2 − 12k + 8. (2.3)

Combining (2.2) and (2.3), we have ϕ(K1 ∨ T k, x) = (x− 2)n−5φ(x). �

3. The proof of Theorem 1.1

In this section, we determine all quasi-tree graphs of order n with the second largest signless
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Laplacian eigenvalue greater than or equal to n− 3.

Lemma 3.1 Let n ≥ 11 and G ∈ Qn. If ∆(G− v0) ≤ n− 6, then q2(G) < n− 3.

Proof For the tree G− v0 and any u ∈ V (G− v0) with d(u) > 1, we have

d(u) +m(u) =d(u) +

∑
v∈N(u) d(v)

d(u)
≤ d(u) +

n− 2

d(u)

≤max{2 + n− 2

2
,∆(G− v0) +

n− 2

∆(G− v0)
}

≤max{2 + n− 2

2
, n− 6 +

n− 2

n− 6
}

=n− 5 +
4

n− 6
< n− 4.

By Lemma 2.3, we have q1(G− v0) < n− 4. By Lemma 2.4, we have

q2(G) ≤ q1(G− v0) + 1 < n− 4 + 1 = n− 3.

This completes the proof. �

Lemma 3.2 Let n ≥ 11 and G ∈ Qn. If β(G− v0) ≥ 5, then q2(G) < n− 3.

Proof Let β = β(G− v0) and r = µ1(T
n−1
β ). By Lemma 2.5, we have µ1(G− v0) ≤ r and

r3 − (n− β + 3)r2 + (3n− 3β + 1)r − n+ 1 = 0.

It follows that r > 3 and

β =
−r3 + (n+ 3)r2 − (3n+ 1)r + n− 1

r2 − 3r
.

If β ≥ 5, then

r3 − (n− 2)r2 + (3n− 14)r − n+ 1 ≤ 0.

Let f(x) = x3 − (n− 2)x2 + (3n− 14)x− n+ 1. Noting that f ′(x) > 0 for x ∈ [n− 4,+∞), we

know that f(x) is strictly increasing on x ∈ [n− 4,+∞). Since f(n− 4) = n2 − 11n+25 > 0 for

n ≥ 11, it follows that r < n− 4. By Lemma 2.6, we have

q1(G− v0) = µ1(G− v0) ≤ r < n− 4.

By Lemma 2.4, we have

q2(G) ≤ q1(G− v0) + 1 < n− 4 + 1 = n− 3.

This completes the proof. �

Lemma 3.3 Let n ≥ 47 and G ∈ Qn. If 2 ≤ β(G− v0) ≤ 4, ∆(G− v0) = n− 5 or n− 4, then

q2(G) < n− 3.

Proof Let T k, T r,s, T1, T2 and T3 denote the trees of order n − 1 shown in Figure 2, where

r = s means d(v2) = 2 for the tree T r,s.
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Figure 2 Trees T k, T r,s, T1, T2, T3

Next, we distinguish five cases to show q2(G) < n− 3.

Case 1. β(G − v0) = 2 and ∆(G − v0) = n − 4. Then G − v0 must be T 4 or T 4,4 shown in

Figure 2. By Lemma 2.8, we have q2(G) ≤ q2(K1 ∨ T 4) or q2(G) ≤ q2(K1 ∨ T 4,4).

By Lemma 2.11, we have ϕ(K1 ∨ T 4, x) = (x− 2)n−5f1(x), where

f1(x) = x5− 2(n+2)x4+(n2+10n−6)x3−2(3n2+2n−9)x2+(6n2+22n−112)x− 40n+152.

By Lemma 2.7, we have q2(K1∨T 4) ∈ [n−4, n−2]. Therefore, q2(K1∨T 4) is the second largest

root of the polynomial f1(x). Taking the derivative of f1(x) with respect to x, we know that

f ′1(x) < 0 on the interval [n− 4, n− 2]. Therefore, f1(x) is strictly decreasing on [n− 4, n− 2].

