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Abstract A connected graph G = (V, E) is called a quasi-tree graph if there exists a vertex
vo € V(G) such that G — vy is a tree. In this paper, we determine all quasi-tree graphs of order
n with the second largest signless Laplacian eigenvalue greater than or equal to n — 3. As an

application, we determine all quasi-tree graphs of order n with the sum of the two largest signless

Laplacian eigenvalues greater than to 2n — %.
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1. Introduction

Let G = (V, E) be a simple undirected graph with vertex set V(G) = {vo,v1,...,vp_1} and
edge set E = E(G). For a graph G, A(G) is its adjacency matrix and D(G) is the diagonal
matrix of its degrees. The matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix
of G. The eigenvalues of Q(G) are called the signless Laplacian eigenvalues of G, and denoted
by ¢1(G) > ¢2(G) > -+ > ¢n—1(G) > ¢»(G) > 0. The sum of the k largest signless Laplacian
eigenvalues of G is denoted by S (G).

The second largest signless Laplacian eigenvalue ¢2(G) of a graph G is well studied by sev-
eral authors. Cvetkovié and Simié¢ [1] proved that algebraic connectivity a(G) < ¢2(G) for a
non-complete connected graph of order n > 2. Cvetkovi¢ and Rowlinson et al. [2] gave some
conjectures involving algebraic connectivity, the largest signless Laplacian eigenvalue and the
second largest signless Laplacian eigenvalue of G. Das [3,4] proved the conjectures involving
second largest signless Laplacian eigenvalue of graphs.

For a graph G of order n > 2, Chen [5] proved that ¢2(G) < n — 2 and the equality holds
when G is the complete graph. Wang and Belardo et al. [6] gave a necessary condition on a
graph G for which the bound is reached. They raised the problem to characterize all graphs G
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of order n > 2 such that ¢2(G) = n — 2, and gave a partial answer to this question. For the
class of bipartite graphs, Aochiche and Hansen et al. [7] gave a complete characterization for
¢2(G) = n — 2. Lima and Nikiforov [8] gave a necessary and sufficient condition for the equality

¢i(G) =n —2 (2 < i <n). For more results, one may refer to [1,2] and references therein.

A connected graph G = (V, E) is called a quasi-tree graph, if there exists a vertex vg € V(G)
such that G — vy is a tree. Let Q, denote the set of all quasi-tree graphs on n vertices with
vo € V(G) such that G — vg is a tree, and HF (i = 2,4,6,...,14) and H; (i = 1,3,5,...,15,16)
denote the quasi-tree graphs on n vertices shown in Figure 1. In this paper, we prove the following

theorem.

Theorem 1.1 Let n > 47 and G € Q,, \ {H1, Hs, Hs5, H3}. Then

41 5
QQ(G) <n-— T6 < QQ(HQQ) < QQ(H5) <n-— 5 < QQ(Hg) = q2(H1) =n-—2.

Vo Vo
R
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Hs
Vo Vo Vo Vo
U2 Up—1 V2 Un—1 V2 Up—1 V2 Un—1
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Hy HE (4<k<n-1) Hy HE, (4<k<n-—1)
Vo ) Vo
U3
V2 V2 Vn—1 V2 Un—1
V1 V1 v1
H13 H{Z (4§k’§n—1) H15 H16

Figure 1 Graphs H; (i =1,3,5,...,15,16), HF (i = 2,4,6,...,14)
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For any graph G with n vertices, Ashraf et al. [9] conjectured that Si(G) < e(G) + (]Hz'l) for
k=1,...,n, and proved the conjecture for k = 2 for any graph and for all k for regular graphs.

As an application of Theorem 1.1, we prove the following theorem.
Theorem 1.2 Let n > 47 and G € Q,, \ {Hi, Hs, H3}. Then
5
SQ(G) < 2n — 1 < SQ(HQQ) < SQ(H5) < SQ(Hl).

The rest of the paper is organized as follows. In Section 2, we recall some basic notions and
lemmas used further, and prove a new lemma. In Section 3, we give a proof of Theorem 1.1. In

Section 4, we give a proof of Theorem 1.2.

2. Preliminaries

Let G — u denote the graph that arises from a graph G by deleting the vertex u € V(G)
and all the edges incident with u. The join of two disjoint graphs G and H, denoted by G V H,
is the graph obtained by joining each vertex of G to each vertex of H. For v € V(G), Ng(v)
(or N(v)) denotes the neighborhood of v in G, and d(v) = dg(v) = |[Ng(v)| denotes the degree
of vertex v in G. We denote by A(G) the maximum degree of the vertices of G. The matrix
L(G) = D(G) — A(G) is called the Laplacian matrix of G. The largest eigenvalue of L(G) is
called the Laplacian spectral radius of G, denoted by p1(G). Two distinct edges in a graph G
are independent if they do not have a common end vertex in G. A set of pairwise independent
edges of GG is called a matching in G, while a matching of maximum cardinality is a maximum
matching in G. The matching number S(G) of G is the cardinality of a maximum matching of
G. The signless Laplacian characteristic polynomial of a graph G is equal to det(zI, — Q(G)),
denoted by ¢(G,z). Let I, be the p x p identity matrix and J, ; be the p x ¢ matrix in which
every entry is 1, or simply J, if p = ¢. Let M be a matrix of order n, o(M) be the spectrum of
the matrix M.

