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1. Introduction

Questions concerning the Ulam stability of group homomorphisms were first proposed by

Ulam [1] in 1940. a partial solution to the Ulam stability for additive mappings in Banach

spaces was given by Hyers [2]. Several years later, Rassias [3] presented a generalization to the

results of Hyers by considering an unbounded Cauchy difference. Since then, the Ulam stability

of various types of functional equations has received extensive attention and has resulted in many

systematic results in recent years.

In 1993, the Ulam stability of differential equations was first studied by Obloza [4]. Soon after,

Alsina and Ger [5] showed that the differential equation y′ = y is Hyers-Ulam stable on any real

interval. Subsequently, Miura and Takahasi et al. [6–8] deeply and systematically investigated

the Ulam stability problem of the differential equation y = λy in various abstract spaces. As of

now, many interesting and systematic results related to the Ulam stability of different types of

differential equations, especially linear differential equations, have been established by various

authors. For more details, please refer to [9–17] and the references therein.

In 2005, Popa [18] initiated the study of the Ulam stability problem of difference equa-

tions and proved the Hyers-Ulam-Rassias stability of the first order linear difference equation

xk+1 = akxk + bk in a Banach space. Meantime, Popa [19] further investigated the Hyers-Ulam

stability of higher order linear difference equations with constant coefficients. The results showed

that the Ulam stability of a linear difference equation with constant coefficients depends strongly

on the roots of the corresponding characteristic equation. Several examples indicated that the
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difference equation is not Hyers-Ulam stable if the characteristic equation admits a root with

modulus equal to 1. For this kind of problem, Brzdȩk et al. [20] deeply studied the nonstability

of linear difference equations with constant coefficients. Hereafter, Brzdȩk et al. [21] also investi-

gated the Ulam stability problem of nonlinear difference equation xk+1 = ak(xk)+ bk in an Abel

group with an invariant metric. Afterwards, Brzdȩk et al. [22] proved the Hyers-Ulam stability

of linear difference equations with constant coefficients in a normed space. In 2017, Brzdȩk and

Wójcik [23] obtained the Ulam stability of two kinds of difference equations in a metric space,

which can be regarded as the most general result of the Ulam stability of difference equations

so far. In addition, Jung [24] established the Hyers-Ulam stability of linear homogeneous matrix

difference equations of first order. Soon after, Jung and Nam [25] further considered the Hyers-

Ulam stability of the Pielou logistic difference equation. Recently, Onitsuka [26] studied the effect

of stepsize on the HUS constant of linear homogenous difference equations of first order from a

different perspective. Using the similar method, Onitsuka [27] considered the Hyers-Ulam sta-

bility and the best HUS constant of first order nonhomogeneous linear difference equations with

constant stepsize. By using the z-transform method, Shen [28] established the Ulam stability of

linear difference equations with constant coefficients, which can be viewed as an important com-

plement to the existing results associated with the Ulam stability of linear difference equations

with constant coefficients.

In 1988, Hilger [29] introduced the notion of time scale in order to unify continuous and

discrete analysis. Correspondingly, the time scale calculus provides a unified framework for the

study of differential equations and difference equations. Then, the theory of dynamic equation-

s on time scales has gradually formed and developed in the past two decades, which can be

regarded as a unification and extension of the theory of differential equations and difference

equations. In 2011, Hamza and Yaseen [30] studied the Hyers-Ulam stability of abstract first

order linear dynamic equations on time scales. Afterwards, Anderson et al. [31] established the

Hyers-Ulam stability of second order nonhomogeneous linear dynamic equations on time scales.

In 2013, András and Mészáros [32] studied the Hyers-Ulam stability of some linear, nonlinear

dynamic equations and integral equations on time scales by using direct and operational meth-

ods. Meantime, they proposed a unified approach to the Ulam stability problem based on the

theory of Picard operators. In 2014, Hamza and Yaseen [33] further investigated the Hyers-Ulam

stability of abstract second order linear dynamic equations on time scales. At the same time,

Anderson [34] also established the Hyers-Ulam stability of higher-order Cauchy-Euler dynamic

equations on time scales. In 2017, Shen [35] considered the Ulam stability of first order linear

dynamic equations on finite time scales by using the integrating factor method. Furthermore,

Shen and He [36] also established the general solution and Ulam stability of inhomogeneous

Cauchy-Euler dynamic equations on time scales. Lately, Anderson and Onitsuka [37] studied the

Hyers-Ulam stability of certain first order linear dynamic equations with constant coefficients

on time scales. Especially, they find the minimum HUS constant for certain parameter values

in relation to the graininess of the time scale. Moreover, they clarified the Hyers-Ulam stability

of first order linear dynamic equations with constant coefficients on the time scale, in which
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the time scale involves two altering step size [38]. Meantime, several problems related to the

minimum HUS constant are also discussed. By using the variation of parameters, the aim of

this paper is to establish the general solution and study the Ulam stability of second order linear

dynamic equations with constant and variable coefficients on time scales.