Since f1(n− 4) = (n− 24)(4n2 + 24n+ 992) + 23032 > 0 and f1(n− 3) = −(n− 5)(n− 7)2 < 0,

it follows that q2(K1 ∨ T 4) < n− 3. It follows that q2(G) ≤ q2(K1 ∨ T 4) < n− 3.

By a similar reasoning as the proof of Lemma 2.11, we can obtain that ϕ(T 4,4, x) = (x −
2)n−7f2(x), where

f2(x) =x
7 − 2(n+ 4)x6 + (n2 + 18n+ 15)x5 − (10n2 + 54n− 26)x4+

(35n2 + 81n− 207)x3 − (51n2 + 143n− 654)x2+

(26n2 + 250n− 1016)x− 160n+ 560.

By Lemma 2.7, we have q2(K1 ∨ T 4,4) ∈ [n − 4, n − 2]. Therefore, q2(K1 ∨ T 4,4) is the

second largest root of the polynomial f2(x). Taking the derivative of f2(x) with respect to x,

we know that f ′2(x) < 0 on the interval [n − 4, n − 2]. Therefore, f2(x) is strictly decreasing

on the interval [n − 4, n − 2]. Since f2(n − 4) = 4(n − 5)(n2 − 13n + 41)(n − 6)2 > 0 and

f2(n−3) = −(n−5)2[(n−35)(n2+16n+675)+23404] < 0, it follows that q2(K1∨T 4,4) < n−3.

It follows that q2(G) ≤ q2(K1 ∨ T 4,4) < n− 3.

Case 2. β(G − v0) = 2 and ∆(G − v0) = n − 5. Then G − v0 must be T 5 or T 5,5 shown in

Figure 2. By Lemma 2.8, we have q2(G) ≤ q2(K1 ∨ T 5) or q2(G) ≤ q2(K1 ∨ T 5,5).

By a similar reasoning as the proof of Lemma 2.11, we can obtain that ϕ(K1 ∨ T 5, x) =
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(x− 2)n−5f3(x), where

f3(x) =x
5 − 2(n+ 2)x4 + (n2 + 11n− 14)x3 − (7n2 − 3n− 26)x2+

(7n2 + 22n− 176)x− 52n+ 248.

By Lemma 2.7, we have q2(K1∨T 5) ∈ [n−5, n−2]. Therefore, q2(K1∨T 5) is the second largest

root of the polynomial f3(x). Taking the derivative of f3(x) with respect to x, we know that

f ′3(x) < 0 on the interval [n−5, n−2]. Therefore, f3(x) is strictly decreasing on [n−5, n−2]. Since

f3(n−5) = (n−22)(6n2+927)+18297 and f3(n−3) = −(n−22)(4n2+16n+775)−16229 < 0,

it follows that q2(K1 ∨ T 5) < n− 3. It follows that q2(G) ≤ q2(K1 ∨ T 5) < n− 3.

By a similar reasoning as the proof of Lemma 2.11, we can obtain that ϕ(K1 ∨ T 5,5, x) =

(x− 2)n−7f4(x), where

f4(x) =x
7 − 2(n+ 4)x6 + (n2 + 19n+ 8)x5 − (11n2 + 53n− 68)x4+

(41n2 + 58n− 340)x3 − (62n2 + 120n− 1032)x2+

(32n2 + 296n− 1632)x− 208n+ 896.

By Lemma 2.7, we have q2(K1 ∨ T 5,5) ∈ [n − 5, n − 2]. Therefore, q2(K1 ∨ T 5) is the second

largest root of the polynomial f4(x). Taking the derivative of f4(x) with respect to x, we know

that f ′4(x) < 0 on [n − 5, n − 2]. Therefore, f4(x) is strictly decreasing on [n − 5, n − 2]. Since

f4(n − 5) = (n − 7)[(n − 41)(6n3 + 72n2 + 4821n + 188837) + 7757793] > 0 and f4(n − 3) =

−(n−5)[(n−41)(4n3+72n2+3733n+150155)+6160316] < 0, it follows that q2(K1∨T 5,5) < n−3.

