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Abstract The main purpose of this paper is to characterize the Lipschitz space by the bound-

edness of commutators on Lebesgue spaces and Triebel-Lizorkin spaces with variable exponent.

Based on this main purpose, we first characterize the Triebel-Lizorkin spaces with variable expo-

nent by two families of operators. Immediately after, applying the characterizations of Triebel-

Lizorkin space with variable exponent, we obtain that b ∈ Λ̇β if and only if the commutator of

Calderón-Zygmund singular integral operator is bounded, respectively, from Lp(·)(Rn) to Ḟ β,∞
p(·) ,

from Lp(·)(Rn) to Lq(·)(Rn) with 1/p(·)−1/q(·) = β/n. Moreover, we prove that the commutator

of Riesz potential operator also has corresponding results.

Keywords commutator; Lipschitz space; Triebel-Lizorkin space; variable exponent; singular

integral operator
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1. Introduction and some definitions

In this paper, for β > 0 the Lipschits space Λ̇β is the space of functions f such that

∥f∥Λ̇β
= sup

x,h∈Rn,h̸=0

|f(x+ h)− f(x)|
|h|β

<∞.

In 1978, Janson [1] proved that b ∈ Λ̇β if and only if the commutator of Calderón-Zygmund

integral operator from Lp(Rn) to Lq(Rn), 1 < p < q < ∞ and β = n(1/p − 1/q). In 1982,

Chanillo [2] obtained that b ∈ BMO if and only if the commutator of Riesz potential operator Iα

from Lp(Rn) to Lq(Rn), 1 < p < q <∞ and α = n(1/p−1/q). In 1995, Paluszynski [3] extended

and generalized the results from [2] and [1], using a complete proof of the result of Chanillo in [2],

showed that b ∈ Λ̇β if and only if commutators of Calderón-Zygmund singular integral operator

and Riesz potential operator are bounded from Lebesgue spaces to Lebesgue spaces or Triebel-

Lizorkin spaces. In this article, we prove that the above results still hold in variable exponent.

Namely, we show that b ∈ Λ̇β if and only if commutators of Calderón-Zygmund singular integral

operator and Riesz potential operator are bounded from Lebesgue spaces to Lebesgue spaces or

Triebel-Lizorkin spaces in variable exponent.

Firstly, we give the definition of Lebesgue spaces with variable exponent as follows.
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Definition 1.1 Let p : Rn → [1,∞) be a measurable function. Lp(·)(Rn) denotes the set of all

measurable functions f on Rn such that for some λ > 0,

Lp(·)(Rn) =
{
f :

∫
Rn

|f(x)
λ

|p(x)dx <∞
}

and

∥f∥Lp(·) = inf
{
λ > 0 :

∫
Rn

(
|f(x)|
λ

)p(x)dx ≤ 1
}
.

Then Lp(·)(Rn) is Banach space with the norm ∥ · ∥Lp(·)(Rn).

Denote by P(Rn) the set of all measurable functions p on Rn with range in [1,∞) such that

1 < p− = ess infx∈Rn p(x), ess supx∈Rn p(x) = p+ < ∞. Moreover, we define P0(Rn) to be the

set of all measurable functions p on Rn with range in (0,∞) such that 0 < p− = ess infx∈Rn p(x),

ess supx∈Rn p(x) = p+ < ∞. Given p(·) ∈ P0(Rn), one can define the space Lp(·)(Rn) as above.

This is equivalent to defining it to be the set of all functions f such that |f |p0 ∈ Lq(·)(Rn), where

0 < p0 < p−, and q(·) = p(·)
p0

∈ P(Rn). Then one can define a quasi-norm on this space by

∥f∥Lp(·) = ∥|f |p0∥1/p0

Lq(·) .

Now, we give some definitions of operators in this article. Meanwhile, some results of the

boundedness of operators are given.

Definition 1.2 Let f ∈ L1
loc(Rn). The standard Hardy-Littlewood maximal operator is defined

by

Mf(x) = sup
r>0

r−n

∫
Br(x)

|f(y)|dy,

where Br(x) = B(x, r) = {y ∈ Rn : |x − y| < r}. The key tool we need is the boundedness of

the Hardy-Littlewood maximal operator on variable exponent function spaces. There exist some

sufficient conditions on p(·) such that the maximal operator M is bounded on Lp(·)(Rn); see for

example [4,5]. B(Rn) is the set of all p(·) ∈ P(Rn) such that the Hardy-Littlewood maximal

operator M is bounded on Lp(·)(Rn).

The standard fractional maximal operator is defined by

Mαf(x) = sup
r>0

r−n+α

∫
Br(x)

|f(y)|dy,

where 0 < α < n. For 1/p(·) − 1/q(·) = α/n, the fractional maximal operator Mα is bounded

from Lp(·)(Rn) to Lq(·)(Rn).

Definition 1.3 (i) A continuous function g : Rn → R is called locally log-Hölder continuous,

abbreviated g ∈ Clog
loc (Rn), if there exists clog > 0 such that for all x, y ∈ Rn,

|g(x)− g(y)| ≤ clog
log(e+ 1/|x− y|)

.