2. Preliminaries

For the sake of completeness, in this section, we will review some basic concepts and funda-

mental results associated with the time scale which are derived from Refs. [39, 40].

Throughout this paper, let R, R+ and Z denote the set of all real numbers, the set of all

nonnegative real numbers and the set of all integers, respectively. A time scale T is an arbitrary

nonempty closed subset of R. Obviously, R and Z are two typical examples of time scales.

Let T be a time scale. For t ∈ T, the forward jump operator σ : T → T and the backward

jump operator ρ : T → T can be defined, respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}

for all t ∈ T, where we put inf ∅ = supT and sup ∅ = inf T. A point t ∈ T is called left-scattered

and right-scattered if ρ(t) < t and σ(t) > t, respectively. Also, if t > inf T and ρ(t) = t, then

t is said to be left-dense, and if t < supT and σ(t) = t, then t is said to be right-dense. The

graininess function µ : T → R+ is defined by µ(t) := σ(t) − t. To match the differentiability of

functions defined on the time scale T, the set Tκ is introduced. Specifically, Tκ = T \ {m} if T
has a left-scattered maximum m. Otherwise, Tκ = T. Furthermore, Tκ2

can be defined similarly.

In addition, if f : T → R is a function, then the function fσ : T → R is defined by

fσ(t) = f(σ(t))

for all t ∈ T, i.e., fσ = f ◦ σ.
A function f : T → R is said to be ∆-differentiable (shortly, differentiable) at t ∈ Tκ provided

there exists f∆(t) with the property that given any ε > 0 there is a neighborhood U of t such

that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . Moreover, the function f is said to be (∆-)differentiable on Tκ provided f∆(t)

exists for all t ∈ Tκ. Accordingly, we say that f is twice (∆-)differentiable on Tκ2

provided f∆(t)

is (∆-)differentiable on Tκ2

. Meantime, the functions f∆ : Tκ → R and f∆∆ : Tκ2 → R are

called the (∆-)derivative and second order (∆-)derivative of f .

A function f : T → R is said to be rd-continuous provided it is continuous at right-dense

points in T and its left-sided limit exists (finite) at left-dense points in T. The set of all rd-

continuous functions f : T → R is denoted by Crd = Crd(T,R). Moreover, we denote by

C1
rd = C1

rd(T,R) (C2
rd = C2

rd(T,R)) the set of functions f : T → R that are (twice) differentiable

and whose (second order) derivative is rd-continuous. The following result is useful in this paper.

Theorem 2.1 ([39]) If f, g : T → R are differentiable on Tκ, then
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(i) f(σ(t)) = f(t) + µ(t)f∆(t);

(ii) (fg)∆(t) = f∆(t)g(σ(t)) + f(t)g∆(t).

For an rd-continuous function f : T → R, the (Cauchy) integral can be defined by∫ t

t0

f(τ)∆τ = F (t)− F (t0),

where t, t0 ∈ T, F : T → R is an antiderivative of f : T → R, i.e., F∆(t) = f(t) for every t ∈ Tκ.

It is well known that every rd-continuous function possesses an antiderivative.

A function p : T → R is regressive provided 1 + µ(t)p(t) ̸= 0 for all t ∈ Tκ. We denote by

R = R(T,R) the set of all regressive and rd-continuous functions f : T → R.
For p, q ∈ R, the circle plus and circle minus are defined, respectively, by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t),

(p⊖ q)(t) := (p⊕ (⊖q))(t)

for all t ∈ Tκ, where (⊖p)(t) := − p(t)
1+µ(t)p(t) .

For p ∈ R, the exponential function is introduced by

ep(t, t0) := exp
(∫ t

t0

ξµ(τ)(p(τ))∆τ
)

for t, t0 ∈ T, where ξh(z) is the cylinder transformation. For more details on cylinder transfor-

mation, the readers can refer to the chapter 2 in [39]. The exponential function has the following

properties:

Theorem 2.2 ([39]) If p, q ∈ R, then

(i) ep(σ(t), t0) = (1 + µ(t)p(t))ep(t, t0);

(ii)
ep(t,t0)
eq(t,t0)

= ep⊖q(t, t0).

If p ∈ Crd and −µp2 ∈ R, then the hyperbolic functions coshp(t, t0) and sinhp(t, t0) can be

defined by

coshp(t, t0) =
ep(t, t0) + e−p(t, t0)

2
, sinhp(t, t0) =

ep(t, t0)− e−p(t, t0)

2

for t, t0 ∈ T. Analogously, if p ∈ Crd and µp2 ∈ R, then the trigonometric functions cosp(t, t0)

and sinp(t, t0) can be defined by

cosp(t, t0) =
eip(t, t0) + e−ip(t, t0)

2
, sinp(t, t0) =

eip(t, t0)− e−ip(t, t0)

2i

for t, t0 ∈ T. The derivatives of these functions have the following properties:

(i) cosh∆
p (t, t0) = p sinhp(t, t0) and sinh∆

p (t, t0) = p coshp(t, t0);

(ii) cos∆p (t, t0) = −p sinp(t, t0) and sin∆p (t, t0) = p cosp(t, t0).