Definition 2.1 ([10]) Let M be a real matrix of order n described in the following block form

My - My
: A (2.1)
Mtl e Mtt
where the diagonal blocks M;; are n; X n; matrices for any i € {1,2,...,t} andn =ny+---+mns.

For any i,j € {1,2,...,t}, let b;; denote the average row sum of M,
entries in M;; divided by the number of rows. Then B(M) = (b;;) (simply by B) is called the

quotient matrix of M.

i.e., b;; is the sum of all

Lemma 2.2 ([11]) Let M = (m;j)nxn be defined as (2.1), and for any i,j € {1,2,...,t},
Mi; = liJn, + piln,, Mij = 8ijJn, n,;, for i # j, where l;, p;, si; are real numbers, B = B(M) be
the quotient matrix of M. Then

o(M)=coB)U{p" N i=12.. .,
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[ni 71]

where p means that p; is an eigenvalue with multiplicity n; — 1.

Lemma 2.3 ([12]) Suppose G is a connected graph with n > 3 vertices. Then
¢1(G) < max{d(v) + m(v) |v € V(G) and d(v) > 1},

and equality holds if and only if G is either a regular graph or a semiregular bipartite graph,
where m(v) =3, ¢ n(,) d(u)/d(v).

Lemma 2.4 ([13]) Let G be a graph of order n and v € V(G). Then
Gi+1(G) =1 < ¢:i(G —v) < 4:(G)

fori=1,2,...,n— 1, where the right equality holds if and only if v is an isolated vertex.
Let T} (2m < n + 1) denote the tree of order n obtained from the star K1 ,,—,, by joining

m — 1 pendant vertices of K; ,_,, to m — 1 isolated vertices by m — 1 edges.

Lemma 2.5 ([14]) Let T be a tree on n vertices with matching number 3. Then p;(T) < r,

where r is the maximum root of the equation
23— (n—B+4)2*+ (3n—-36+4)x—n=0.
The equality holds if and only if T = Tj.

Lemma 2.6 ([15]) If G is connected, then 1 (G) < q1(G), where the equality holds if and only
if G is bipartite.
Lemma 2.7 ([3]) Let G be a connected graph with second maximum degree ds(G). Then
da(G) =1 < ¢2(G) <n—2.
Lemma 2.8 ([2]) Let G be a graph with order n and e € E(G). Then
01(G) 2 (G —e) 2 (G) 2 @2(G—e) =+ = qu(G) 2 qn(G —€) 2 0.
Lemma 2.9 ([16]) Letn >3, G € Q,,. Then

d(vo) +n—3 d(vo) +n—3
—— —AG) P+ L

Lemma 2.10 ([17]) Let G be a connected graph and ¢1(G) be the spectral radius of Q(G). Let
u, v be two vertices of G and d(v) be the degree of vertex v. Suppose vy,vs,...,vs (1 <s<d(v))

¢1(G) < max{2 + JA(G) +

are some vertices of Ng(v)\ Ng(u) and x = (x1, 22, ..., x,)"T is the Perron vector of Q(G), where
x; corresponds to the vertex v; (1 < < n). Let G* be the graph obtained from G by deleting
the edges (v,v;) and adding the edges (u,v;) (1 <i <s). If &, > x,, then ¢1(G) < ¢1(G*).

Lemma 2.11 Let n > 11 and T* denote the trees of order n — 1 shown in Figure 2. Then
O(K1VTF z) =(x —2)" {2 — 2(n + 2)2* + [n* + (k +6)n — k* + k + 6)2®—
[(k+2)n? — (k* — 2k — 12)n — k* + k — 6]2% + [(k + 2)n? — (k* — 9k — 2)n—
8k? + 8k — 16]x — 4(3k — 2)n + 12k* — 12k + 8}.
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Proof It is easy to see that

n—1 1 1 11 1 1 11 1
1 k 1 1 1 1 0 0 O 0
1 1 n—k+1 0 O 01 1 1 1
1 1 0 2 0 0 0 00O 0
1 1 0 0 2 00 0 O 0
ooy TEY = : : Do S :
QUL VT 11 0 00 2.0 0 0 0
1 0 1 0 0 0 2 00 0
1 0 1 0 0 0 0 20 0
1 0 1 0 0 0 0 0 2 0
1 0 1 0 0 0 0 0 O 2
It can be written as follows:
(n—2)J1+ 1 J1 Ji Jie  Jin—k-1
Jl le J1 Jl,k 0
QK vTF) = Ji Ji (n—k+1J. 0 Jiag
Jr—2,1 Jr—2,1 0 2I;_» 0
Jn—k—11 0 Jn—k-1,1 0 20—k
Let B(K; V T*) be the corresponding quotient matrix of Q(K; V T*). Then
n—1 1 1 k—2 n—k-1
1 k 1 k—2 0
B(K,VvTF) = 1 1 n—k+1 0 n—-k-1
1 1 0 2 0
1 0 1 0 2
By Lemma 2.2, we have
o(Q(K1 VTF)) = o(B(K, vTF)u {20, (2.2)