(ii) The function g is called globally log-Hölder continuous, abbreviated g ∈ Clog(Rn), if g is

locally log-Hölder continuous and there exist g∞ ∈ R and Clog > 0 such that for all x ∈ Rn,

|g(x)− g∞| ≤ Clog

log(e+ |x|)
,
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where g∞ = lim|x|→∞ g(x). If q ∈ Clog(Rn), then for every q0 < q− we have q(·)/q0 ∈ B(Rn).

The notation P log(Rn) is used for those variable exponents p ∈ P0(Rn) with 1
p ∈ Clog. If p(·) ∈

P log(Rn), then we have for every p0 < p− that M is bounded on Lp(·)/p0(Rn) or, equivalently,

that Mt is bounded on Lp(·)(Rn), where t = min(1, p0).

Definition 1.4 Given a locally integrable function K defined on Rn\{0}, suppose that the

Fourier transform of K is bounded, and K satisfies

|K(x)| ≤ C

|x|n
, |∇K(x)| ≤ C

|x|n+1
, x ̸= 0.

Then the singular integral operator T, defined by Tf(x) = K ∗ f(x), is bounded on variable

Lp(·)(Rn) if p(·) ∈ B(Rn) (see [6]).

Let b ∈ L1
loc. The commutator

[
b, T

]
is defined by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x). (1.1)

Definition 1.5 For 0 < α < n, the Riesz potential operator Iα is defined by

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy. (1.2)

Further, if 1/q(·) = 1/p(·)−α/n, Iα from the space Lp(·)(Rn) into the space Lq(·)(Rn) (see, [7]).

Let b ∈ L1
loc and Iα be a Riesz potential operator. The commutator [b, Iα] is defined by

[b, Iα]f(x) = b(x)Iαf(x)− Iα(bf)(x).

If b ∈ Λ̇β and 1/q(·)− 1/p(·) = (α+ β)/n, then [b, Iα] : L
p(·)(Rn) → Lq(·)(Rn) (see, [8]).

The organization of this paper is as follows. In Section 1, some background material and

definitions are given. In order to prove

b ∈ Λ̇β ⇔ [b, T ] : Lp(·)(Rn) → F β,∞
p(·) ⇔ [b, Iα] : L

p(·)(Rn) → F β,∞
q(·) ,

we first characterize the Triebel-Lizorkin spaces with variable exponents by two families of op-

erators in Section 2. In Section 3, we characterize the Lipschitz space by the boundedness of

commutators of singular integral operator and Riesz potential operator in variable exponent.

As usual, we denote by Rn the n-dimensional real Euclidean space. Use c as a generic positive

constant, and denote simply by A . B if there exists a constant c1 > 0 such that A ≤ c1B.

Further, A ∼ B means that A . B and B . A. For a set A, χA denotes its characteristic

function. The set S denotes the usual Schwartz class of infinitely differentiable rapidly decreasing

complex-valued functions, by S ′ we denote its dual space. The Fourier transform of a tempered

distribution f is denoted by f̂ while its inverse transform is denoted by f̌ .

2. Characterizations of Triebel-Lizorkin spaces with variable exponent

To discuss variable exponent Triebel-Lizorkin spaces, we first need to consider the following

sequences function space. Lp(·)(lq) is the space of all sequences {gj} of measurable functions on
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Rn with finite quasi-norms

∥{gj}∥Lp(·)(lq) = ∥∥{gj}∥lq∥Lp(·) =
∥∥∥( ∞∑

j=1

(gj)
q
)1/q∥∥∥

Lp(·)
.

We now recall the Fourier analytical approach to function spaces of Triebel-Lizorkin. Let

φ0, φ ∈ S(Rn) with φ0 ≥ 0 and satisfy the following conditions:

φ0(x) =

{
1, |x| ≤ 1,

0, |x| ≥ 2.

Set φ(x) = φ0(x) − φ0(2x) with x ∈ Rn. For j ∈ N, let φj(x) = φ(2−jx). Then we call

{φj}j∈N0 a resolution of unity, it follows that

∞∑
j=0

φj(x) = 1.

Definition 2.1 Let {φj}j∈N0 be a resolution of unity, 0 < β, q ≤ ∞, p(·) ∈ P0(Rn). The set{
f ∈ S

′
(Rn) :

∥∥∥( ∞∑
j=0

|2jβ(φj ∗ f̂)∨|q
)1/q∥∥∥

Lp(·)

}
is named to be the Triebel-Lizorkin space with variable exponent and denoted by F β,q

p(·). The

quasi-norm of f in this space is denoted by

∥f∥Fβ,q
p(·)

= ∥2jβ(φj ∗ f̂)∨∥Lp(·)(lq) =
∥∥∥( ∞∑

j=0

|2jβ(φj ∗ f̂)∨|q
)1/q∥∥∥

Lp(·)
.

Remark 2.2 By [9, Proposition 6.4], we know that the Sobolev type embedding inequality of

Triebel-Lizorkin spaces with variable exponent as follows.

If

β0 ≥ β1 and
1

p0(·)
− 1

p1(·)
=
β0 − β1

n
,

then

F β0,q0
p0(·) (R

n) ↪→ F β1,q1
p1(·) (R

n).