3. Ulam stability of second order linear dynamic equations

In this section, we shall consider the general solution and Ulam stability of the second order

nonhomogeneous linear dynamic equation

y∆∆ + p(t)y∆ + q(t)y = f(t), (3.1)
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where p, q, f ∈ Crd. Correspondingly, the homogeneous linear dynamic equation is

y∆∆ + p(t)y∆ + q(t)y = 0. (3.2)

Let y1, y2 be a fundamental system of solutions for (3.2). From [39], we know that yg(t) =

αy1(t) + βy2(t) is a general solution of (3.2), where α, β are constants. Here, we replace α and

β with two undetermined functions α(t) and β(t), respectively.

Set yp(t) = α(t)y1(t) + β(t)y2(t). Assume that yp(t) is a particular solution of (3.1). Then,

we have

y∆p (t) = α∆(t)yσ1 (t) + α(t)y∆1 (t) + β∆(t)yσ2 (t) + β(t)y∆2 (t). (3.3)

Without loss of generality, we assume that α(t) and β(t) can be picked so that

α∆(t)yσ1 (t) + β∆(t)yσ2 (t) = 0. (3.4)

Furthermore, we can infer from (3.3) that

y∆∆
p (t) = α∆(t)y∆

σ

1 (t) + α(t)y∆∆
1 (t) + β∆(t)y∆

σ

2 (t) + β(t)y∆∆
2 (t). (3.5)

Substituting (3.3)–(3.5) into (3.1), we can obtain

y∆∆
p + p(t)y∆p + q(t)yp = α(t)(y∆∆

1 (t) + p(t)y∆1 (t) + q(t)y1(t))+

β(t)(y∆∆
2 (t) + p(t)y∆2 (t) + q(t)y2(t)) + α∆(t)y∆

σ

1 (t) + β∆(t)y∆
σ

2 (t)

= α∆(t)y∆
σ

1 (t) + β∆(t)y∆
σ

2 (t), (3.6)

where we have used the fact that y1 and y2 solve (3.2) for the second equality. To ensure that

yp is a solution of (3.1), α(t) and β(t) need to satisfy the following equation

α∆(t)y∆
σ

1 (t) + β∆(t)y∆
σ

2 (t) = f(t). (3.7)

By combining equations (3.4) and (3.7), we can obtain{
α∆(t)yσ1 (t) + β∆(t)yσ2 (t) = 0,

α∆(t)y∆
σ

1 (t) + β∆(t)y∆
σ

2 (t) = f(t).

Note that y1 and y2 form a fundamental system for (3.2), so the Wronskian

Wσ(y1, y2)(t) =

∣∣∣∣∣ yσ1 (t) yσ2 (t)

y∆
σ

1 (t) y∆
σ

2 (t)

∣∣∣∣∣ ̸= 0

for all t ∈ Tκ. Using the Cramer’s rule, we can infer that

α∆(t) =
W1,2(t)

Wσ(y1, y2)(t)
, β∆(t) =

W2,2(t)

Wσ(y1, y2)(t)
, (3.8)

where

W1,2(t) =

∣∣∣∣∣ 0 yσ2 (t)

f(t) y∆
σ

2 (t)

∣∣∣∣∣ = −yσ2 (t)f(t), W2,2(t) =

∣∣∣∣∣ yσ1 (t) 0

y∆
σ

1 (t) f(t)

∣∣∣∣∣ = yσ1 (t)f(t).

By integrating both sides of (3.8) from t0 to t with respect to τ , we get

α(t) =

∫ t

t0

W1,2(τ)

Wσ(y1, y2)(τ)
∆τ, β(t) =

∫ t

t0

W2,2(τ)

Wσ(y1, y2)(τ)
∆τ.
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From the statement above, we can obtain the following result related to the general solution

of (3.1).

Theorem 3.1 Let p, q, f ∈ Crd and let y1 and y2 be a fundamental system of solutions of the

homogeneous equation (3.2). Then the general solution y(t) of the nonhomogeneous equation

(3.1) can be given by

y(t) = yg(t) + yp(t)

= c1y1(t) + c2y2(t) + y1(t)

∫ t

t0

W1,2(τ)

Wσ(y1, y2)(τ)
∆τ + y2(t)

∫ t

t0

W2,2(τ)

Wσ(y1, y2)(τ)
∆τ,

where c1 and c2 are constants, t0 ∈ Tκ is an arbitrary fixed point.

With the help of Theorem 3.1, we will study the Ulam stability of the nonhomogeneous

second order linear dynamic equation (3.1).