By direct computing, we know the characteristic polynomial of B(K; V T*) is as follows:
o(x) =2° —2(n +2)z* + [+ (K +6)n — k> + k+6)a® — [(k +2)n? — (k* — 2k—
12)n — k? + k — 6]z + [(k + 2)n* — (k* — 9k — 2)n — 8k* + 8k — 16]z—
4(3k — 2)n + 12k? — 12k + 8. (2.3)

Combining (2.2) and (2.3), we have ¢(K; V TF z) = (z — 2)"P¢p(x). O

3. The proof of Theorem 1.1

In this section, we determine all quasi-tree graphs of order n with the second largest signless
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Laplacian eigenvalue greater than or equal to n — 3.
Lemma 3.1 Letn > 11 and G € Q,. If A(G —vy) < n — 6, then ¢2(G) <n — 3.

Proof For the tree G — vg and any u € V(G — vp) with d(u) > 1, we have

ZUEN(u) d(v) u n—2
aw S+

-2 -2
L,A(G—voﬂ—ni

d(u) + m(u) =d(u) +

<max{2+

n—2 6+n—2
2 " n—=6

<max{2+

=n—5+ 4 <n-—4.
n—=6

By Lemma 2.3, we have ¢; (G — vg) < n — 4. By Lemma 2.4, we have

©(G) <@a(G—vw)+l<n—4+1=n-3.
This completes the proof.
Lemma 3.2 Letn > 11 and G € Q,. If 5(G — vy) > 5, then ¢2(G) < n — 3.
Proof Let 8= 8(G —vy) and r = py (Tﬁnfl). By Lemma 2.5, we have p; (G — vg) < r and

P —(n—=B+3)r*+Bn-33+1)r—n+1=0.

It follows that r > 3 and

3+ (n+3)r2—Bn+)r+n-1
r2 —3r ’

ﬁ:
If 5> 5, then
P —(n—=2)r*+Bn—14)r —n+1<0.

Let f(z) =23 — (n — 2)2® + (3n — 14)z — n + 1. Noting that f'(z) > 0 for z € [n — 4, +0), we
know that f(z) is strictly increasing on = € [n — 4, +00). Since f(n —4) = n? — 11n +25 > 0 for
n > 11, it follows that r < n — 4. By Lemma 2.6, we have

q1(G —vg) = 1 (G —vg) <r <mn—4.
By Lemma 2.4, we have
@G <qa(G—vw)+l<n—-—4+1=n-3.
This completes the proof. [

Lemma 3.3 Letn >47 and G € Q,. If 2 < (G —vy) <4, A(G —wvg) =n—>5 or n— 4, then
g2(G) < n—3.

Proof Let T%, T™*, T|, T, and T3 denote the trees of order n — 1 shown in Figure 2, where

r = s means d(ve) = 2 for the tree T"°.
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Figure 2 Trees T*, T™*, T1, Tu, T3

Next, we distinguish five cases to show ¢2(G) < n — 3.

Case 1. B(G —vy) = 2 and A(G —vg) = n — 4. Then G — vy must be T* or T%* shown in
Figure 2. By Lemma 2.8, we have ¢2(G) < q2(K1 V T?) or q2(G) < qo(Ky vV TH?).

By Lemma 2.11, we have ¢(K; VT4, z) = (x — 2)"75 fi(z), where

fi(x) = 2° —2(n+2)2* + (n? +10n — 6)2 — 2(3n? +2n — 9)2? + (6n? 4 22n — 112)2 — 40n + 152.

By Lemma 2.7, we have go(K; VT?) € [n—4,n—2]. Therefore, go(K; VT?) is the second largest
root of the polynomial f;(z). Taking the derivative of f;(z) with respect to x, we know that
fi(x) < 0 on the interval [n — 4,n — 2]. Therefore, f1(z) is strictly decreasing on [n —4,n — 2].
Since fi(n —4) = (n —24)(4n? + 24n + 992) + 23032 > 0 and fi(n —3) = —(n —5)(n — 7)?

it follows that go(K; vV T%) < n — 3. It follows that g2(G) < ga(K1 VT*) <n — 3.