Therefore, q2(G) ≤ q2(K1 ∨ T 5,5) < n− 3.

Case 3. β(G− v0) = 3 and ∆(G− v0) = n− 4. Then G− v0 must be T 4,n−2 shown in Figure

2. By Lemma 2.8, we have q2(G) ≤ q2(K1 ∨ T 4,n−2).

By a similar reasoning as the proof of Lemma 2.11, we have ϕ(K1 ∨ T 4,n−2, x) = (x −
2)n−7f5(x), where

f5(x) =x
7 − 2(n+ 4)x6 + (n2 + 18n+ 15)x5 − (10n2 + 54n− 26)x4+

(35n2 + 80n− 201)x3 − (50n2 + 156n− 696)x2+

(25n2 + 280n− 1160)x− 180n+ 680.

By Lemma 2.7, we have q2(K1∨T 4,n−2) ∈ [n−4, n−2]. Therefore, q2(K1∨T 4,n−2) is the second

largest root of the polynomial f5(x). Taking the derivative of f5(x) with respect to x, we know

that f ′5(x) < 0 on [n−4, n−2]. Therefore, f5(x) is strictly decreasing on x ∈ [n−4, n−2]. Since

f5(n−4) = 4(n−6)(n2−11n+29)(n2−13n+41) > 0 and f5(n−3) = −(n−7)(n2−11n+29)(n2−
11n+31) < 0, it follows that q2(K1∨T 4,n−2) < n−3. Therefore, q2(G) ≤ q2(K1∨T 4,n−2) < n−3.

Case 4. β(G − v0) = 3 and ∆(G − v0) = n − 5. Then G − v0 ∈ {T 4,5, T 4,n−3, T1, T2},
where T 4,5, T 4,n−3, T1, T2 are shown in Figure 2. By Lemma 2.8, q2(G) ≤ q2(K1 ∨ T 4,5) or

q2(G) ≤ q2(K1 ∨ T 4,n−3) or q2(G) ≤ q2(K1 ∨ T1) or q2(G) ≤ q2(K1 ∨ T2).
By a similar reasoning as the proof of Lemma 2.11, we have q2(K1 ∨ T 4,5), q2(K1 ∨ T 4,n−3),

q2(K1 ∨ T1), q2(K1 ∨ T2) are the second largest root of the following polynomials fi(x) (i =
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6, 7, 8, 9), respectively,

f6(x) =x
7 − 2(n+ 4)x6 + (n2 + 19n+ 8)x5 − (11n2 + 53n− 68)x4 + (41n2 + 57n−

334)x3 − (61n2 + 133n− 1074)x2 + (31n2 + 326n− 1776)x− 228n+ 1016,

f7(x) =x
7 − 2(n+ 4)x6 + (n2 + 19n+ 8)x5 − (11n2 + 53n− 68)x4 + (41n2 + 56n−

326)x3 − (60n2 + 148n− 1130)x2 + (30n2 + 358n− 1968)x− 248n+ 1176,

f8(x) =x
8 − 2(n+ 5)x7 + (n2 + 23n+ 25)x6 − (13n2 + 93n− 50)x5 + (64n2 + 170n−

468)x4 − (148n2 + 260n− 1768)x3 + (160n2 + 649n− 4167)x2 − (65n2 + 977n−

5000)x+ 504n− 2248,

f9(x) =x
6 − 2(n+ 3)x5 + (n2 + 15n− 3)x4 − (9n2 + 25n− 62)x3+

(24n2 + 11n− 215)x2 − (17n2 + 105n− 632)x+ 120n− 520.