Theorem 3.2 Let p, q, f ∈ Crd and let y1 and y2 be a fundamental system of solutions of the

homogeneous equation (3.2). Assume that φ : T → R+ is an rd-continuous function. If yφ ∈ C2
rd

satisfies the following inequality

|y∆∆
φ (t) + p(t)y∆φ (t) + q(t)yφ(t)− f(t)| ≤ φ(t) (3.9)

for all t ∈ Tκ2

, then there exists a solution y ∈ C2
rd of (3.1) such that

|yφ(t)− y(t)| ≤
∣∣∣ ∫ t

t0

∣∣ (y∆σ

1 (τ)y2(t)− y1(t)y
∆σ

2 (τ))

W σ(y1, y2)(τ)

∣∣φ(τ)∆τ
∣∣∣

for all t ∈ T.

Proof For convenience, we set

fφ(t) := y∆∆
φ (t) + p(t)y∆φ (t) + q(t)yφ(t). (3.10)

It is easy to see that yφ(t) is a solution of (3.10). According to Theorem 3.1, there are two

constants c1 and c2 such that

yφ(t) = c1y1(t) + c2y2(t) + y1(t)

∫ t

t0

−y∆
σ

2 (τ)fφ(τ)

Wσ(y1, y2)(τ)
∆τ + y2(t)

∫ t

t0

y∆
σ

1 (τ)fφ(τ)

Wσ(y1, y2)(τ)
∆τ,

where t0 ∈ Tκ is an arbitrary fixed point.

Define

y(t) = c1y1(t) + c2y2(t) + y1(t)

∫ t

t0

−y∆
σ

2 (τ)f(τ)

Wσ(y1, y2)(τ)
∆τ + y2(t)

∫ t

t0

y∆
σ

1 (τ)f(τ)

Wσ(y1, y2)(τ)
∆τ.

By Theorem 3.1, we know that y(t) is a solution of (3.1). Then, we can infer that

|yφ(t)− y(t)| =
∣∣∣y1(t)∫ t

t0

−y∆
σ

2 (τ)(fφ(τ)− f(τ))

W σ(y1, y2)(τ)
∆τ + y2(t)

∫ t

t0

y∆
σ

1 (τ)(fφ(τ)− f(τ))

Wσ(y1, y2)(τ)
∆τ

∣∣∣
=

∣∣∣ ∫ t

t0

−y1(t)y
∆σ

2 (τ)(fφ(τ)− f(τ))

Wσ(y1, y2)(τ)
∆τ +

∫ t

t0

y∆
σ

1 (τ)y2(t)(fφ(τ)− f(τ))

Wσ(y1, y2)(τ)
∆τ

∣∣∣
=

∣∣∣ ∫ t

t0

(y∆
σ

1 (τ)y2(t)− y1(t)y
∆σ

2 (τ))(fφ(τ)− f(τ))

Wσ(y1, y2)(τ)
∆τ

∣∣∣
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≤
∣∣∣ ∫ t

t0

∣∣ (y∆σ

1 (τ)y2(t)− y1(t)y
∆σ

2 (τ))

W σ(y1, y2)(τ)

∣∣φ(τ)∆τ
∣∣∣.

This completes the proof. �
As a direct consequence, we can obtain the Hyers-Ulam stability of the nonhomogeneous

linear dynamic equation (3.1) on a compact interval [a, b]T = {t ∈ T : a ≤ t ≤ b}.

Corollary 3.3 Let p, q, f ∈ Crd([a, b]T,R) and let y1 and y2 be a fundamental system of

solutions of the homogeneous equation (3.2). For a given ε > 0, if yε ∈ C2
rd([a, b]T,R) satisfies

the following inequality

|y∆∆
ε (t) + p(t)y∆ε (t) + q(t)yε(t)− f(t)| ≤ ε

for all t ∈ Tκ2

, then there exists a solution y ∈ C2
rd of (3.1) such that

|yε(t)− y(t)| ≤ Kε

for all t ∈ [a, b]T, where

K = max
t∈[a,b]T

∫ t

a

∣∣ (y∆σ

1 (τ)y2(t)− y1(t)y
∆σ

2 (τ))

W σ(y1, y2)(τ)

∣∣∆τ.

From the statement above, in particular, we can establish the Ulam stability of the nonho-

mogeneous second order linear dynamic equation with constant coefficients. Now, we consider

the dynamic equation

y∆∆(t) +my∆(t) + ny(t) = f(t), (3.11)

where m,n ∈ R, f ∈ Crd. The associated characteristic equation is

λ2 +mλ+ n = 0. (3.12)

The roots λ1, λ2 of the characteristic equation (3.12) are given by

λ1,2 =
−m±

√
m2 − 4n

2
.

Theorem 3.4 Let φ : T → R+ be an rd-continuous function and let m2 − 4n > 0. Define

r = −m

2
and s =

√
m2 − 4n

2
.