By a similar reasoning as the proof of Lemma 2.11, we can obtain that ¢(T** x) = (z —
2)"=7 fo(z), where

fa(z) =27 — 2(n 4+ 4)2® + (n® +18n + 15)2° — (10n? + 54n — 26)2* +
(35n2 + 81n — 207)x> — (51n? + 143n — 654)z>+
(26n? + 250n — 1016)x — 160n + 560.

By Lemma 2.7, we have qo(K; V T**) € [n — 4,n — 2]. Therefore, qo(K; V T**) is the
second largest root of the polynomial fs(x). Taking the derivative of fo(x) with respect to z,
we know that f(x) < 0 on the interval [n — 4,n — 2]. Therefore, fy(z) is strictly decreasing
on the interval [n — 4,n — 2]. Since fa(n —4) = 4(n — 5)(n? — 13n + 41)(n — 6)> > 0 and
foln—3) = —(n—5)2[(n— 35)(n®+ 160+ 675) +23404] < 0, it follows that go (K1 VT*%) < n—3.
It follows that ¢2(G) < qo(K; VT**) < n — 3.

Case 2. B(G —vg) =2 and A(G — vg) = n — 5. Then G — vo must be T° or T shown in
Figure 2. By Lemma 2.8, we have q2(G) < go(K1 V T?) or ¢2(G) < q2( K7 V T).

By a similar reasoning as the proof of Lemma 2.11, we can obtain that ¢(K; V T° 2) =
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(v —2)"° f3(x), where

fa(z) =2° — 2(n 4 2)2t + (n?® + 11n — 14)2® — (Tn* — 3n — 26)2%+
(Tn? 4 22n — 176)x — 52n + 248.

By Lemma 2.7, we have g2 (K7 VT?®) € [n—5,n—2]. Therefore, q2(K; VT?) is the second largest
root of the polynomial fs(z). Taking the derivative of fs(z) with respect to x, we know that
f4(x) < 0 on the interval [n—5,n—2]. Therefore, f5(z) is strictly decreasing on [n—>5,n—2]. Since
f3(n—5) = (n—22)(6n%+927) + 18297 and f3(n —3) = —(n—22)(4n? +16n+775) — 16229 < 0,
it follows that g (K7 V T%) < n — 3. It follows that ¢2(G) < go(K; VT?) <n — 3.

By a similar reasoning as the proof of Lemma 2.11, we can obtain that ¢(K; V T55 1) =
(x —2)" 7 f4(z), where

fa(z) =27 —2(n 4+ 4)2® + (n® +19n + 8)x° — (11n?* 4 53n — 68)x* +
(41n? 4 58n — 340)2> — (62n? 4 120n — 1032)2*+
(32n? 4 296n — 1632)x — 208n + 896.

By Lemma 2.7, we have q2(K; V T%%) € [n — 5,n — 2]. Therefore, go(K; V T?) is the second
largest root of the polynomial f4(x). Taking the derivative of fy(x) with respect to x, we know
that fi(x) < 0 on [n —5,n — 2]. Therefore, f4(x) is strictly decreasing on [n — 5,n — 2]. Since
fi(n —5) = (n— 7)[(n — 41)(6n® + 72n? + 4821n + 188837) + 7757793] > 0 and fs(n — 3) =
—(n—>5)[(n—41)(4n3+72n%+3733n+150155)+6160316] < 0, it follows that go (K1 VT>®) < n—3.
Therefore, ¢2(G) < q2(K1 V T%%) < n — 3.

Case 3. B(G —wvp) = 3 and A(G —vg) = n—4. Then G — vy must be 74" =2 shown in Figure
2. By Lemma 2.8, we have q2(G) < qo(K; VTH"72).

By a similar reasoning as the proof of Lemma 2.11, we have ¢(K; V TH" 2 2) = (v —
2)"~7 f5(x), where

f5(z) =27 — 2(n +4)2% + (n® + 18n + 15)2® — (10n? + 54n — 26)x*+
(35n2 + 80n — 201)x3 — (50n2 + 156n — 696)z>+
(2512 + 280n — 1160)z — 180n + 680.

By Lemma 2.7, we have go(K; VT*"~2) € [n—4,n—2]. Therefore, qo(K;VT4"~2) is the second
largest root of the polynomial f5(z). Taking the derivative of f5(x) with respect to x, we know
that ff(z) < 0on [n—4,n—2]. Therefore, f5(x) is strictly decreasing on « € [n—4,n—2]. Since
fs(n—4) = 4(n—6)(n2—11n+29)(n?—13n+41) > 0 and f5(n—3) = —(n—"7)(n?—11n+29)(n?—
11n+31) < 0, it follows that go (K1 VT*"~2) < n—3. Therefore, q2(G) < go (K1 VT*"~2) < n—3.