By Lemma 2.7, we have q2(K1 ∨ T 4,5) ∈ [n − 5, n − 2]. Noting that n ≥ 41, by derivative

we know that f ′6(x) < 0 for x ∈ [n − 5, n − 2]. Therefore, f6(x) is strictly decreasing on x ∈
[n−5, n−2]. Since f6(n−5) = (n−41)(6n4+30n3+4314n2+155034n+6433145)+263651816 > 0

and f6(n − 3) = −(n − 7)[(n − 41)(4n3 + 80n2 + 3938n + 159180) + 6529319] < 0, it follows

that q2(K1 ∨ T 4,5) < n − 3. If dG(v0) < n − 1 and G − v0 = T 4,5, by Lemma 2.8, we have

q2(G) ≤ q2(K1 ∨ T 4,5) < n− 3.

By Lemma 2.7, we have q2(K1 ∨ T 4,n−3) ∈ [n− 5, n− 2]. Noting that n ≥ 41, by derivative

we know that f ′7(x) < 0 for x ∈ [n − 5, n − 2]. Therefore, f7(x) is strictly decreasing on

x ∈ [n−5, n−2]. Since f7(n−5) = (n−7)[(n−41)(6n3+72n2+4815n+188689)+7751336] > 0

and f7(n−3) = −(n−41)(4n4+52n3+3383n2+131728n+5420269)−222209432 < 0, it follows

that q2(K1 ∨ T 4,n−3) < n− 3. If dG(v0) < n− 1 and G− v0 = T 4,n−3, by Lemma 2.8, we have

q2(G) ≤ q2(K1 ∨ T 4,n−3) < n− 3.

By Lemma 2.7, we have q2(K1∨T1) ∈ [n−5, n−2]. Noting that n ≥ 47, by derivative we know

that f ′8(x) < 0 for x ∈ [n− 5, n− 2]. Therefore, f8(x) is strictly decreasing on x ∈ [n− 5, n− 2].

Since f8(n− 5) = (n− 7)[(n− 47)(6n4 +66n3 +6192n2 +269066n+12723617)+ 597901238] > 0

and f8(n−3) = −(n−7)[(n−47)(4n4+84n3+5030n2+230784n+10861453)+510473164] < 0,

it follows that q2(K1 ∨ T1) < n− 3. If dG(v0) < n− 1 and G− v0 = T1, by Lemma 2.8, we have

q2(G) ≤ q2(K1 ∨ T1) < n− 3.

By Lemma 2.7, we have q2(K1 ∨ T2) ∈ [n − 5, n − 2]. Noting that n ≥ 34, by derivative

we know that f ′9(x) < 0 for x ∈ [n − 5, n − 2]. Therefore, f9(x) is strictly decreasing on

x ∈ [n− 5, n − 2]. Since f9(n − 5) = (n − 34)(6n3 + 30n2 + 2895n + 89532) + 3059783 > 0 and

f9(n − 3) = −(n − 7)(2n − 11)(2n2 − 21n + 53) < 0, it follows that q2(K1 ∨ T2) < n − 3. If

dG(v0) < n− 1 and G− v0 = T2, by Lemma 2.8, we have q2(G) ≤ q2(K1 ∨ T2) < n− 3.

Case 5. β(G− v0) = 4 and ∆(G− v0) = n− 5. Then G− v0 must be T3 shown in Figure 2.

It is easy to see that q2(K1 ∨ T3) is the second largest root of the following polynomial,

f10(x) =x
5 − 2(n+ 1)x4 + (n2 + 7n− 10)x3 − (5n2 − n− 20)x2+

(5n2 + 20n− 136)x− 44n+ 208.
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By Lemma 2.7, we have q2(K1 ∨ T3) ∈ [n − 5, n − 2]. Noting that n ≥ 27, by derivative

we know that f ′10(x) < 0 for x ∈ [n − 5, n − 2]. Therefore, f10(x) is strictly decreasing on

x ∈ [n− 5, n− 2]. Since f10(n− 5) = (n− 27)(6n2 + 42n+ 1929) + 50346 > 0 and f10(n− 3) =

−(n− 27)(4n2 +44n+1539)− 40892 < 0, it follows that q2(K1 ∨ T3) < n− 3. If dG(v0) < n− 1

and G− v0 = T3, by Lemma 2.8, we have q2(G) ≤ q2(K1 ∨ T3) < n− 3.