Assume that r and µn−m are regressive. If yφ ∈ C2
rd satisfies the following inequality

|y∆∆
φ (t) +my∆φ (t) + nyφ(t)− f(t)| ≤ φ(t)

for all t ∈ Tκ2

, then there exists a solution y ∈ C2
rd of (3.11) such that

|yφ(t)− y(t)| ≤1

2
|er(t, t0)|

∣∣∣ ∫ t

t0

∣∣∣er⊖(µn−m)(σ(τ), t0)[(r − s)(1− µ)e s
1+µr

(t, t0)e− s
1+µr

(τ, t0)

(1 + µr)

−(r + s)(1 + µ)e s
1+µr

(τ, t0)e− s
1+µr

(t, t0)]

(1 + µr)
|φ(τ)∆τ |

for all t ∈ T.
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Proof By Theorem 3.24 in [39], we know that

y1(t) = coshs/(1+µr)(t, t0)er(t, t0), y2(t) = sinhs/(1+µr)(t, t0)er(t, t0)

form a fundamental system of solutions of the corresponding homogeneous equation of (3.11),

where t0 ∈ T, and the Wronskian of these two solutions is W (y1, y2)(t) = seµn−m(t, t0).

For convenience, we write ρ = s
1+µr . Then, we can obtain

y∆
σ

1 (τ)y2(t)− y1(t)y
∆σ

2 (τ) =

∣∣∣∣∣y∆
σ

1 (τ) y1(t)

y∆
σ

2 (τ) y2(t)

∣∣∣∣∣
= er(σ(τ), t0)er(t, t0)

∣∣∣∣∣s sinhρ(σ(τ), t0) + r coshρ(σ(τ), t0) coshρ(t, t0)

s coshρ(σ(τ), t0) + r sinhρ(σ(τ), t0) sinhρ(t, t0)

∣∣∣∣∣
= er(σ(τ), t0)er(t, t0)

(
s

∣∣∣∣∣sinhρ(σ(τ), t0) coshρ(t, t0)

coshρ(σ(τ), t0) sinhρ(t, t0)

∣∣∣∣∣+ r

∣∣∣∣∣coshρ(σ(τ), t0) coshρ(t, t0)

sinhρ(σ(τ), t0) sinhρ(t, t0)

∣∣∣∣∣ )

= er(σ(τ), t0)er(t, t0)
(
s

∣∣∣∣∣sinhρ(τ, t0) + µ coshρ(τ, t0) coshρ(t, t0)

coshρ(τ, t0) + µ sinhρ(τ, t0) sinhρ(t, t0)

∣∣∣∣∣+
r

∣∣∣∣∣coshρ(τ, t0) + µ sinhρ(τ, t0) coshρ(t, t0)

sinhρ(τ, t0) + µ coshρ(τ, t0) sinhρ(t, t0)

∣∣∣∣∣ )

= er(σ(τ), t0)er(t, t0)
(
(s+ µρr)

∣∣∣∣∣sinhρ(τ, t0) coshρ(t, t0)

coshρ(τ, t0) sinhρ(t, t0)

∣∣∣∣∣+
(r + µρs)

∣∣∣∣∣coshρ(τ, t0) coshρ(t, t0)

sinhρ(τ, t0) sinhρ(t, t0)

∣∣∣∣∣ )

=
1

4
er(σ(τ), t0)er(t, t0)

(
(s+ µρr)

∣∣∣∣∣eρ(τ, t0)− e−ρ(τ, t0) eρ(t, t0) + e−ρ(t, t0)

eρ(τ, t0) + e−ρ(τ, t0) eρ(t, t0)− e−ρ(t, t0)

∣∣∣∣∣+
(r + µρs)

∣∣∣∣∣eρ(τ, t0) + e−ρ(τ, t0) eρ(t, t0) + e−ρ(t, t0)

eρ(τ, t0)− e−ρ(τ, t0) eρ(t, t0)− e−ρ(t, t0)

∣∣∣∣∣ )
=

1

2
er(σ(τ), t0)er(t, t0)

(
(s+ µρr)(−eρ(τ, t0)e−ρ(t, t0)− eρ(t, t0)e−ρ(τ, t0)+

(r + µρs)(eρ(t, t0)e−ρ(τ, t0)− eρ(τ, t0)e−ρ(t, t0))
)

=
1

2
er(σ(τ), t0)er(t, t0)

(r − s)(1− µ)eρ(t, t0)e−ρ(τ, t0)− (r + s)(1 + µ)eρ(τ, t0)e−ρ(t, t0)

1 + µr
.

From Theorem 3.2, it follows that

|yφ(t)− y(t)| ≤1

2
|er(t, t0)|

∣∣∣ ∫ t

t0

∣∣∣er⊖(µn−m)(σ(τ), t0)[(r − s)(1− µ)eρ(t, t0)e−ρ(τ, t0)

(1 + µr)

−(r + s)(1 + µ)eρ(τ, t0)e−ρ(t, t0)]

(1 + µr)
|φ(τ)∆τ |.