Case 4. B(G —vg) = 3 and A(G —vy) = n — 5. Then G — vy € {T45, T3, Ty, Ty},
where T45 T4n=3 Ty T, are shown in Figure 2. By Lemma 2.8, q2(G) < go(K7 V T*%) or
02(G) < qo(EK1 VT 7?) or go(G) < q2(K1 V Th) or go(G) < q2(K1 V T).

By a similar reasoning as the proof of Lemma 2.11, we have g2 (K1 V T49), qo (K VvV T4"73),
g2(K1 V T1), q2(K7 V Ty) are the second largest root of the following polynomials f;(x) (i =
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6,7,8,9), respectively,

fo(z) =27 — 2(n 4+ 4)z5 + (n® + 19n + 8)z® — (11n2 + 53n — 68)z* + (41n? + 57n—
334)23 — (61n? + 133n — 1074)2? + (31n? 4 326n — 1776)x — 228n + 1016,
fr(x) =27 — 2(n 4+ 4)2° + (n® + 19n + 8)z® — (11n? + 53n — 68)2* 4 (41n* + 56n—
326)x3 — (60n? + 148n — 1130)2? + (30n? 4 358n — 1968)x — 248n + 1176,
fs(x) =2® — 2(n 4+ 5)2” + (n® + 23n + 25)2°% — (13n? + 93n — 50)2° + (64n> + 170n—
468)z* — (148n? + 260n — 1768)2® + (160n? + 649n — 4167)x? — (65n% + 977Tn—
5000)x + 504n — 2248,
fo(z) =2% — 2(n 4 3)2® + (n® + 15n — 3)z* — (9n? + 25n — 62)2°+
(24n2 + 11n — 215)2% — (17n? + 105n — 632)z + 120n — 520.

By Lemma 2.7, we have ga(K; V T%%) € [n — 5,n — 2]. Noting that n > 41, by derivative
we know that f{(z) < 0 for € [n — 5,n — 2]. Therefore, fs(x) is strictly decreasing on = €
[n—5,n—2]. Since fe(n—>5) = (n—41)(6n*+30n3+4314n2 +155034n +6433145) +263651816 > 0
and fe(n —3) = —(n — 7)[(n — 41)(4n>® + 80n? + 3938n + 159180) + 6529319] < 0, it follows
that qo(Ky VT*%) < n—3. If dg(vg) < n—1 and G — vy = T*5, by Lemma 2.8, we have
q2(G) < qo(Ky VT*?) <n—3.

By Lemma 2.7, we have q2(K; VT*"=3) € [n — 5,n — 2]. Noting that n > 41, by derivative
we know that f7(z) < 0 for z € [n — 5,n — 2]. Therefore, f7(z) is strictly decreasing on
x € [n—>5,n—2]. Since fr(n—>5) = (n—"7)[(n—41)(6n>+ 72n% +4815n + 188689) + 7751336] > 0
and f7(n—3) = —(n—41)(4n* +52n3 4 3383n2 + 131728n + 5420269) — 222209432 < 0, it follows
that go (K1 VT4 73) <n—3. If dg(vg) <n —1and G — vy = T*" 3, by Lemma 2.8, we have
02(G) < (K VT4 3) <n —3.

By Lemma 2.7, we have ¢2 (K71 VT}) € [n—5,n—2]. Noting that n > 47, by derivative we know
that fi(x) <0 for x € [n — 5,n — 2]. Therefore, fg(x) is strictly decreasing on x € [n —5,n — 2.
Since fs(n —5) = (n— 7)[(n — 47)(6n* + 66n® + 6192n2 + 269066n + 12723617) + 597901238] > 0
and fs(n—3) = —(n — 7)[(n — 47)(4n* + 8473 + 5030n2 + 230784n + 10861453) + 510473164] < 0,
it follows that ¢g2(K1 VTy) <n—3. If dg(vg) <n—1and G — vy = T3, by Lemma 2.8, we have
02(G) < q2(K1 VTy) <n—3.

By Lemma 2.7, we have ¢2(K; V T3) € [n — 5,n — 2]. Noting that n > 34, by derivative
we know that fi(z) < 0 for z € [n — 5,n — 2]. Therefore, fo(z) is strictly decreasing on
x € [n—5,n—2]. Since fo(n —5) = (n — 34)(6n3 + 30n2 + 2895n + 89532) + 3059783 > 0 and
fo(n —3) = —(n — 7)(2n — 11)(2n? — 21n + 53) < 0, it follows that g2(K; V To) < n — 3. If
de(vg) <n—1and G — vy = Ty, by Lemma 2.8, we have ¢2(G) < ¢2(K; VT3) <n — 3.