Thus, for β1 = 0, q0 = ∞ and q1 = 2, then F β0,∞
p0(·) (Rn) ↪→ F 0,2

p1(·)(R
n) = Lp1(·). This fact will be

used in the next section.

Below, the characterizations of Triebel-Lizorkin spaces with variable exponent are given.

Namely, we will characterize Triebel-Lizorkin spaces with variable exponent by two families of

operators. To this aim we need the property of Peetre maximal operator on Triebel-Lizorkin

spaces with variable exponent and the boundedness of Hardy-Littlewood maximal operator on

sequences function space. Thus, we give some notations and facts as follows.

Let ψ0, ψ1 ∈ S(Rn), ε > 0, integer R ≥ −1 be such that

|ψ0(x)| > 0 on {x ∈ Rn : |x| < ε}, |ψ1(x)| > 0 on {x ∈ Rn : ε/2 < |x| < 2ε} (2.1)

and

Dβψ(0) = 0, for 0 ≤ |β| < R. (2.2)
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Here (2.1) are Tauberian conditions, while (2.2) expresses moment conditions on ψ.

Let us recall the classical Peetre maximal operator, introduced in [10]. In the following we

define the system of maximal functions. Given a sequence of function {Ψj}j ⊂ S(Rn), a tempered

distribution f ∈ S ′
(Rn) and a positive number a > 0, the Peetre’s maximal functions are defined

as

(Ψ∗
j )a(x) = sup

y∈Rn

|Ψj ∗ f(y)|
1 + |2j(x− y)|a

, x ∈ Rn, j ∈ N0.

Now, we give the property of Peetre maximal operator on Triebel-Lizorkin spaces with vari-

able exponent, and the boundedness of Hardy-Littlewood maximal operator on vector-valued

function space as follows.

Lemma 2.3 ([11]) Let β < R + 1, 0 < q ≤ ∞ and p(·) ∈ P0(Rn) with p0 < p− such that

p(·)/p0 ∈ B(Rn). If n/a < p0, then for f ∈ S ′(Rn)

∥f∥Fβ,q
p(·)

∼ ∥2jβ(Ψ∗
kf)a∥Lp(·)(lq) ∼ ∥2jβ(Ψk ∗ f)∥Lp(·)(lq).

Lemma 2.4 ([6]) If p(·) ∈ B(Rn) and 1 < q ≤ ∞, then there exists a positive constant C such

that for all sequences {fj}∞j=0 of locally integrable functions,

∥{Mfj}∞j=0∥Lp(·)(lq) ≤ C∥{fj}∞j=0∥Lp(·)(lq).

To give our characterizations we define by ∆k
h the difference operator. That is

∆1
hf(x) = ∆hf(x) = f(x+ h)− f(x),

∆k+1
h f(x) = ∆k

hf(x+ h)−∆k
hf(x), k ≥ 1.

Q(x, t) denotes a cube centered at x, with side length t, sides parallel to the axes, we write

Qx(t) = Q(x, t).

Consider the family of operators Sβ
q,r,m, defined by

Sβ
q,r,mf(x) =

(∫ ∞

0

( 1

|Q0(t)|

∫
Q0(t)

|∆m
h f(x)|rdh

)q/r dt

t1+βq

)1/q

.

For a fixed cube Q = Qx(t), we define the oscillation

oscmr (f,Q) = oscmr (f, x, t) = inf
P∈Pm

( 1

|Q|

∫
Q

|f(y)− P (y)|rdy
)1/r

,

where the infimum is taken over all polynomials of degree not exceeding m. Further, we define

the family of operators

Dβ
q,r,mf(x) =

(∫ ∞

0

(oscm−1
r (f, x, t))q

dt

t1+βq

)1/q

.

For q = ∞ or r = ∞ we have the usual modifications and replace integrations by sup-norms.

Some properties of the above two families of operators can be found in [12] and [13].

In the following we use the above two families of operators to characterize Triebel-Lizorkin

spaces with variable exponent.
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Theorem 2.5 For p(·) ∈ B(Rn), 0 < q ≤ ∞, m > β/a0, ν ∈ R, r ≥ 1, if

β > σp,q,r = max{0, ν( 1

p−
− 1

r
), ν(

1

q
− 1

r
)},

then ∥f∥Ḟβ,q
p(·)

∼ ∥Sβ
q,r,mf∥Lp(·) ∼ ∥Dβ

q,r,mf∥Lp(·) . Where a0 > 0, ν is trace of a matrix [14].

Proof The proof follows the ideas in [14]. The whole proof is divided into three steps, which

together give the proof of the theorem.

Step 1. To prove ∥Sβ
q,r,mf∥Lp(·) ≤ c∥Dβ

q,r,mf∥Lp(·) , we choose best approximants Ptf in f in

L1(Qx(t)). Since ∆m
h P ≡ 0 for all polynomials P of degree less than m, we may split

∆m
h f(x) = (−1)m(f(x)− Ptf(x)) +

m∑
j=1

(−1)m−jCj
k(f(x+ jh)− Ptf(x+ jh)).