We have thus proved the theorem. �
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When the characteristic equation (3.12) has two different real eigenvalues, in view of Theorem

3.4, we can obtain the Hyers-Ulam stability of the second order nonhomogeneous linear dynamic

equation (3.11) with constant coefficients on a finite time scale.

Corollary 3.5 Let m2 − 4n > 0 and let r, s be given as in Theorem 3.4. Assume that r and

µn−m are regressive. For a given ε > 0, if yε ∈ C2
rd([a, b]T,R) satisfies the following inequality

|y∆∆
ε (t) +my∆ε (t) + nyε(t)− f(t)| ≤ ε

for all t ∈ Tκ2

, then there exists a solution y ∈ C2
rd([a, b]T,R) of (3.11) such that

|yε(t)− y(t)| ≤ Kε

for all t ∈ T, where

K =
1

2
max

t∈[a,b]T
|er(t, t0)|

∫ t

a

∣∣∣er⊖(µn−m)(σ(τ), t0)[(r − s)(1− µ)e s
1+µr

(t, t0)e− s
1+µr

(τ, t0)

(1 + µr)

−(r + s)(1 + µ)e s
1+µr

(τ, t0)e− s
1+µr

(t, t0)]

(1 + µr)

∣∣∣∆τ.

Theorem 3.6 Let φ : T → R+ be an rd-continuous function and let m2 − 4n < 0. Define

r = −m

2
, s =

√
m2 − 4n

2
.

Assume that r and µn−m are regressive. If yφ ∈ C2
rd satisfies the following inequality

|y∆∆
φ (t) +my∆φ (t) + nyφ(t)− f(t)| ≤ φ(t)

for all t ∈ Tκ2

, then there exists a solution y ∈ C2
rd of (3.11) such that

|yφ(t)− y(t)|

≤ 1

2
|er(t, t0)|

∣∣∣ ∫ t

t0

∣∣∣er⊖(µn−m)(σ(τ), t0)
[
i(r − µs2

1 + µr
)(e− s

1+µr i
(t, t0)− e s

1+µr i
(t, t0))e− s

1+µr i
(τ, t0)−

(
s(1 + 2µs)

1 + µr
)(e s

1+µr i
(t, t0)e− s

1+µr i
(τ, t0) + e s

1+µr i
(τ, t0)e− s

1+µr i
(t, t0))

]
|φ(τ)∆τ |

for all t ∈ T.

Proof From Theorem 3.32 in [39], we know that

y1(t) = coss/(1+µr)(t, t0)er(t, t0), y2(t) = sins/(1+µr)(t, t0)er(t, t0)

form a fundamental system of solutions of the corresponding homogeneous equation of (3.11),

where t0 ∈ T. By calculation, theWronskian of these two solutions isW (y1, y2)(t) = seµn−m(t, t0).

Similar to Theorem 3.5, we write ρ = s
1+µr , and then we can get

y∆
σ

1 (τ)y2(t)− y1(t)y
∆σ

2 (τ)

= er(σ(τ), t0)er(t, t0)

∣∣∣∣∣−s sinρ(σ(τ), t0) + r cosρ(σ(τ), t0) cosρ(t, t0)

s cosρ(σ(τ), t0) + r sinρ(σ(τ), t0) sinρ(t, t0)

∣∣∣∣∣
= er(σ(τ), t0)er(t, t0)

(
s

∣∣∣∣∣− sinρ(σ(τ), t0) cosρ(t, t0)

cosρ(σ(τ), t0) sinρ(t, t0)

∣∣∣∣∣+ r

∣∣∣∣∣cosρ(σ(τ), t0) cosρ(t, t0)

sinρ(σ(τ), t0) sinρ(t, t0)

∣∣∣∣∣ )
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= er(σ(τ), t0)er(t, t0)
(
s

∣∣∣∣∣− sinρ(τ, t0)− µρ cosρ(τ, t0) cosρ(t, t0)

cosρ(τ, t0)− µρ sinρ(τ, t0) sinρ(t, t0)

∣∣∣∣∣+
r

∣∣∣∣∣cosρ(τ, t0)− µρ sinρ(τ, t0) cosρ(t, t0)

sinρ(τ, t0) + µρ cosρ(τ, t0) sinρ(t, t0)

∣∣∣∣∣ )

= er(σ(τ), t0)er(t, t0)
(
(s+ µrρ)

∣∣∣∣∣− sinρ(τ, t0) cosρ(t, t0)

cosρ(τ, t0) sinρ(t, t0)

∣∣∣∣∣+
(r − µsρ)

∣∣∣∣∣cosρ(τ, t0) cosρ(t, t0)

sinρ(τ, t0) sinρ(t, t0)