Case 5. (G —vp) =4 and A(G —vg) =n — 5. Then G — vg must be T3 shown in Figure 2.
It is easy to see that go (K7 V T3) is the second largest root of the following polynomial,

fro(x) =2° = 2(n + 1)z + (n? + Tn — 10)2® — (5n? — n — 20)x*+
(5n% 4+ 20n — 136)2 — 44n + 208.
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By Lemma 2.7, we have ¢o(K; V T3) € [n — 5,n — 2]. Noting that n > 27, by derivative
we know that fi,(z) < 0 for z € [n — 5,n — 2]. Therefore, fio(x) is strictly decreasing on
x € [n—5,n—2]. Since fio(n —5) = (n — 27)(6n? + 42n + 1929) + 50346 > 0 and fio(n — 3) =
—(n —27)(4n? + 44n + 1539) — 40892 < 0, it follows that go(K7 V T3) < n —3. If dg(vg) <n —1
and G — vg = T3, by Lemma 2.8, we have ¢2(G) < qo(K7 VT3) <n—3.

Combining the above arguments, we have ¢3(G) < n — 3. The proof is completed. O

Lemma 3.4 Letn>47 and G € Q,,. If A(G —vy) =n —2 orn — 3, then

(i) ¢2(G)<n—3forGe Q,\{H1,H3 Hs, H? Hs, H}, H;, H}, Hy, Hy1, Hy3, Hy5}, where
Hy,H2 H3, H3, Hs, H}, H7, H}, Hy, H11, H13, and Hys are shown in Figure 1;

(ii)) n—3<g(G) <n-— % for G € {H2, H§, H;, H, Hy, Hy1, Hi3, Hi5} with equality if
and only if G = Hy3 or His;

(iii) n— 3§ < @2(G) <n—3 for G € {H}, Hs};

(iv) q2(H1) = q2(Hs) =n — 2.
Proof In the case when A(G — vg) =n — 2, G — vy must be the K; ,,_9 and (G — vp)=1. It
follows that G' must be one of Hy, HY (2 < k <n —1), Hy; and H} (2 < k < n — 2) shown
in Figure 1. In the case when A(G — vg) = n — 3, G — vg must be the T3 shown in Figure
2 and (G — vg)=2. It follows that G must be one of H; (i = 5,7,9,11,13,15,16) and HF
(i =6,8,10,12,14) shown in Figure 1. By a similar reasoning as the proof of Lemma 2.11, we

have

(1) ¢(HY,z) =(x — )Yz —2)"*2[2% — (2n — k4 1)2® + (n® — nk + n)z—
dn + 4k + 4],
(2) ¢(HE, 2) =x(z — 1)*2(x = 2)"* 22 — 2n — k)2® + (n®> —kn+n — 2)a—
n? + kn +n),
(3) ¢(Hs,z) =(x — 2)"[2° — 2(n + 2)z* + (n? + 9In)z> — (5n% + In — 12)2*+
(5n% + 20n — 64)x — 28n + 80],
(4) ¢(HE 2) =(x — 1)* (@ — 2)"F1a® — (2n — k + 8)2* + (n? — kn + 13n—
5k +19)a® — (5n? — 5kn + 27n — 8k + 24)2” + (4n? — 4kn + 40n—
24k + 24)x — 24n + 24k — 24,
(5) ¢(Hy,x) =(x —2)"5[z® — 2(n + 1)z* + (n? + Tn — 9)2® — (5n2 — 5n — 6)z?+
(5n% — 10n — 4)2 — 8n + 24],
(6) p(HE,z) =(x — 1) 3(x — 2" *2[2® — (2n — k4 6)2* + (n® — kn + 11n—
4k 4 6)2® — (5n? — 5kn + 13n)2? + (4n® — 4kn + 12n — 4k + 4)z—
8n + 8k — 8,
(7) ¢(Hg,z) =(x —2)"°[2? — (n — 2)x +n — 4][2° — (n +4)2* + (3n + 8)x — 16],
(8) p(HEy, 2) =(x — 1)z —2)"*2[20 — (2n — k 4+ 6)2° + (n® — kn + 11n
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4k +10)2* — (5n% — 5kn + 23n — 6k — 2)2® + (Tn® — Tkn + 35n—
18k — 26)x? — (3n? — 3kn + 37n — 32k — 32)x + 16n — 16k — 16],
(9) ¢(Hyr,2) =(z —2)"°[2* — (n — 2)x +n — 4][z° — (n + 2)2* + (3n — 2)z — 4],

(10) ¢(HE,, 2) =(x — 1) 4z — 2" *2[2® — (2n — k 4+ 4)2® + (n® — kn + 9n — 3k—
Da* — (5n2 — 5kn + 9n + 2k — 16)2® + (Tn? — Tkn 4+ n + 5k — 15)2* —
(3n? — 3kn + 3n — 4k — 4)x + 4n — 4k — 4],

(11) ¢(His, ) =(x — 2)"°(z — n+ 3)[z* — (n+ 5)2® + (4n 4 10)z? — (2n + 20)z + 8],

(12) ¢(HEY,, 2) =(z — )4z — 2)"*2[2® — (2n — k4 6)2® + (n® — kn + 11n — 4k+
9)z* — (5n% — 5kn + 21n — 5k)2® 4 (6n® — 6kn + 32n — 17k — 11)2%—
(2n? — 2kn + 28n — 24k — 4)x + 8n — 8k],

(13) ¢(His,2) =2(x — 2)" " °(x — n+ 3)[2> — (n + 3)2” + (4n — 2)2 — 2n),

(14) ¢(Hyg,z) =(x — 2)"°[2° — 2nz* + (n? + 3n — 6)2® — (3n® — 3n — 12)2%+
(n® + 10n — 48)x — 4n + 16].