Thus, we have

Sβ
q,r,mf(x) ≤

(∫ ∞

0

( 1

|Q0(t)|

∫
Q0(t)

|f(x)− Ptf(x)|rdh
)q/r dt

t1+βq

)1/q

+

(∫ ∞

0

( 1

|Q0(t)|

∫
Q0(t)

∣∣∣ m∑
j=1

Cj
k(f(x+ jh)− Ptf(x+ jh))

∣∣∣rdh)q/r dt

t1+βq

)1/q

=I0 + Ij .

To estimate I0, we use the following facts [13],

lim
l→∞

Pt2−lf(x) = f(x), |Ptf(x)| ≤
1

|Qx(t)|

∫
Qx(t)

|f(y)|dy.

If q ≤ 1, we have( 1

|Q0(t)|

∫
Q0(t)

|f(x)− Ptf(x)|rdh
)q/r

≤
( 1

|Q0(t)|

∫
Q0(t)

( ∞∑
l=0

|P2−l−1tf(x)− P2−ltf(x)|
)r

dh
)q/r

≤
( 1

|Q0(t)|

∫
Q0(t)

( ∞∑
l=0

1

|Qx(2−lt)|

∫
Qx(2−lt)

|f(y)− P2−ltf(y)|dy
)r

dh
)q/r

≤
( 1

|Qx(t)|

∫
Qx(t)

|f(y)− Ptf(y)|dy
)q

.

Thus, we obtain

I0 ≤ cDβ
q,1,mf(x) ≤ cDβ

q,r,mf(x).

If q ≥ 1, we apply Minkowski’s inequality to get the same result.

To estimate Ij , clearly, if j ≥ 1,

Ij ≤ cDβ
q,r,mf.

Step 2. To prove ∥Dβ
q,r,mf∥Lp(·) ≤ c∥f∥Ḟβ,q

p(·)
, by the proof of [14, Theorem 1], we can obtain

∥Dβ
q,r,mf∥Lp(·) ≤ c∥Dβ

q,τ,mf∥Lp(·) ,

where τ > 0 with τ < min(1, q, p−).
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Now we decompose

f = f0,t + f1,t, f0,t =
∑

2kt≥1

ψk ∗ f.

Then

Dβ
q,τ,mf(x) ≤

(∫ ∞

0

(oscm−1
τ (f0,t, x, t))

q dt

t1+βq

)1/q

+
(∫ ∞

0

(oscm−1
τ (f1,t, x, t))

q dt

t1+βq

)1/q

=:I + II.

To estimate I, let a > 0. Since oscm−1
τ (f0,t, x, t) ≤ (M(fτ0,t))

1/τ and τ < q, we may apply

Lemma 2.4 to get

∥I∥Lp(·) ≤ c
∥∥∥(∫ ∞

0

( ∑
2kt≥1

Ψk ∗ f
)q dt

t1+βq

)1/q∥∥∥
Lp(·)

≤ c
∥∥∥(∑

k

2kaq|Ψk ∗ f |q
)1/q∥∥∥

Lp(·)
.

To estimate II, obviously, we can get

oscm−1
τ (f1,t, x, t) ≤ c

(∫
Qx(t)

∣∣∣ ∑
2kt≤1

(2kt)ma0(Ψ∗
kf)a(z)

∣∣∣τdz)1/τ

,

where Qx(t) is a cube with x as its center and t as its side-length.

According to Lemma 2.3, we have

∥II∥Lp(·) ≤c
∥∥∥(∫ ∞

0

∣∣∣ ∑
2kt≤1

(2kt)ma0(Ψ∗
kf)a

∣∣∣q dt
t

)1/q∥∥∥
Lp(·)

≤c
∥∥∥(∑

k

2kaq(Ψ∗
kf)

q
a

)1/q∥∥∥
Lp(·)

≤c∥f∥Ḟβ,q
p(·)
.

Step 3. By the proof of [14, Theorem 1] and the lines of Triebel [15, pp.82, 103], it is obvious

that ∥f∥Ḟβ,q
p(·)

≤ c∥Sβ
q,r,mf∥Lp(·) . �

Remark 2.6 Through the above theorem, for q = ∞, 0 < β < 1, p(·) ∈ B(Rn), we have

∥f∥Ḟβ,∞
p(·)

≈
∥∥∥ sup

Q

1

|Q|1+β/n

∫
Q

|f − fQ|
∥∥∥
p(·)

.

For a cube Q, we let

fQ =
1

|Q|

∫
Q

f(x)dx.

3. Characterizations of the Lipschitz space

In this section, we characterize the Lipschitz space by using the boundedness of Commutators

of Calderón-Zygmund singular integrals and Riesz potential operator. Firstly, we recall some

lemmas, then give the main conclusions in this article (see Theorems 3.5 and 3.6). The proof of

the Lemma 3.1 may be found in [13].



526 Chenglong FANG

Lemma 3.1 For 0 < β < 1, 1 < q ≤ ∞, we have

∥f∥Λ̇β
≈ sup

Q

1

|Q|1+β/n

∫
Q

|f − fQ| ≈ sup
Q

1

|Q|β/n
( 1

|Q|

∫
Q

|f − fQ|q
)1/q

,

for q = ∞ the formula should be interpreted appropriately.