∣∣∣∣∣ )

=
1

4
er(σ(τ), t0)er(t, t0)

(
(s+ µrρ)

∣∣∣∣∣i(eiρ(τ, t0)− e−iρ(τ, t0)) eiρ(t, t0) + e−iρ(t, t0)

eiρ(τ, t0) + e−iρ(τ, t0) −i(eiρ(t, t0)− e−iρ(t, t0))

∣∣∣∣∣+
(r − µsρ)

∣∣∣∣∣ eiρ(τ, t0) + e−iρ(τ, t0) eiρ(t, t0)− e−iρ(t, t0)

−i(eiρ(τ, t0)− e−iρ(τ, t0)) −i(eiρ(t, t0)− e−iρ(t, t0))

∣∣∣∣∣ )
=

1

2
er(σ(τ), t0)er(t, t0)

(
i(r − µsρ)(e−iρ(t, t0)− eiρ(t, t0))e−iρ(τ, t0)−

(s+ µrρ)(eiρ(t, t0)e−iρ(τ, t0) + eiρ(τ, t0)e−iρ(t, t0))
)
.

According to Theorem 3.2, we can infer that

|yφ(t)− y(t)| ≤1

2
|er(t, t0)|

∣∣∣ ∫ t

t0

∣∣∣er⊖(µn−m)(σ(τ), t0)
[
e−iρ(t, t0)− eiρ(t, t0))e−iρ(τ, t0)−

(s+ µrρ)(eiρ(t, t0)e−iρ(τ, t0) + eiρ(τ, t0)e−iρ(t, t0))
]∣∣∣φ(τ)∆τ

∣∣∣.
This completes the proof. �

Furthermore, if the characteristic equation (3.12) has a pair of complex eigenvalues, we then

obtain the Hyers-Ulam stability of the second order nonhomogeneous linear dynamic equation

(2.11) with constant coefficients on a finite time scale.

Corollary 3.7 Let m2 − 4n < 0 and let r, s be given as in Theorem 3.6. Assume that r and

µn−m are regressive. For a given ε > 0, if yε ∈ C2
rd([a, b]T,R) satisfies the following inequality

|y∆∆
ε (t) +my∆ε (t) + nyε(t)− f(t)| ≤ ε

for all t ∈ Tκ2

, then there exists a solution y ∈ C2
rd([a, b]T,R) of (3.11) such that

|yε(t)− y(t)| ≤ Kε

for all t ∈ T, where

K =
1

2
max

t∈[a,b]T
|er(t, t0)||∫ t

a

∣∣er⊖(µn−m)(σ(τ), t0)[i(r −
µs2

1 + µr
)(e− s

1+µr i
(t, t0)− e s

1+µr i
(t, t0))e− s

1+µr i
(τ, t0)−

(
s(1 + 2µs)

1 + µr
)(e s

1+µr i
(t, t0)e− s

1+µr i
(τ, t0) + e s

1+µr i
(τ, t0)e− s

1+µr i
(t, t0))]

∣∣∆τ.
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Theorem 3.8 Let φ : T → R+ be an rd-continuous function and let m2− 4n = 0. Let r = −m
2

with r ∈ R. If yφ ∈ C2
rd satisfies the following inequality

|y∆∆
φ (t) +my∆φ (t) + nyφ(t)− f(t)| ≤ φ(t)

for all t ∈ Tκ2

, then there exists a solution y ∈ C2
rd of (3.11) such that

|yφ(t)− y(t)| ≤ |er(t, t0)|
∣∣∣ ∫ t

t0

∣∣∣e
r⊖µα2

4

(σ(τ), t0)
(
r

∫ t

τ

1

1 + rµ(ω)
∆ω − (r + 1)

)
|φ(τ)∆τ |

for all t ∈ T.

Proof In view of Theorem 3.34 in [39], we know that y1(t) = er(t, t0) and

y2(t) = er(t, t0)

∫ t

t0

1

1 + rµ(ω)
∆ω

form a fundamental system of solutions of the corresponding homogeneous equation of (3.11),

where t0 ∈ T, and the Wronskian of these two solutions is eµα2

4

(t, t0). Using the same procedure

as Theorem 3.5, we can obtain

y∆
σ

1 (τ)y2(t)− y1(t)y
∆σ

2 (τ)

=

∣∣∣∣∣ rer(σ(τ), t0) er(t, t0)

er(σ(τ), t0)(1 + r
∫ σ(τ)

t0
1

1+rµ(ω)∆ω) er(t, t0)
∫ t

t0
1

1+rµ(ω)∆ω

∣∣∣∣∣
= er(σ(τ), t0)er(t, t0)

∣∣∣∣∣ r 1

1 + r
∫ σ(τ)

t0
1

1+rµ(ω)∆ω
∫ t

t0
1

1+rµ(ω)∆ω

∣∣∣∣∣
= er(σ(τ), t0)er(t, t0)

∣∣∣∣∣ r 1

1 + r(1 +
∫ τ

t0
1

1+rµ(ω)∆ω)
∫ t

t0
1

1+rµ(ω)∆ω

∣∣∣∣∣
= er(σ(τ), t0)er(t, t0)

(
r

∫ t

τ

1

1 + rµ(ω)
∆ω − (r + 1)

)
.