Combining the above arguments, we have q2(G) < n− 3. The proof is completed. �

Lemma 3.4 Let n ≥ 47 and G ∈ Qn. If ∆(G− v0) = n− 2 or n− 3, then

(i) q2(G) < n− 3 for G ∈ Qn \ {H1,H
2
2 , H3,H

2
4 ,H5,H

4
6 ,H7,H

4
8 , H9,H11,H13, H15}, where

H1,H
2
2 ,H3,H

2
4 , H5, H

4
6 ,H7,H

4
8 ,H9,H11,H13, and H15 are shown in Figure 1;

(ii) n− 3 ≤ q2(G) < n− 41
16 for G ∈ {H2

4 , H
4
6 , H7, H

4
8 , H9, H11, H13, H15} with equality if

and only if G = H13 or H15;

(iii) n− 41
16 < q2(G) < n− 5

2 for G ∈ {H2
2 , H5};

(iv) q2(H1) = q2(H3) = n− 2.

Proof In the case when ∆(G − v0) = n − 2, G − v0 must be the K1,n−2 and β(G − v0)=1. It

follows that G must be one of H1, H
k
2 (2 ≤ k ≤ n − 1), H3 and Hk

4 (2 ≤ k ≤ n − 2) shown

in Figure 1. In the case when ∆(G − v0) = n − 3, G − v0 must be the T 3 shown in Figure

2 and β(G − v0)=2. It follows that G must be one of Hi (i = 5, 7, 9, 11, 13, 15, 16) and Hk
i

(i = 6, 8, 10, 12, 14) shown in Figure 1. By a similar reasoning as the proof of Lemma 2.11, we

have

(1) ϕ(Hk
2 , x) =(x− 1)k−1(x− 2)n−k−2[x3 − (2n− k + 1)x2 + (n2 − nk + n)x−

4n+ 4k + 4],

(2) ϕ(Hk
4 , x) =x(x− 1)k−2(x− 2)n−k−2[x3 − (2n− k)x2 + (n2 − kn+ n− 2)x−

n2 + kn+ n],

(3) ϕ(H5, x) =(x− 2)n−5[x5 − 2(n+ 2)x4 + (n2 + 9n)x3 − (5n2 + 9n− 12)x2+

(5n2 + 20n− 64)x− 28n+ 80],

(4) ϕ(Hk
6 , x) =(x− 1)k−4(x− 2)n−k−1[x5 − (2n− k + 8)x4 + (n2 − kn+ 13n−

5k + 19)x3 − (5n2 − 5kn+ 27n− 8k + 24)x2 + (4n2 − 4kn+ 40n−

24k + 24)x− 24n+ 24k − 24,

(5) ϕ(H7, x) =(x− 2)n−5[x5 − 2(n+ 1)x4 + (n2 + 7n− 9)x3 − (5n2 − 5n− 6)x2+

(5n2 − 10n− 4)x− 8n+ 24],

(6) ϕ(Hk
8 , x) =(x− 1)k−3(x− 2)n−k−2[x5 − (2n− k + 6)x4 + (n2 − kn+ 11n−

4k + 6)x3 − (5n2 − 5kn+ 13n)x2 + (4n2 − 4kn+ 12n− 4k + 4)x−

8n+ 8k − 8,

(7) ϕ(H9, x) =(x− 2)n−5[x2 − (n− 2)x+ n− 4][x3 − (n+ 4)x2 + (3n+ 8)x− 16],

(8) ϕ(Hk
10, x) =(x− 1)k−4(x− 2)n−k−2[x6 − (2n− k + 6)x5 + (n2 − kn+ 11n
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4k + 10)x4 − (5n2 − 5kn+ 23n− 6k − 2)x3 + (7n2 − 7kn+ 35n−