According to the proof in [13, pp.71-72], under the certain conditions we have∥∥∥ sup
Q

1

|Q|1+γ/n

∫
Q

|hQ|
∥∥∥
q
≤ C

∥∥∥ sup
Q

1

|Q|1+γ/n+α/n

∫
Q

|hQ|
∥∥∥
p
,

where hQ represent the function of defined on the cube Q.

By the argument same in the proof of the above fact with Lp(·) replaced by Lp, obviously,

we can obtain the following lemma.

Lemma 3.2 Let p(·) ∈ B(Rn), q(·) ∈ P(Rn), 1/p(·)− 1/q(·) = α/n. Suppose for cach cube Q

we have a function hQ, defined on this cube. Then, for γ ≥ 0,∥∥∥ sup
Q

1

|Q|1+γ/n

∫
Q

|hQ|
∥∥∥
q(·)

≤ C
∥∥∥ sup

Q

1

|Q|1+γ/n+α/n

∫
Q

|hQ|
∥∥∥
p(·)

,

where the constant C depends only on p, q, α and n.

Very often we have to deal with the norm of characteristic functions on balls (or cubes)

when studying the behavior of various exponents. In classical Lebesgue spaces the norm of such

functions is easily calculated, but this is not the case when we consider variable exponents. The

following lemma takes into account the norm of characteristic functions in the variable exponents.

Lemma 3.3 ([16]) Let p(·) ∈ P log(Rn). Then

∥χQ∥p(·) ∼

{
|Q|

1
p(·) , if |Q| ≤ 2n and x ∈ Q,

|Q|
1

p∞ , if |Q| ≥ 1

for every cube (or ball) Q ⊂ Rn.

For the norm of characteristic functions in the variable exponents we have simple norm

estimates as follows.

Lemma 3.4 Let x0, z0 ∈ Rn, t > 1, and let Q = Q(x0, t), Q
0 = Q(x0 + z0t, t).

(i) If p(·), q′(·) ∈ P log(Rn), 1
p(·) −

1
q(·) =

β
n with 1

p+ > β
n , then

∥χQ0∥Lp(·)∥χQ∥Lq′(·) ∼ tn+β .

(ii) If p(·), r′(·) ∈ P log(Rn), 1
p(·) −

1
r(·) =

α+β
n with 1

p+ > α+β
n , then

∥χQ0∥Lp(·)∥χQ∥Lr′(·) ∼ tn+α+β .

Proof We just need to prove (i), and the proof of (ii) is similar. The case |Q| ≤ 2n is obvious

by Lemma 3.3.

In the case |Q| > 2n, according to 1
p(·) −

1
q(·) =

β
n , we have

1

p∞
− 1

q∞
=
β

n
.
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Thus, by Lemma 3.3, we obtain

∥χQ0∥Lp(·)∥χQ∥Lq′(·) ∼ tn+
n

p∞ − n
q∞ ∼ tn+β .

The proof is completed. �
The following two theorems are the main results of this paper, mainly to characterize the

Lipschitz space by using the boundedness of Commutators of Calderón-Zygmund singular inte-

grals and Riesz potential operator.

Theorem 3.5 Let 0 < β < 1, q(·) ∈ P(Rn) and p(·), q′(·) ∈ P log(Rn). 1
p(·) −

1
q(·) = β

n with
1
p+ > β

n . Then, the following conditions are equivalent:

(a) b ∈ Λ̇β ;

(b) [b, T ] is a bounded operator from Lp(·)(Rn) to F β,∞
p(·) ;

(c) [b, T ] is a bounded operator from Lp(·)(Rn) to Lq(·)(Rn).

Proof Let 0 < β < 1, 1
p(·)−

1
q(·) =

β
n with 1

p+ > β
n . Now, we go to prove that the (a) is equivalent

to (b) and (c). Firstly, fix a cube Q = Q(xQ, t) and x ∈ Q. For f ∈ Lp(·) and let f0 = fχ2Q,

f∞ = f − f0.

(a)⇒ (b). According to (1.1), we have

[b, T ]f = [b− bQ, T ]f,

so

1

|Q|1+β/n

∫
Q

|[b, T ]f − ([b, T ]f)Q|

=
1

|Q|1+β/n

∫
Q

|[b− bQ, T ]f − ([b− bQ, T ]f)Q|

. 2

|Q|1+β/n

∫
Q

|[b− bQ, T ]f − T ((b− bQ)f
∞)(xQ)|

. 1

|Q|1+β/n

∫
Q

|(b− bQ)Tf |+
1

|Q|1+β/n

∫
Q

|T ((b− bQ)f
0)|

1

|Q|β/n
sup
y∈Q

|T ((b− bQ)f
∞)(y)− T ((b− bQ)f

∞)(xQ)|+

= D1 +D2 +D3.

First, we estimate D1, using Lemma 3.1, it follows that

1

|Q|1+β/n

∫
Q

|(b− bQ)Tf | .
1

|Q|β/n
sup
y∈Q

|b(y)− bQ|(
1

|Q|

∫
Q

|Tf |)

. ∥b∥Λ̇β
M(Tf)(x).

Thus, we obtain D1 . ∥b∥Λ̇β
M(Tf)(x).