By a similar reasoning as the proof of Lemma 3.3, we can obtain the results as follows:

5 41
n— = >q(H3)>n—— >n—3>q(HY) for k> 3;

2 16
41
"= 16 >qo(H?) >n —3 > qo(HY) for k> 3;
) 41
-2 H - = —3:
n 2>QQ( 5)>n 16>7?, 3;
41
n= 16 >qo(Hg) >n —3 > qo(Hy) for k > 5;
41
"~ 16 >qo(Hr) >n —3;
41
n— g >qo(Hg) >n—3 > qu(HY) for k > 5;
41
n— TG >QQ(H9) = qQ(Hll) >n—3;

02(Hi3) = q2(Hi15) = n = 3 q2(Hfy) < q2(Hfy) <n—3 for k > 4; go(HY,) <n—3for k > 4;
g2(H16) < n — 3. Combining the above arguments, we have the proof of (i), (ii) and (iii).

By a similar reasoning as the proof of Lemma 2.11, we have

S(Hy,z) =(x —n+2)(z —2)"3[2% — (n+2)x + 4],
é(Hs,x) =z(z — 2)"3(x —n)(z —n + 2).

Thus ¢2(Hy) = g2(Hs) = n — 2. This completes the proof. O

Proof of Theorem 1.1 For G € Q, \ {Hy,H2, Hy, H?, Hs, H}, H;, Hg, Hg, Hy1, Hy3, Hys},
by Lemmas 3.1-3.4, we have q2(G) < n — 3. For G € {H?, H§, H;, H}, Hg, H11, Hi3, Hy5}, by
Lemma 3.4, we have n — 3 < ¢2(G) < n — ‘1% and the equality holds if and only if G = Hi3 or

Hys. For G € {H3, Hs}, by Lemma 3.4, we have n — % < q@(G)<n- g For G = H; or Hj,
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we have ¢3(H1) = q2(Hs) = n — 2.
Now we give the ordering of the graphs in {H3, Hs} by the second largest Q-eigenvalue. By

the proof of Lemma 3.4, we have

G(H3, x) = (x—2)" " f(x), ¢(Hs x)=(x—2)" "g(x),
where

f(x) =2° —2(n+ Dz* + (n® + 5n — 1)z® — (3n? + 5n — 14)2°+
(2n? 4 10n — 36)x — 8n + 24.

g(x) =2° — 2(n + 2)2* + (n? + In)a® — (5n* + 9In — 12)2%+
(5n2 + 20n — 64)z — 28n + 80.

Obviously, q2(H2) and g¢o(Hs) are the second largest root of f(x) and g(x), respectively. Let
Y(z) = f(z) — g(z) = 22* — (4n+ 1)2® + (2n? + 4n + 2)z? — (3n® + 10n — 28)z + 20n — 56, and
a denote the second largest root of ¢(z). Since ¥(0) = 2n — 56 > 0, (1) = —(n — 5)? < 0,
Y(n—3) = 4n?=33n+67 > 0, p(n—3) = —1(n*—27n+79) < 0 and ¢(n+2) = 4n®+72n+32 > 0
for n > 47, it follows that n —3 < a < n — %
It is easy to see that f(z) = 1(22 — 3)¢(z) + r(z) and g(z) = (22 — 7)¢(x) + r(z), where
r(z) = —4a® + (3n+ 3)a? — (3n® + L2n — 13)z + 7n — 18. By derivative, we know that r(z) is
strictly decreasing on [n — 3,n — 2]. Since
5 1
2’ 32
for n > 47, it follows that g2(H3), ¢2(Hs) € (a,n—3). Moreover, since ¢(z) is strictly decreasing

(8n% — 50n + 59) > 0

in the interval [n — 3,n — 2], it follows that ¥ (z) < ¥(a) = 0 when o < & < n — 2. This implies
that f(z) < g(z) when o <z < n— 2. Thus, g2(Hs) > q2(H3).
Combining the above arguments, we have
41 )
©(G)<n— 16 < q(H3) < qo(Hs) < n — 3 < q2(Hz) = qa(Hy) =n—2.
The proof is completed. [

4. The proof of Theorem 1.2

We consider the following three cases.
Case 1. A(G) < n —2. We will show that S3(G) < 2n — 2. By Lemma 2.9, we have

d(vg) +n —3 d(vg) +n—3
01(G) <max{2 + (“0)+,A(G) + (”O)A(GT;} +1
n—2+n-—3 n—2+n-3
< 24— A _ 1
<max{2 + 5 ,A(G) + AG) }+
2n —5 2n—5
< - .
<max{2 + 5N 2+ n_2}+1<n+1

By Theorem 1.1, we have ¢2(G) < n — g except for Hz. Thus S3(G) < 2n — % except for Hs.
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For Hjs, by the proof of Lemma 3.4, we have
H(Hz, ) = z(x —2)"3(z —n)(z —n + 2).