18k − 26)x2 − (3n2 − 3kn+ 37n− 32k − 32)x+ 16n− 16k − 16],

(9) ϕ(H11, x) =(x− 2)n−5[x2 − (n− 2)x+ n− 4][x3 − (n+ 2)x2 + (3n− 2)x− 4],

(10) ϕ(Hk
12, x) =(x− 1)k−4(x− 2)n−k−2[x6 − (2n− k + 4)x5 + (n2 − kn+ 9n− 3k−

1)x4 − (5n2 − 5kn+ 9n+ 2k − 16)x3 + (7n2 − 7kn+ n+ 5k − 15)x2−

(3n2 − 3kn+ 3n− 4k − 4)x+ 4n− 4k − 4],

(11) ϕ(H13, x) =(x− 2)n−5(x− n+ 3)[x4 − (n+ 5)x3 + (4n+ 10)x2 − (2n+ 20)x+ 8],

(12) ϕ(Hk
14, x) =(x− 1)k−4(x− 2)n−k−2[x6 − (2n− k + 6)x5 + (n2 − kn+ 11n− 4k+

9)x4 − (5n2 − 5kn+ 21n− 5k)x3 + (6n2 − 6kn+ 32n− 17k − 11)x2−

(2n2 − 2kn+ 28n− 24k − 4)x+ 8n− 8k],

(13) ϕ(H15, x) =x(x− 2)n−5(x− n+ 3)[x3 − (n+ 3)x2 + (4n− 2)x− 2n],

(14) ϕ(H16, x) =(x− 2)n−5[x5 − 2nx4 + (n2 + 3n− 6)x3 − (3n2 − 3n− 12)x2+

(n2 + 10n− 48)x− 4n+ 16].

By a similar reasoning as the proof of Lemma 3.3, we can obtain the results as follows:

n− 5

2
>q2(H

2
2 ) > n− 41

16
> n− 3 > q2(H

k
2 ) for k ≥ 3;

n− 41

16
>q2(H

2
4 ) > n− 3 > q2(H

k
4 ) for k ≥ 3;

n− 5

2
>q2(H5) > n− 41

16
> n− 3;

n− 41

16
>q2(H

4
6 ) > n− 3 > q2(H

k
6 ) for k ≥ 5;

n− 41

16
>q2(H7) > n− 3;

n− 41

16
>q2(H

4
8 ) > n− 3 > q2(H

k
8 ) for k ≥ 5;

n− 41

16
>q2(H9) = q2(H11) > n− 3;

q2(H13) = q2(H15) = n − 3; q2(H
k
12) ≤ q2(H

k
10) < n − 3 for k ≥ 4; q2(H

k
14) < n − 3 for k ≥ 4;

q2(H16) < n− 3. Combining the above arguments, we have the proof of (i), (ii) and (iii).

By a similar reasoning as the proof of Lemma 2.11, we have

ϕ(H1, x) =(x− n+ 2)(x− 2)n−3[x2 − (n+ 2)x+ 4],

ϕ(H3, x) =x(x− 2)n−3(x− n)(x− n+ 2).

Thus q2(H1) = q2(H3) = n− 2. This completes the proof. �

Proof of Theorem 1.1 For G ∈ Qn \ {H1,H
2
2 , H3,H

2
4 ,H5,H

4
6 ,H7,H

4
8 , H9,H11, H13, H15},

by Lemmas 3.1–3.4, we have q2(G) < n − 3. For G ∈ {H2
4 , H

4
6 ,H7,H

4
8 , H9,H11,H13,H15}, by

Lemma 3.4, we have n − 3 ≤ q2(G) < n − 41
16 and the equality holds if and only if G = H13 or

H15. For G ∈ {H2
2 , H5}, by Lemma 3.4, we have n − 41

16 < q2(G) < n − 5
2 . For G = H1 or H3,
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we have q2(H1) = q2(H3) = n− 2.