To estimate D2, let 0 < t < p−, according to the boundedness of T , we have

D2 . 1

|Q|1+β/n

(∫
Q

|T ((b− bQ)f
0)|t

)1/t

|Q|1−1/t
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.|Q|−β/n−1/t
(∫

Q

|(b− bQ)f
0|t

)1/t

.|Q|−β/n sup
y∈Q

|b(y)− bQ|
( 1

|Q|

∫
Q

|f |t
)1/t

.∥b∥Λ̇β
(M(|f |t))1/t(x).

We now estimate D3. First, we need the following well-known fact. Let Q∗ ⊂ Q. Then

|bQ∗ − bQ| . C∥b∥Λ̇β
|Q|β/n.

Further, we have

|T (y(b− bQ)f
∞)(y)− T ((b− bQ)f

∞)(xQ)|

=
∣∣∣ ∫

Rn

(yK(y − z)−K(xQ − z))(b(z)− bQ)f
∞(z)dz

∣∣∣
.

∫
(2Q)c

|y − xQ|
(|xQ − z|)n+1

|b(z)− bQ||f(z)|dz

.
∞∑

m=2

∫
2mQ\2m−1Q

2−m|2mQ|−1(|b(z)− b2kQ|+ |b2kQ − bQ|)|f(z)|dz

.
∞∑

m=2

2−m|2mQ|β/n∥b∥Λ̇β
M(f)(x) +

∞∑
m=2

2−m|2mQ|β/n∥b∥Λ̇β
M(f)(x)

. ∥b∥Λ̇β
|Q|β/n

∞∑
m=2

2−m+βmM(f)(x)

. ∥b∥Λ̇β
|Q|β/nM(f)(x).

Thus, we can obtain D3 . ∥b∥Λ̇β
M(f)(x).

We finally obtain

1

|Q|1+β/n

∫
Q

|[b, T ]f − ([b, T ]f)Q|

. ∥b∥Λ̇β
(yM(yTf)(x) + (M(|f |t))1/t(x) +Mf(x)).

We now take the supremum over all Q such that x ∈ Q, and the norm of Lp(·) on both sides.

Since p(·) ∈ P log(Rn), by Remark 2.6 and the boundedness of M, we conclude that

∥[b, T ]f∥Ḟβ,∞
p(·)

. ∥b∥Λ̇β
∥M(Tf)∥p(·) + ∥b∥Λ̇β

∥∥∥(M(|f |t))1/t∥p(·) + ∥b∥Λ̇β
∥Mf

∥∥
p(·)

. ∥b∥Λ̇β
∥f∥p(·).

(b)⇒(a). We knowK(y, z) is a homogeneous kernel of degree−n. Choose z0 ∈ Rn, Q(yz0, δ
√
n) ⊂

Rn and take |z0| >
√
n, δ < 1 small so that Q̄

∩
{0} = ∅ is the ball for which we can express

1
K(x,y) as an absolutely convergent Fourier series of the form

1

K(x, y)
=

∞∑
m=0

ame
i⟨νm,(x−y)⟩, (3.1)

where above and in what follows, νm ∈ Rn are the specific vectors, and
∑∞

m=0 |am| <∞.
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Choose x0 ∈ Rn, t > 1, and let Q = Q(x0, t), Q
0 = Q(x0 + z0t, t). For x ∈ Q, y ∈ Q0 with

(y−x)/t ∈ Q(z0, δ
√
n). Take on s(x) = sgn(b(x)− bQ0). Applying (3.1), Remark 2.2 and Lemma

3.4 (i), we can obtain

1

|Q|1+β/n

∫
Q

|(b(x)− bQ)|dx . 2

|Q|1+β/n

∫
Q

|b(x)− bQ0 |dx

. 1

|Q|1+β/n

1

|Q0|

∫
Q

s(x)
(∫

Q0

(yb(x)− b(y))dy
)
dx

=
1

t2n+β

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))
K(x− y)

K(x− y)
dy

)
dx

=
1

tn+β

∞∑
m=0

am

∫
Q

s(x)
(∫

Q0

(yb(x)− b(y))K(x− y)ei⟨νm,y/t⟩dy
)
e−i⟨νm,x/t⟩dx

. 1

tn+β

∞∑
m=0

|am|
∫
Rn

([b, T ](yχQ0ei⟨νm,·/t⟩)(x))(χQ(x)e
−i⟨νm,x/t⟩s(x))dx

. 1

tn+β

∞∑
m=0

|am|∥[b, T ](yyχQ0ei⟨νm,·/t⟩)∥Lq(·)∥χQ∥Lq′(·)

. 1

tn+β

∞∑
m=0

|am|∥[b, T ](χQ0ei⟨νm,·/t⟩)∥Ḟβ,∞
p(·)

∥χQ∥Lq′(·)

. 1

tn+β

∞∑
m=0

|am|∥[b, T ]∥Lp(·)→Ḟβ,∞
p(·)

∥χQ0∥Lp(·)∥χQ∥Lq′(·)

. ∥[b, T ]∥Lp(·)→Ḟβ,∞
p(·)

.

Thus, (b)⇒(a) is proved.