Then, it follows from Theorem 3.2 that

|yφ(t)− y(t)| ≤ |er(t, t0)|
∣∣∣ ∫ t

t0

∣∣∣er(σ(τ), t0)(r ∫ t

τ
1

1+rµ(ω)∆ω − (r + 1))

eµα2

4

(σ(τ), t0)
|φ(τ)∆τ |.

This completes the proof. �
Based on the previous theorem, if the characteristic equation (3.12) has two identical eigen-

values, we then obtain the Hyers-Ulam stability of the second order nonhomogeneous linear

dynamic equation (3.11) with constant coefficients on a finite time scale.

Corollary 3.9 Let m2 − 4n = 0 and let r be given as in Theorem 3.8. For a given ε > 0, if

yε ∈ C2
rd([a, b]T,R) satisfies the following inequality

|y∆∆
ε (t) +my∆ε (t) + nyε(t)− f(t)| ≤ ε

for all t ∈ Tκ2

, then there exists a solution y ∈ C2
rd([a, b]T,R) of (3.11) such that

|yε(t)− y(t)| ≤ Kε
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for all t ∈ T, where

K = max
t∈[a,b]T

|er(t, t0)|
∫ t

a

∣∣∣e
r⊖µα2

4

(σ(τ), t0)
(
r

∫ t

τ

1

1 + rµ(ω)
∆ω − (r + 1)

)∣∣∣∆τ.

Finally, by Theorem 3.2, we can consider the Ulam stability of the second order linear dynamic

equation of the form

x∆∆ + p(t)x∆σ

+ q(t)xσ = f(t), (3.13)

where t ∈ T. If p ∈ R and q, f ∈ Crd, then the equation (3.13) is equivalent to the following

equation

(1 + µp)(x∆∆ + p̃(t)x∆ + q̃(t)x) = f(t), (3.14)

where

p̃(t) =
p+ µq

1 + µp
, q̃(t) =

q

1 + µp
.

Theorem 3.10 Let p ∈ R, q, f ∈ Crd and let x1 and x2 be a fundamental system of solutions of

the corresponding homogeneous equation of (3.13). Assume that φ : T → R+ is an rd-continuous

function. If xφ ∈ C2
rd satisfies the following inequality

|x∆∆
φ (t) + p(t)x∆σ

φ (t) + q(t)xσ
φ(t)− f(t)| ≤ φ(t) (3.15)

for all t ∈ Tκ2

, then there exists a solution x ∈ C2
rd of (3.1) such that

|xφ(t)− x(t)| ≤
∣∣∣ ∫ t

t0

∣∣∣ (x∆σ

1 (τ)x2(t)− x1(t)x
∆σ

2 (τ))

(1 + µ(τ)p(τ))Wσ(x1, x2)(τ)
|φ(τ)∆τ | (3.16)

for all t ∈ T.

Proof Since p ∈ R, we know that 1+µ(t)p(t) ̸= 0 for t ∈ Tκ. Using the equivalence of equations

(3.13) and (3.14), it is easy to verify that x1 and x2 are also a fundamental system of solutions of

the corresponding homogeneous equation of (3.14). Furthermore, it follows that the inequality

(3.15) is equivalent to

|x∆∆
φ (t) + p̃(t)x∆

φ (t) + q̃(t)xφ(t)−
f(t)

1 + µp
| ≤ φ(t)

|1 + µp|
. (3.17)

Therefore, we can infer from Theorem 3.2 that the inequality (3.16) is valid. �
In particular, we can show the Hyers-Ulam stability of the nonhomogeneous linear dynamic

equation (3.13) on a compact interval [a, b]T.

Corollary 3.11 Let p ∈ R, q, f ∈ Crd([a, b]T,R) and let x1 and x2 be a fundamental system of

solutions of the homogeneous equation (3.13). For a given ε > 0, if xε ∈ C2
rd([a, b]T,R) satisfies

the following inequality

|x∆∆
ε (t) + p(t)y∆

σ

ε (t) + q(t)yσε (t)− f(t)| ≤ ε

for all t ∈ Tκ2

, then there exists a solution x ∈ C2
rd of (3.13) such that

|xε(t)− x(t)| ≤ Kε
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for all t ∈ [a, b]T, where

K = max
t∈[a,b]T

∫ t

a

∣∣∣ (x∆σ

1 (τ)x2(t)− x1(t)x
∆σ

2 (τ))

(1 + µ(τ)p(τ))Wσ(x1, x2)(τ)

∣∣∣∆τ.
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