Now we give the ordering of the graphs in {H2
2 , H5} by the second largest Q-eigenvalue. By

the proof of Lemma 3.4, we have

ϕ(H2
2 , x) = (x− 2)n−5f(x), ϕ(H5, x) = (x− 2)n−5g(x),

where

f(x) =x5 − 2(n+ 1)x4 + (n2 + 5n− 1)x3 − (3n2 + 5n− 14)x2+

(2n2 + 10n− 36)x− 8n+ 24.

g(x) =x5 − 2(n+ 2)x4 + (n2 + 9n)x3 − (5n2 + 9n− 12)x2+

(5n2 + 20n− 64)x− 28n+ 80.

Obviously, q2(H
2
2 ) and q2(H5) are the second largest root of f(x) and g(x), respectively. Let

ψ(x) = f(x)− g(x) = 2x4 − (4n+ 1)x3 + (2n2 + 4n+ 2)x2 − (3n2 + 10n− 28)x+ 20n− 56, and

α denote the second largest root of ψ(x). Since ψ(0) = 2n − 56 > 0, ψ(1) = −(n − 5)2 < 0,

ψ(n−3) = 4n2−33n+67 > 0, ψ(n− 5
2 ) = −1

4 (n
2−27n+79) < 0 and ψ(n+2) = 4n2+72n+32 > 0

for n ≥ 47, it follows that n− 3 < α < n− 5
2 .

It is easy to see that f(x) = 1
4 (2x − 3)ψ(x) + r(x) and g(x) = 1

4 (2x − 7)ψ(x) + r(x), where

r(x) = −11
4 x

3 + (3n+ 3
2 )x

2 − ( 14n
2 + 15

2 n− 13)x+ 7n− 18. By derivative, we know that r(x) is

strictly decreasing on [n− 3, n− 5
2 ]. Since

f(α) = g(α) = r(α) ≥ r(n− 5

2
) =

1

32
(8n2 − 50n+ 59) > 0

for n ≥ 47, it follows that q2(H
2
2 ), q2(H5) ∈ (α, n− 5

2 ). Moreover, since ψ(x) is strictly decreasing

in the interval [n− 3, n− 5
2 ], it follows that ψ(x) < ψ(α) = 0 when α < x < n− 5

2 . This implies

that f(x) < g(x) when α < x < n− 5
2 . Thus, q2(H5) > q2(H

2
2 ).

Combining the above arguments, we have

q2(G) < n− 41

16
< q2(H

2
2 ) < q2(H5) < n− 5

2
< q2(H3) = q2(H1) = n− 2.

The proof is completed. �

4. The proof of Theorem 1.2

We consider the following three cases.

Case 1. ∆(G) ≤ n− 2. We will show that S2(G) < 2n− 3
2 . By Lemma 2.9, we have

q1(G) <max{2 + d(v0) + n− 3

2
,∆(G) +

d(v0) + n− 3

∆(G)
}+ 1

≤max{2 + n− 2 + n− 3

2
,∆(G) +

n− 2 + n− 3

∆(G)
}+ 1

≤max{2 + 2n− 5

2
, n− 2 +

2n− 5

n− 2
}+ 1 < n+ 1.

By Theorem 1.1, we have q2(G) < n− 5
2 except for H3. Thus S2(G) < 2n− 3

2 except for H3.
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For H3, by the proof of Lemma 3.4, we have

ϕ(H3, x) = x(x− 2)n−3(x− n)(x− n+ 2).

It follows that S2(H3) = n+ n− 2 = 2n− 2 < 2n− 3
2 .

Case 2. There exists v ∈ V (G − v0) such that ∆(v) = n − 1. Then G − v0 = K1,n−2 and

G = H1 or Hk
2 (2 ≤ k ≤ n − 1). We will show that S2(G) < 2n − 5

4 < S2(H
2
2 ) < S2(H1) for

G ∈ Qn \ {H1, H
2
2}. For k ≥ 4, by Theorem 1.1 and Lemma 2.8, we have

q2(H1) > q2(H
2
2 ) > n− 3 > q2(H

3
2 ) ≥ q2(H

k
2 );

by Lemma 2.8, we have q1(H1) > q1(H
2
2 ) > q1(H

3
2 ) > q1(H

k
2 ). These imply that S2(H1) >

S2(H
2
2 ) > S2(H

3
2 ) > S2(H

k
2 ) for k ≥ 4.