(a)⇒(c). For b ∈ Λ̇β , 0 < β < 1, 1
p(·) −

1
q(·) = β/n. Since K(x − y) is Calderón-Zygmund

kernel, we have

|b(x)− b(y)||K(x− y)| .
A∥b∥Λ̇β

|x− y|n−β
.

Using Iβ is a bounded operator from Lp(·) to Lq(·), it follows that

∥[b, T ]f∥q(·) ≤
∥∥∥ ∫

Rn

|b(x)− b(y)||K(x− y)||f(y)|dy
∥∥∥
q(·)

.∥b∥Λ̇β

∥∥∥ ∫
Rn

|f(y)|
|x− y|n−β

dy
∥∥∥
q(·)

.∥b∥Λ̇β
∥Iβ |f |∥q(·) . ∥b∥Λ̇β

∥f∥p(·).

(c)⇒(a). Proceeding in the method as (b)⇒(a), if 1
q(·) +

1
q′(·) = 1, we can obtain

1

|Q|1+β/n

∫
Q

|(b(x)− bQ)|dx . 2

|Q|1+β/n

∫
Q

|b(x)− bQ0 |dx

. 1

|Q|1+β/n

1

|Q0|

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))dy
)
dx

. 1

t2n+β

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))
K(x− y)

K(x− y)
dy

)
dx
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. 1

tn+β

∞∑
m=0

am

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))K(x− y)ei⟨νm,y/t⟩dy
)
e−i⟨νm,x/t⟩dx

. 1

tn+β

∞∑
m=0

|am|
∫
Rn

([b, T ](χQ0ei⟨νm,·/t⟩)(x))(χQ(x)e
−i⟨νm,x/t⟩s(x))dx

. 1

tn+β

∞∑
m=0

|am|∥[b, T ](χQ0ei⟨νm,·/t⟩)∥Lq(·)∥χQ∥Lq′(·)

. 1

tn+β

∞∑
m=0

|am|∥[b, T ]∥Lp(·)→Lq(·)∥χQ0∥Lp(·)∥χQ∥Lq′(·)

. ∥[b, T ]∥Lp(·)→Lq(·) .

[b, T ] is a bounded operator from Lp(·)(Rn) to Lq(·). Thus, (c)⇒(a) is proved. which completes

the proof of Theorem 3.5. �

Theorem 3.6 Let 0 < β < 1, p(·), q(·), r(·) ∈ P(Rn) and p(·), r′(·) ∈ P log(Rn). 1
p(·) −

1
q(·) =

α
n ,

1
p(·) −

1
r(·) =

α+β
n with 1

p+ > α+β
n . Then, the following conditions are equivalent:

(a) b ∈ Λ̇β ;

(b) [b, Iα] is a bounded operator from Lp(·)(Rn) to F β,∞
q(·) ;

(c) [b, Iα] is a bounded operator from Lp(·)(Rn) to Lr(·)(Rn).

Proof Let 0 < β < 1, 1
p(·) −

1
q(·) =

α
n ,

1
p(·) −

1
r(·) =

α+β
n with 1

p+ > α+β
n . Fix to xQ as the center

of a cube Q, for g ∈ Lp(·), let g0 = gχ2Q and g∞ = g − g0.

(a)⇒ (b). By Remark 2.6 and Lemma 3.2, we can obtain

∥[b, Iα](g)∥Fβ,∞
q(·)

.
∥∥∥ sup

Q∋·

1

|Q|1+β/n

∫
Q

|[b, Iα](g)− ([b, Iα](g))Q|
∥∥∥
q(·)

.
∥∥∥ sup

Q∋·

1

|Q|1+β/n

∫
Q

|[b− bQ, Iα](g)− ([b− bQ, Iα](g))Q|
∥∥∥
q(·)

.
∥∥∥ sup

Q∋·

1

|Q|1+β/n

∫
Q

|[b− bQ, Iα](g)− Iα((b− bQ)g
∞)(xQ)|

∥∥∥
q(·)

.
∥∥∥ sup

Q∋·

1

|Q|1+β/n

∫
Q

|(b− bQ)Iα(g)|
∥∥∥
q(·)

+∥∥∥ sup
Q∋·

1

|Q|1+α/n+β/n
sup
y∈Q

|Iα((b− bQ)g
0)(y)|

∥∥∥
p(·)

+∥∥∥ sup
Q∋·

1

|Q|α/n+β/n
sup
y∈Q

|Iα((b− bQ)g
∞)(y)− Iα((b− bQ)g

∞)(xQ)|
∥∥∥
p(·)

= F1 + F2 + F3.

Firstly, to estimate F1, for each x ∈ Q, we get by Lemma 3.1,

1

|Q|β/n
1

|Q|

∫
Q

|(b− bQ)Iα(g)| .
1

|Q|β/n
sup
y∈Q

|(b(y)− bQ)|
(
y

1

|Q|

∫
Q

|Iα(g)|
)

.∥b∥Λ̇β
M(Iα(g))(x).
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According to the boundedness of Iα, we then obtain

F1 . ∥b∥Λ̇β
∥Iα(g)∥q(·) . ∥b∥Λ̇β

∥g∥p(·).