It follows that So(Hs) =n+n—2=2n—-2<2n— 3.

Case 2. There exists v € V(G — vg) such that A(v) = n — 1. Then G — vy = K; 2 and
G = Hy or H} (2 <k <n—1). We will show that S3(G) < 2n — 2 < So(H3) < S3(H,) for
G € 9, \ {Hi, H3}. For k > 4, by Theorem 1.1 and Lemma 2.8, we have

@2(Hy) > q2(H3) > n—3 > q2(H3) > q2(HS);

by Lemma 2.8, we have q1(H1) > q1(H3) > qi(H3) > q1(HY). These imply that Sa(Hp) >
SQ(HQQ) > SQ(HS) > SQ(H;) for k > 4.
By the proof of Lemma 3.4, we know that q;(H2) and q2(H3) are the two largest roots of

the polynomial

h(z) = 2% — (2n — 1)z + (n® — n)z — 4n + 12.

Let ¢ be the other root of h(z). By derivative, we know that A'(z) > 0 for z € [0, ]. Thus h(z) is
strictly increasing in the interval [0, 1]. Since h(0) = —4n+12 < 0 and k(1) = 1n?—3n4+T3 > 0
for n > 47, it follows that ¢ € (0, %) By the Vieta Theorem, we have
2 2 2 5
S2(Hy) = qi(H3) + q2(H3) =2n—1—q > 2n — 1T
By the proof of Lemma 3.4, we know that ¢; (H3) and go(H3) are the two largest roots of the
polynomial

p(x) = 2® — (2n — 2)2% + (n? — 2n)z — 4n + 16.
Let ¢’ be the other root of p(x). Since ¢’ > 0, by the Vieta Theorem, we have
5
SQ(HS) = ql(H23) +q2(H§’) =2n—2— q/ <2n—-2<2n-— Z

From the above arguments, we have S3(G) < 2n — 2 < Sy(H3) < Sa(Hy) for G € Q, \
{H, H3}.

Case 3. d(vg) =n — 1. Then G = K; VT, where T is a tree of order n — 1. We will show
S5(G) < 2n— 2 < S3(Hs) < So(Hy) for G € Q, \ {H1, Hs}. Employing Lemma 2.10 to vertices
vy and vy of Hy, we have ¢1(Hs) < ¢1(Hy). For G € Q, \ {H1, H5}, employing Lemma 2.10
repeatedly, we can prove ¢1(G) < ¢1(Hs) < ¢1(H1). By Theorem 1.1, we have ¢2(G) <n —3 <
q2(Hs) < q2(Hy) for G € Q, \ {H1,Hs}. These imply that S2(G) < Sa(Hs) < Sa(H;) for
Ge 9, \{H1, Hs}.

Now we show that S3(G) < 2n — 2 for G € Q,, \ {H1, Hs}. By the proof of Lemma 3.4, we
have ¢(Hs,x) = (x — 2)" Su(x), where

u(z) =2° — 2(n + 2)z* + (n% + 9n)z® — (5n% + 9n — 12)22+
(5n% 4+ 20n — 64)x — 28n + 80.

It is easy to see that ¢ (Hs) and go(Hs) are the two largest roots of u(z).
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By derivative, we know that u(z) is strictly increasing on [n,+00). Since u(n) = —4n(n —
47)(n+39) —7424n+80 < 0 and u(n+ 1) = 051 [n(n—47)(832n+58768) +2708908n — 16745] > 0

for n > 47, it follows that ¢i(Hs) < n+ %. Therefore
7 5
SQ(G) ZQ1(G)+QQ(G) <’I’L+Z+TL—3< 2n—1.

Next we show Sa(Hs) > Sa(H3) > 2n — 3. From the proof of Theorem 1.1, we know that

q1(H3) and g1 (Hs) are the largest roots of f(z) and g(x), respectively. By a similar reasoning
as the proof of Theorem 1.1, we have q1(Hs) > q1(H3).
By Theorem 1.1, we have g3(Hs) > q2(H3). Thus S2(Hs) > So(H3) > 2n — 2.

Combining the above arguments, we have
5
SQ(G) < 2n— Z < SQ(H%) < SQ(H5) < SQ(Hl)

This completes the proof. O
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