By the proof of Lemma 3.4, we know that q1(H
2
2 ) and q2(H

2
2 ) are the two largest roots of

the polynomial

h(x) = x3 − (2n− 1)x2 + (n2 − n)x− 4n+ 12.

Let q be the other root of h(x). By derivative, we know that h′(x) > 0 for x ∈ [0, 1
4 ]. Thus h(x) is

strictly increasing in the interval [0, 1
4 ]. Since h(0) = −4n+12 < 0 and h( 14 ) =

1
4n

2− 35
8 n+

773
64 > 0

for n ≥ 47, it follows that q ∈ (0, 1
4 ). By the Vieta Theorem, we have

S2(H
2
2 ) = q1(H

2
2 ) + q2(H

2
2 ) = 2n− 1− q > 2n− 5

4
.

By the proof of Lemma 3.4, we know that q1(H
3
2 ) and q2(H

3
2 ) are the two largest roots of the

polynomial

p(x) = x3 − (2n− 2)x2 + (n2 − 2n)x− 4n+ 16.

Let q′ be the other root of p(x). Since q′ ≥ 0, by the Vieta Theorem, we have

S2(H
3
2 ) = q1(H

3
2 ) + q2(H

3
2 ) = 2n− 2− q′ ≤ 2n− 2 < 2n− 5

4
.

From the above arguments, we have S2(G) < 2n − 5
4 < S2(H

2
2 ) < S2(H1) for G ∈ Qn \

{H1, H
2
2}.

Case 3. d(v0) = n − 1. Then G = K1 ∨ T , where T is a tree of order n − 1. We will show

S2(G) < 2n− 5
4 < S2(H5) < S2(H1) for G ∈ Qn \ {H1, H5}. Employing Lemma 2.10 to vertices

v1 and v3 of H5, we have q1(H5) < q1(H1). For G ∈ Qn \ {H1,H5}, employing Lemma 2.10

repeatedly, we can prove q1(G) < q1(H5) < q1(H1). By Theorem 1.1, we have q2(G) < n− 3 <

q2(H5) < q2(H1) for G ∈ Qn \ {H1,H5}. These imply that S2(G) < S2(H5) < S2(H1) for

G ∈ Qn \ {H1,H5}.
Now we show that S2(G) < 2n− 5

4 for G ∈ Qn \ {H1,H5}. By the proof of Lemma 3.4, we

have ϕ(H5, x) = (x− 2)n−5u(x), where

u(x) =x5 − 2(n+ 2)x4 + (n2 + 9n)x3 − (5n2 + 9n− 12)x2+

(5n2 + 20n− 64)x− 28n+ 80.

It is easy to see that q1(H5) and q2(H5) are the two largest roots of u(x).
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By derivative, we know that u(x) is strictly increasing on [n,+∞). Since u(n) = −4n(n −
47)(n+39)−7424n+80 < 0 and u(n+ 7

4 ) =
1

1024 [n(n−47)(832n+58768)+2708908n−16745] > 0

for n ≥ 47, it follows that q1(H5) < n+ 7
4 . Therefore

S2(G) = q1(G) + q2(G) < n+
7

4
+ n− 3 < 2n− 5

4
.

Next we show S2(H5) > S2(H
2
2 ) > 2n − 5

4 . From the proof of Theorem 1.1, we know that

q1(H
2
2 ) and q1(H5) are the largest roots of f(x) and g(x), respectively. By a similar reasoning

as the proof of Theorem 1.1, we have q1(H5) > q1(H
2
2 ).

By Theorem 1.1, we have q2(H5) > q2(H
2
2 ). Thus S2(H5) > S2(H

2
2 ) > 2n− 5

4 .

Combining the above arguments, we have

S2(G) < 2n− 5

4
< S2(H

2
2 ) < S2(H5) < S2(H1).

This completes the proof. �
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