To estimate F2, choose r, 1 < r < p−, and r̄ such that (1/r − 1/r̄) = (α/n). Such r̄ exists,

since r < p− < n/α, it follows that

1

|Q|1+(α+β)/n

∫
Q

|Iα((b− bQ)g
0)| . 1

|Q|1+(α+β)/n
∥Iα((b− bQ)g

0)∥r̄|Q|1/r̄
′

. |Q|−1−(α+β)/n+1−1/r̄∥(b− bQ)g
0∥r . ∥b∥Λ̇β

(yM(|g|r))1/r.

Thus, we obtain F2 . ∥b∥Λ̇β
∥g∥p(·).

We now estimate F3. Analogously to the estimate of D3, we have

1

|Q|α/n+β/n
|Iα(y(b− bQ)g

∞)(y)− Iα((b− bQ)g
∞)(xQ)|

. 1

|Q|α/n+β/n

∫
(2Q)c

|y − xQ||b(z)− bQ||g(z)|
|xQ − z|n+1−α

dz

. 1

|Q|α/n+β/n

∞∑
2

∫
2kQ\2k−1Q

2−k|2kQ|−1+α/n|g(z)||b(z)− bQ|dz

.
∞∑
2

2−k+kα+kβ 1

|2kQ|β/n
1

|2kQ|

∫
2kQ

|b(z)− b2kQ||g(z)|dz+

∞∑
2

2−k+kα 1

|Q|β/n
|2kQ|β/n∥b∥Λ̇β

1

|2kQ|

∫
2kQ

|g(z)|dz

. ∥b∥Λ̇β
M(g)(x).

So, F3 . ∥b∥Λ̇β
∥g∥p(·). Thus, (a)⇒(b) is proved.

(b)⇒(a). We know 1
(|x−y|)n−α is a homogeneous kernel of degree −n+α. Choose x0 ∈ Rn, t >

0, and let Q = Q(x0, t), Q
0 = Q(x0 + z1t, t), for x ∈ Q, y ∈ Q0. According to (3.1), we can get

1

|x− y|n−α
=

∞∑
m=0

ame
i⟨νm,x−y⟩.

Like the method of (b)⇒(a) in Theorem 3.5, by Lemma 3.4 (ii), we have

1

|Q|1+β/n

∫
Q

|(b(x)− bQ)|dx . 2

|Q|1+β/n

∫
Q

|b(x)− bQ0 |dx

. 1

|Q|1+β/n

1

|Q0|

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))dy
)
dx

=
1

t2n+β

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))
|x− y|n−α

|x− y|n−α
dy

)
dx

=
1

tn+β+α

∞∑
m=0

am

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))|x− y|n−αei⟨νm,y/t⟩dy
)
e−i⟨νm,x/t⟩dx

. 1

tn+β+α

∞∑
m=0

|am|
∫
Rn

([b, Iα](χQ0ei⟨νm,·/t⟩)(x))(χQ(x)e
−i⟨νm,x/t⟩s(x))dx
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. 1

tn+β+α

∞∑
m=0

|am|∥[b, Iα](χQ0ei⟨νm,·/t⟩)∥Lr(·)∥χQ∥Lr′(·)

. 1

tn+β+α

∞∑
m=0

|am|∥[b, Iα](χQ0ei⟨νm,·/t⟩)∥Ḟβ,∞
q(·)

∥χQ∥Lr′(·)

. 1

tn+β+α

∞∑
m=0

|am|∥[b, Iα]
∥∥
Lp(·)→Ḟβ,∞

q(·)
∥χQ0∥Lp(·)∥χQ∥Lr′(·)

. ∥[b, Iα]∥Lp(·)→Ḟβ,∞
q(·)

.

[b, Iα] is a bounded operator from Lp(·)(Rn) to Ḟ β,∞
q(·) . So, (b)⇒(a) is proved.

(a)⇒ (c) was proved in [8, Theorem 5].

(c)⇒(a). By the same argument as (b)⇒(a) in the proof of this theorem, we have

1

|Q|1+β/n

∫
Q

|(b(x)− bQ)|dx . 2

|Q|1+β/n

∫
Q

|b(x)− bQ0 |dx

. 1

|Q|1+β/n

1

|Q0|

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))dy
)
dx

=
1

t2n+β

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))
|x− y|n−α

|x− y|n−α
dy

)
dx

=
1

tn+β+α

∞∑
m=0

am

∫
Q

s(x)
(∫

Q0

(b(x)− b(y))|x− y|n−αei⟨νm,y/t⟩dy
)
e−i⟨νm,x/t⟩dx

. 1

tn+β+α

∞∑
m=0

|am|
∫
Rn

([b, Iα](χQ0ei⟨νm,·/t⟩)(x))(χQ(x)e
−i⟨νm,x/t⟩s(x))dx

. 1

tn+β+α

∞∑
m=0

|am|∥[b, Iα](χQ0ei⟨νm,·/t⟩)∥Lr(·)∥χQ

∥∥
Lr′(·)

. 1

tn+β+α

∞∑
m=0

|am|∥[b, Iα]∥Lp(·)→Lr(·)∥χQ0∥Lp(·)∥χQ∥Lr′(·)

. ∥[b, Iα]∥Lp(·)→Lr(·) .

The proof of Theorem 3.6 is completed. �
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